W ERCACHE

Ehcache 2.5.x Documentation

Getting Started Overview 1/284
"Getting Started" Table of CONEENLS.......c.c.iiiiiiiiieiie ittt st 1/284

Getting Started in Theory and PractiCe...........ccoiiiiiiiiiiiiiieieieeeeeeee e 1/284

Hello, Ehcache. 2/284
INETOUCTION. ..ttt et b et sa e s bttt s bt bt et e b sbeesnenae e 2/284
DIETINIEIONS. c.. ettt ettt b ettt e b ettt s bttt enaesbe et e b s bt e bt et et e ebeesnenne e 2/284

WhyY CaChing WOTKS. ...c..iiiiiiiieie ettt sttt 2/284
Locality Of RETEIENCE......ccueiiiiiiiiiiieeiie ettt ettt sttt et sb e e nbeenaeens 2/284

The LoNg Tall....coiiieiee ettt et b ettt et e bt e bt e bt e bt enbeenbeens 2/284

Will an Application Benefit from Caching?..........cocoiiiiiiiiiiiiiiiee e 3/284
Speeding up CPU-bound APPLCAtiONS..........ceiueeiiieriieiieiieie ettt ettt enaens 3/284

Speeding up [/O-bound APPHCALIONS........eeuiiiieiieiieteeieete ettt ettt eeeens 3/284

Increased Application SCalability........cccoiiiiiiiiiiiiiieeee e 4/284

How much will an application speed up with Caching?..........ccccoviiiiiniiiinieneneseeeeeeeane 4/284

ThE SROTE ANSWET.....cc.eiiiriiiiiiiiriiee ettt sttt ettt ettt sbe et et sae b esneae 4/284

APPLYINg AmMAahl's LaW....cooueiiiiiiiiiiieee ettt sttt 4/284

(O 11 S 2 416 1<) T USROS SORURPSRPO 5/284

(@ L1 1 23 5 (61155 1 [USRS SRPRURPSPO 6/284

A cache version of Amdahl's JaWi......co.ooirieiiiiiiiiiinc e 7/284

WED Page €XaAMPIE......oiuiiiiiiiiiitieiie ettt et sttt st 7/284

Cache Topologies. 8/284
INEEOUCTION. ..ttt ettt ettt ettt s be et et sae bt et b sbeesnenne e 8/284
Distributed Caching (Distributed ERCache)..........cocoeiiiiiiiiiiiiiieeeeeeeeeeeeee e 8/284
Replicated CaChINg.......ccueviiriiriiiiiiiiiieee ettt 9/284

USING @ CACNE SETVET.....cuiiuiiiiiiiiiieictesetee sttt ettt et sre s 9/284
NOICAION SIALBZIES ...e.veeveentitieiieteterte ettt sttt sttt et ettt et et bttt sresbeennene s 9/284

Potential Issues with Replicated Caching..........coccecueviririiiiiniiniiiininiricicneeeee e 9/284

Key Classes and Methods 11/284
INETOUCTION. ..ttt ettt st be bt bt ettt e be et e bt ebe e ennenaes 11/284
CACREMANAZELceiiiiiiiieieet ettt ettt ettt e st e s bt e st e sabee e e e 11/284

BRCACKHE. ...ttt ettt 12/284

EIEIMENT......oiiiiiii ettt e et 12/284

About Distributed Cache 13/284
INETOUCTION. ...ttt ettt st ae bt bt ettt eaeess e bt ebeeanennenaes 13/284
ATCRILECIUTC.veevintiit ettt ettt et na e eb et be s bt bt et et sbeeas et e ebeeenennenaes 13/284
LLOZICAL VIBW.... ittt et et ettt ettt ettt ettt eateeae e 13/284

INEEWOTK VIBW...c.iiiiitiiiiiieteter ettt ettt sttt bt 13/284

Memory HIierarchy VIBW........cocuiiiiiiiiieiie et 14/284
Differences Between Terracotta Distributed Cache and Standalone or Replicated Cache............ 15/284

COAE SAMPIES. ...ttt ettt ettt ettt ettt et et et et e et e et e et e enteenteenbeenne 16/284
Development with Maven and ANT...........cocoiiiiiiiiiii ettt 16/284

Setting up for INtegration TEStING.......ccueeuiriiiieiie ettt 17/284

INEETACTIVE TESTINGeeiueeiieeeiie ettt ettt ettt et ettt et eneeeateenae e 17/284

Ehcache 2.5.x Documentation

Cache Consistency Options 18/284
INEEOUCTION. ..ttt ettt ettt sttt s b e bt ettt eae e et ebe e ennenaes 18/284
SEIVEI-SiAE COMSISIEICY. . euuteutiitiitteiiieetie ettt ettt et e st e et e et e s et e saeesatesieesaeesaeeeaeessbesaeesaeesaeesaseaneas 18/284

Server Deployment TOPOIOZY.......coiiiiiiiiiiiiie ettt s 18/284
Restating in terms of Quorum based replicated-write protocols........ccccceveereeriierieenieenieeennn 18/284
ClIENt-S1dE CONSISIEICY ... euteruteeuieeiieeite ettt et ettt ettt et e et e e bt et e eaeeeateeabeeabeeabeembeenbeeneeeneeenseenne 18/284
MOdE] COMPONENLS.....cvivieuietirtiriietenteettetete sttt ettt ettt st et et e st sttt e st sbeebeentenbesbeennensenne 19/284
Mapping the Model to Distributed Ehcache..........ccccoeeeevienininieiininiiiceccseeeece 19/284
Standard Client-Side ConsiStency MOAES......c..ceveruiriirieienieninieieneeieetetenie e 19/284
Consistency Modes in Distributed Ehcache............ccoooiiiiiiiiiiii e 20/284
SEIONZ CONSISIEICY . vteeuteetteette ettt etteeiteeate ettt ettt eteesatesatesateeateeateestesatesaeesateeateesbessaesatesneesneesnees 20/284
EVENTUAL CONSISIEICY. ... eeiutteuieiiiieiiteite ettt ettt ettt ettt ettt ettt et eabe et et e enteenteenneenee 21/284
Other Safety FEatUIEs.ooiiiiiiiiiie ettt st 22/284
CAS CaChe OPETatiONS. ..cueeeuieeuiieiiieiie ettt ettt ettt ettt ettt ettt et e eabeebeeabeeabeeneeenteenseenne 22/284
Use Cases And Recommended PractiCes.........ceouevirieiininirieniiniiiieieiesceiectese et 22/284
Shopping Cart - OPtIMISIC TNVENLOTY.....cc.uiruiiriieiieeiieeie ettt ete st eee ettt sieesiee e seeeeaees 22/284
Shopping Cart with Inventory Decrementing............cccueeverieiienienieiieeie et 22/284
Financial Order Processing - write to cache and database..............cccceeveiieeiieiinniniceeeee 23/284
IMMUEADIE DALA.....ooiiiiiiii e 23/284
Financial Order Processing - write to cache as SOR..........cccccociiiiiiiiiiiiieeeeee 24/284
E-commerce web app with NON-StiCKY SESSIONS.....cccutriiiiiriiieiieie e 24/284
E-commerce web app With StICKY SESSIONS.........oiuiiiiiiiiiiieie e 25/284
E-COMMEICE CatalOg.....eeiueiiuiiiiiieiieeie ettt ettt ettt et ettt et 25/284

Storage Options 26/284
INEEOUCTION. ...ttt ettt ettt st b e bt bt ettt e beess bt sbe e enaenaes 26/284
IMIEIMOTY STOTE. ...ttt ettt ettt ettt ettt e et e et e eabeeab e eaeeea e e eabeeabeeabeembeembeenteenseenseenne 26/284

SUItable EIEMENt TYPES....eiiuiiiiiiiiieiiieeieee ettt sttt st e e 26/284
Memory Use, Spooling, and EXPIiry StrateZy.........cccceevuieiiiriiieiiieieeieeie e 26/284
BigMemory (Off-HEap STOTE).......oouiiiiiiiiie ettt 271284
SUItable EIEMENt TYPES....eiiuiiiiiiiiieiieeieee ettt sttt st st eeaee e 28/284
DISKSLOTE. ...ttt ettt et et sa e st b e bt bt ettt e be ettt b e ennenaes 28/284
DiskStores are OPioNal..........cocueiiiiiiiiiiiiee ettt et e 28/284
SUItAble EIEMENt TYPES ...ttt ettt sttt sttt e s e saeeeaeas 28/284
Enterprise DISKSTOTE.oouiiiiiiiiiee ettt 28/284
STOTAZE ..ottt st sat e sttt et et s eaees 29/284
EEXPATY. ettt et bttt b et b e bbbt eae e a e 29/284
EVICHION. .ttt ettt ettt et bbb be et 29/284
SerialiZable ODJECLS . c.ueiiuiiieieiie ittt st ettt st siee st 30/284
R F Y (S ST PPURRUPRO 30/284
POISISIEIICE ...ttt ettt ettt sttt sh et be bt e e 30/284
Fragmentation.ooui ittt ettt et et ettt et et e ae e 31/284
SETTALIZATION. ... ettt ettt ettt ettt et et b e e bt bt et bt et n et be e naenaes 31/284
RAMES ...ttt ettt ettt sttt bbbt 31/284
Some Configuration EXamPIEs.........cooueiiiiiiiiiiiiiieee et 31/284
Performance COonSIAEIatiONS..........coueitrieriireeietiniett ettt ettt sttt eb et s ess et sbe e ennenaes 32/284
REIAtIVE SPEEAS. ...ttt ettt et ettt ettt e 32/284
Always use some amount Of HEap.........ccoouiiiiiiiiiiiiiii e 33/284

Ehcache 2.5.x Documentation

Using Ehcache 34/284
INEEOUCTION. ..ttt ettt ettt sttt s b e bt ettt eae e et ebe e ennenaes 34/284
General-Purpose CaChing..........couiiiiiiiiiiiie ettt 34/284
CaChe USaZe PatteINS.....cooueiiiiiiiiiiiieeitee sttt ettt ettt e bt e esbbeesabeesaneeaas 34/284

CACRE-ASTAE. ¢ttt ettt ettt sttt bbb bt 34/284
CACRE-AS-SOL. ..ttt et 35/284
TEAA-TATOUGNL ...ttt ettt ettt et et 35/284
WIIEE-TRTOUZIL ...ttt ettt et et e 36/284
WITEE-DEIIN. ..ottt sttt sttt st 36/284
CAChE-2S-SOT EXAMPIC. ... eeiuiiiiiiiiiiii ettt et et et ettt e 36/284
COPY CACRE.....eeete ettt ettt et et e st e st e st e e e e 37/284
SPECIfiC TECANOIOZIESeeieiiiiiieie ettt sttt st eeaeeeaees 38/284
Distributed CaChing.......cooviiiiiiieiie ettt ettt ettt et 38/284
HIDEIMALE. ...ttt sttt et bbbt 38/284
Java EE Serviet Caching.........cocooiiiiiiiiiii et 38/284
RESTful and SOAP Caching with the Cache Server.............coccooviiiiiiiiiiiiieeeceee 38/284
JCache Style CACHING...c..couieiiiiriiiic ettt 39/284
Spring, Cocoon, Acegi and other frameworKs.........c..cocveeveriniiiininiinicic e 39/284

Building and Testing Ehcache 40/284
INETOUCTION. ..ttt ettt st a e bt bt ettt ebe e eaeebe s ennenaes 40/284
Building from SOUICE.oouiiiiiiieie ettt et et ettt et et 40/284

Building an Ehcache distribution from SOUICE...........cocuiiiiriiieiiieiieieeie e 40/284
Running Tests for ENCACKE...........c.ooiiiiiiiii e 40/284
Java Requirements and DependencCies..........cocueiuieiiiiiiiiiiieie ettt 40/284
JaVA REQUITEIMENES. . ..ottt ettt ettt ettt ettt et e eeeae e 40/284
Mandatory DePendenCies.........c.eeuiiuiiieiiieie ettt ettt ettt e 40/284
IMAVEIN STUPPCL. ..ttt ettt ettt ettt ettt e et e eabe et e eabe et e eneeenteenneenne 41/284
Distributed Cache Development with Maven and ANt.........coccoeoieiiiiiiieiieeieececeeeeee e 41/284
Setting up for INtegration TEStING......c.cueeuiiiiiieiie ettt 41/284

Configuration Overview. 43/284
Configuration Table Of CONENES.......cc.iiiiiiiiiieie ettt ettt 43/284
Hit the Ground RUNNING........cocuoiiiiiiiiii ettt et ettt 43/284
Additional Information about Configuration..............ceeueiiiiiiieiiieiiiee e 44/284

Cache Configuration 45/284
INETOAUCTION. ...ttt ettt st e ae bt bt ettt ebe et e bt be e ennenaes 45/284
Dynamically Changing Cache Configuration.............cccooueiiiiieeieeiieeie e 45/284

Dynamic Configuration Changes for Distributed Cache.............ccccooerviiiiiiieiiiieiceeee 46/284
Memory-Based Cache Sizing (Ehcache 2.5 and higher)...........cccoooiiiiiiiiiiiiiceee 47/284
Pinning of Caches and Elements in Memory (2.5 and higher)..........ccoccoiiiiiiiiiiniiici 47/284
Cache Warming for multi-tier CaChes.........c.ooouiiiiiiiiiiiee e 47/284
DiskStoreBootstrapCacheLoaderFactory...........coouiiiiiiiiiiiiieieee e 47/284
TerracottaBootstrapCacheLoaderFactory...........cocuiiiiiiiiiiiiiieieeee e 47/284
copyOnRead and copyOnWrite cache cONfiguration............coceecueeueeiiriieenieeiie e 48/284
Special SyStem PrOPEITIES.ccuertiiirieiiiiriieiee sttt ettt ettt et 49/284
net.sf.ehcache.diSabledot 49/284

Ehcache 2.5.x Documentation

Cache Configuration

net.sf.ehcache.use.ClassiC.ITU . c.iiiiciiiiiiiiiic e 49/284
ERCACKHE. XS ettt bbbt ettt 49/284
ehcache-failsafe. XML.....cc.ooiiiiiiiin et 507284
UPAALE CRECKET...c.utiiiiiiiiieeie ettt sttt ettt et e e sateesabeesaneeans 50/284

BY SYStEM PrOPEITY.....coouiiiiiiiiiiieiiee ettt ettt 50/284

BY CONTIGUIATION. ...ttt ettt ettt ettt et ettt e e ee e e e 50/284
ehcache.xml and Other Configuration Files..........ccccoociiiiiiiiiiiiiie e 50/284
Ehcache Configuration With Terracotta CIUSIETING..........eeovieiieriieiieiieieeie et 51/284

BigMemory. 52/284
INEEOUCTION. ...ttt ettt ettt sttt bt bt ettt ebe s e b sbeeanennenaes 52/284
CONTIGUIALIONL ...ttt ettt ettt e at e e et e et e eab e eate e s e e abeeabeeabeembeembeenteenseenbeenne 52/284

Configuring Caches to Overflow to Off-heap.........cccooiiiiiiiiiiie 52/284

AdAINg The LICENSE.eeiiiiiiiieiiieie ettt ettt ettt ettt et e 53/284

Allocating Direct Memory in the JVIML......cooiiiiiii e 54/284
Advanced Configuration OPLONS.ueetiiierieeie ettt ettt ettt ettt ettt et et eteeeeenseenee 54/284

S XX AUSELATZEPAZES. ...ttt e as 54/284

Increasing the Maximum Serialized Size of an Element that can be Stored in the

OFTHEAPSTOTE ...ttt ettt ettt ettt et e eenbe e e e 54/284

AVOIAING OS SWaAPPING.....tiiuiiiiiieiiiiie ettt ettt et ettt ettt e et et et et e eneeeateenneenee 54/284

Compressed REFEIENCES.co.uiiiiiiiiii ittt e 55/284

Controlling Over-allocation of Memory to the OffHeapStore...........cccceeveeiieiieiiencenieeeee, 55/284
SAMPIE APPIICATION. ...ttt ettt st e it e et e saeesateeatesaeesaeesaeeeneas 55/284
Performance COMPATISOMNSc..uiiuiiiiiiiieii ettt ettt ettt ettt ettt et et e e b e eabeebe et enteenteenseeane 55/284

Largest FUIL GC.....ooiii ettt et et ettt et e 56/284

21155 1 Lo OO OO PRSPPSO 56/284

TREOUGRPUL ...ttt ettt ettt ettt ettt e et eenteenae e 571284
SEOTAZE. « .-t ente ettt ettt ettt et ettt ettt e b e s et e sab e e ab e e a bt e e b et e s bt e sh bt e ea bt e eab e e e beeebteenhbeesabeeea 58/284

StOTa@E HICTATCHY ... ettt ettt sttt eaeas 58/284

Memory Use in Each STOre.........ooouiiiiiiiii e 58/284
Handling JVM Startup and ShUutdOWIL.......ccccocveiiiriiiiiininiieieeneceee et 59/284
Using OffHeapStore with 32-bit JVIMS......cocieiiriininieiiiiniietecneseeteie et 59/284
SIOW Off-Heap ALLOCATION. ...c..eiiuiiiiiiiiieeiie ettt ettt ettt st et esaeesaeesaeesaeeeneas 60/284
RedUCING CaACNE IMISSES.....cueiiuiiiiiieiiieiie ettt ettt et ettt ettt et ettt et et enteenteenbeenne 60/284
FAQ ettt ettt h et a e bt bbbt s he et be et et naes 60/284

What Eviction Algorithms are Supported?.........ccoeeveerierienieiieeereee e 60/284

Why do I see performance slow down and speed up in a cyclical pattern when I am

FIIING @ CACNE? ...ttt ettt ettt et e bt e b e nbe e b 61/284

What is the maximum serialized size of an object when using OffHeapStore?...................... 61/284

Why is my application Startup SIOWET?........cc.eeruieriieriieniieiieiieteeie et 61/284

How can I do Maven testing with BigMemOTryZ.........cocoeiiiiiiiiiiiiieie e 61/284

How to Size Caches. 62/284
INEEOQUCTION. ...ttt ettt ettt st a e s bt bt ettt ettt et ennenees 62/284

Cache Configuration Sizing AITDULESooiuiiiiiiieeie e 62/284
Pooling Resources Versus Sizing Individual Caches............coccoeviiiiiiiiiiiiiiiiiieeeeeeee 63/284

LLOCAL HEAP. ¢ttt ettt et ettt ettt e ae e 63/284

Ehcache 2.5.x Documentation

How to Size Caches

BigMemory (Local Off-HEap)........eouiiiiiieeie et e 64/284
LOCAL DISKu.coeteiiiieiteee ettt s 64/284
Cache Sizing EXaMPIES........cooiiiiiiiiiii ettt ettt ettt et e 64/284
POOIEA RESOUICES.......viiiiieiiiiiiieiietert ettt sttt bttt 64/284
EXPlCitly SiZing CaChES.....cc.eiiiiiiiiiiiiie ettt et et e 65/284
Mixed Sizing CONfIUIAtIONS.cc.uiiiiiieiie ettt ettt ettt ettt eeee e 65/284
USING PEICENES ...ttt ettt ettt ettt ettt et eateeae e 66/284
Sizing Caches Without @ POOL...........ooiiiiiiiiiiii e 66/284
OVETTIOWS. ...ttt sttt sttt e b bbb bt et e st be e nnenaes 67/284
Sizing DiStributed CaChES.eoiuiiiiiiieiie ettt 67/284
Sizing the Terracotta SEIVET ATTAY......ccceouirtirieiteeieeiie ettt eite st et e st setesieesaeeseeesaeesaeas 68/284
Overriding Size LIMItations......co.eeuieverieriiririeenenitetente sttt ettt et sttt s nae 69/284
Built-In Sizing Computation and Enforcement..............cocoveeievininiiiininicnecineeeeeceseeeee e 69/284
S1ZING Of CACEA ENUTIES.viovieiieiiiiirtieii ettt 69/284
Eviction When Using CacheManager-Level Storage.........ccccoooeeiiiiiiiiiiiiieeeeeceeee 71/284
Pinning, Expiration, and Eviction 73/284
INETOUCTION. ...ttt ettt ettt st et a e s bt bt ettt eaeess bt sbeeenennenaes 73/284
SN EXPITALION.etteitieeiieeiie ettt ettt ettt ettt st e it e s it e saeesateeatesatesseesaeesseesaeeeneas 74/284
PINNING DIALA. ..ottt ettt et ettt ettt ettt 74/284
Pinning Individual Cache ENtries.cccoeiiiiiiiiiiiieie et 74/284
PINNING @ CACE.eoiuiiiiiiiie ettt e 751284
SCOPE OF PINNING. ..ttt sttt sttt e s ate s e st eaeas 76/284
How Configuration Affects Element Flushing and EViCtion..........cccoccooviiiiiiiiiiiiiicececee 76/284
Pinning Overrides Cache S1ZING.........cocoiiiiiiiiiiiieiee et 76/284
Nonstop (Non-Blocking) Cache 78/284
INEEOQUCTION. ..ttt ettt ettt sttt s b e ebt ettt ebeeae bt ebe e ennenaes 78/284
Configuring NONStOP CaACRE......couuiiiiiiiiii ettt 78/284
Nonstop Timeouts and BeRavIiOrs.........cocueiiiiiiiiiiieee et 78/284
Tuning Nonstop Timeouts and Behaviors.........cccccouiririeienininiencnieceseeecce e 791284
INONSEOP EXCEPIIONS. ...ttt ettt ettt ettt et et e ettt et e e eneeenbeenee 80/284
When is NonStopCacheException Thrown2..........cooeeiieiiiiieiieiieeeeeeeeeeeeee e 80/284
Handling NonStop EXCEPHONS. ...cc.uiiiiiiiiiieie ettt ettt 80/284
UnlockedReadsView. 82/284
INETOUCTION. ..ttt ettt be bbbttt et eaesbe e ennenaes 82/284
Creating an UnlockedReadS VIBW..........oiuiiiiiiiiiiiie e 82/284
ProgrammatiCally..........ccoooiiiiiiiiii et 82/284

BY CONTIGUIATION. ...cutiiiiiiie ettt ettt ettt ettt ettt e e ateenae e 82/284
DOWNIOAA. ... et et et 83/284
FILE .ttt ettt et ae e 83/284
IMIAVEIL. ... ettt ettt et et e et ettt e 83/284
FAQ ettt bttt a e bbbt b e e bt eab bt be e enenaes 83/284
Why is this @ CacheDecorator?...........cccieiiiiiiiieietest ettt 83/284
Why do I see stale values in certain Ehcache nodes for up to 5 minutes?............cccceeveennene. 83/284

Ehcache 2.5.x Documentation

Distributed Ehcache Configuration Guide 84/284
INEEOAUCTION. ...ttt ettt et ettt ettt et et et enteenbeenbeenee 84/284
CacheManager CONTIGUIAION.......c.cuiitiiiiiie ettt ettt ettt et ettt et et eteeneeenee e 84/284

Via €hcache XIML.....cc.coiiiiiii et ettt 84/284
Programmatic CONfIgUIAtION..........couiiiiiiiiie ettt et 85/284
Terracotta Clustering Configuration EISMents.........cccoooiiiiiiiiiiiiiiiiieieeee e 85/284
EETTACOLEA ..ttt ettt ettt ettt ettt ettt et e bt e bt esbb e e sat e e eab e e eabeeeabe e e bt e e sbbeenbbeesabeesabaeeabeeennee 85/284
EEITACOTEACONTIZ.ee ettt et ettt ettt et et ettt et eeateenae e 87/284
Controlling CaACNE SIZE.....c..couirieriiriiiieieiese ettt sttt st ettt st b et eaenaes 89/284
Setting Cache EVICHON. c..cc.iiutiiiiiiieieeeree sttt ettt sttt s 89/284
Cache-Configuration File PrOPETties.......c..coceeieriiririeieniiniieieicniesteeie sttt 89/284
Cache Events ConfIgUIAtION.cc.eouirerierireetetenieett ettt sttt sttt s ea et eae e 89/284
COPY ON REAG.....cuiiiiiieiite ettt sttt ettt 90/284
Configuring Robust Distributed Caches........ccccouiririeiiniiiiiieiieceeeecce e 91/284
Incompatible CONfIGUIATION.ccuiriiiiiiiirieeiteee ettt ettt sttt st 91/284
Exporting Configuration from the Developer COnsole...........ccoceverirvienineeicniinineecnieseereee 91/284

Default Settings for Terracotta Distributed Ehcache 92/284
INEEOAUCTION. ..ttt ettt et ettt ettt et e e bt et eenteenbeenbeenee 92/284
TEITaCOtta SEIVET ATTAY.....cccuiiiiiiiiiiieiie ettt ettt et et et et e 92/284

Reconnection and Logging Properties.........ccccuivieriiririeienininienicriescetesie et 92/284
HealthChecKer TOIIaNCES..........oouiiiiiieiie ettt ettt e 93/284
ERCACKE ...ttt ettt ettt ettt ettt e 94/284
General Cache SEtNEZS......ccuerviririeiiiriieet ettt sttt ettt ee e 94/284
INODSLOP CACKE. ...ttt sttt ettt e 94/284
BULK OPETAtIONS. ...c..eeutiiiiieiiiieniietet ettt ettt sttt sb e ettt st eae e 94/284

BigMemory Overview 95/284
BigMemory Table Of CONENLS......c..coeeieriririeiininiet ettt sttt 95/284
BigMeEmOTY RESOUICES.....c..ciuiriieiiiiiiiiieieniceitetce ettt sttt sttt 95/284

Automatic Resource Control Overview. 96/284
ARC Table Of CONENES.....c.eiiuiiiiiiiieiie ettt ettt ettt ettt et et e e bt e beemte et e eneeenseenne 96/284
Additional Information about ARC...........coouiiiiiiiiii e 96/284

APIs Overview 97/284
APIS Table Of CONMENESeiueiiiiiiiieiiieiie ettt ettt ettt et ettt et enteenteenbeenne 97/284
Additional Information about APIS...........cociiiiiiiiii e 98/284

Ehcache Search API 99/284
INEEOAUCTION. ..ttt ettt ettt ettt et e et e e bt emteenteenbeenbeenee 99/284
What is SEarchable?.......c.oo ittt ettt et e 99/284
How to Make a Cache Searchable...........cooouiiiiiiiiiiiiiiiiiiee e 99/284

By CONIGUIALION....ccutitiiiieiietiitietet ettt sttt ettt e ae e 99/284
ProgrammatiCally........cc.coiiiiiiiiiiee et 100/284
ATITDULE EXITACTOTS . ..c.ttitietieitie ettt b et e sh e st e sbe e bt e s bt e sheesbeesbeesbeenbeesbeens 100/284
WEll-KNOWN ATIITDULESeeiiiiiiiie ittt ettt st e et 101/284
Reflection AttriDULE EXIIACTON. ... ceiuiiitieitieitie ettt st sbee e 101/284

vi

Ehcache 2.5.x Documentation

Ehcache Search API
Custom AttriDUEEXITACTOL. ...c..evuieiiiiirieiiieiciceie ettt 101/284
QUETY APL. ..ttt ettt sttt st a b e 102/284
Using Attributes i QUETIESc.eeiuieiuieitieitieeiie sttt ettt ettt e st et esbeesbeesbeesbeesbeesbeesbeenaeens 102/284
2401 (ST 0] 1 TSSO U ST SRUSUPUPR 102/284
LISt OF OP@TALOTS. ...ttt ettt ettt et e st e st e s b e s bt e bt esbeesbeesbeesbeesbeesbeenbeenaeens 103/284
Making Queries IMMmULabIE.ooiiiiiiiiiee e 103/284
SEATCH RESULLSc.iiiiiiiiiiee ettt sttt sttt 103/284
ALZGTEZALOTS. ..ttt ettt ettt ettt ettt et et e ettt e bt e e sbb e e shbeesabeesabeesabee e bt e e bt e enbbeenabeesabeesabeeeas 104/284
Ordering RESUILSc..ceiuiiieiee ettt ettt e e e b e e e e b 104/284
Limiting the Size of ReSUILS........oiiiiiiiiiiieee e 104/284
INterrogating RESULLS.......coueiiiiiiiiee ettt sttt ettt e sbee e 104/284
SAMPIE APPIICATION. 1.ttt ettt ettt ettt et et et e bt e bt e bt e bt e bt e bt enbeenseebeenne 105/284
SCrIPting ENVIFONIMENTS.eiitiiiiiitieitietieriie ettt ettt ettt et et et e bt e bt e bt e bt e bt e bt enbeenseebeenne 105/284
ConcuIrenCy CONSIACTAIONS ... ceuiertieiieitientiertteette et e st et te st testtesteestte st e sbeesbeesbeesbeesbeesbeesseenseeneeens 105/284
INAEX UPAALINEZ ...ttt ettt ettt e s bt e b et e esbeesbeesbeesbeesbeenbeenaeens 105/284
QUETY RESULLS. ..ttt ettt ettt ettt e et et e e b e 106/284
ReCOMMENAALIONS.eiviiieiieiiniiei ettt sttt st sttt 106/284
L 03010) 5300 1<) 121 (o) s SO PPSUSUPURIN 106/284
Standalone ERCACRE...........ccuiiiiiiiiiiiiic e e 106/284
Ehcache Backed by the Terracotta SErver ATTaY.......ccoceieereerierienieniesieseesiee e siee e 107/284
Bulk Loading in Ehcache 108/284
INETOUCTION. ...ttt ettt s be et et b e ettt be et et sbeebeenne st 108/284
APttt bt bbb b e ettt ettt sh et 108/284
SPEEd IMPIOVEIMENLeeiuiiiiiiiiiiiieritee ettt ettt et e st e st e eabeeebeeesbbeenaeeas 110/284
FAQ ettt h bbbt ettt b et sh e bt ea et 110/284
Are there any alternatives to putting the cache into bulk-load mode?..........c.cccoceerieninnncen. 110/284
Why does the bulk loading mode only apply to Terracotta clusters?..........c.ccceceereereernennee. 110/284
How does bulk load with RMI distributed caching Work?............ccccoiviiiniiiniinienenienee 110/284
PerfOrmManCe TiPS. ... eeueeieieitieit ettt ettt sh e st e s bt e bt e s bt e sbeesbeesbee bt e nbeenbeens 110/284
When to use Multiple Put Threads..........ooouiiieiiiiiiiiiee e 110/284
Bulk Loading on Multiple NOAES.......cceiiiiiiiiieiieiiesiesie ettt 110/284
Why not run in bulk load mode all the time............cocueeiiiiiiiiiiiii e 110/284
DOWNIOAA......ceiiiiiie et 110/284
Further INfOrmMation..........cooiiiiiiiiiiiicte ettt ettt st 111/284
Transactions in Ehcache 112/284
INETOQUCTION. ..ttt ettt sttt sh et b e ettt s bt et e tesbeeueennenbe 112/284
AL OF TOTIINE. ¢ttt st h e a e sb et esb e sbeesbeesbeesbeenbeenaeens 112/284
Change VISTDIIIEYcc.eeieiiiiiiie ettt ettt e st e bt e bt e bt e sbeenaee 112/284
When to use transactional MOAES.........ceveruiriiriiriinirieene ettt sttt 112/284
REQUITEIMEIIES. ...ttt ettt b e b e s b e st esh e e s ae e s bt e bt e sbeesbeesbeesbeenseenbeenbeens 112/284
(01073 o4 1121 (o) | U PPSUSUPUSN 113/284
Transactional Caches with Terracotta CIUSLEIING.......cc.eeveerierieriinieniesieste e 113/284
Transactional Caches With SPIring.........ccoiiiiiiiiiiiiiee e 113/284
GlODAl TTANSACHIONS. ..c..eevventiteeiieitenteetteit ettt ettt ettt ettt s b bbbt eae et s bt eenenbesbeeueennenben 114/284
L 0300) 5300 1<) 121 o) s FO SRS SUPURR 114/284

Vii

Ehcache 2.5.x Documentation

Transactions in Ehcache

Failure RECOVEIYeiiiiiieitieeiie ettt sttt b e sbe e s bt e sbeesbeesbeenbeesbeenbeens 114/284
RECOVETY ettt ettt et e st sabeesabeeeas 114/284
SAMPIE APPS ettt ettt ettt et e bt e h bt e st eeab e eab et e bt e e nbbeenaaeas 115/284
XA SAMPLE APP. ettt sttt et e b et e nbb e sabeesabeesbeeeas 115/284
XA Banking ApPPLCAtION. ...c..eeiiiiiiiiiitieitie ettt sttt st sbe e 115/284
EXAMINALTOT. ...ttt ettt ettt sb et sb e ebe bbbt e e bt sbe e enaenaes 116/284
TransSaction IMANAZETSciuuiitieiiieeiieet ettt ettt et et et te st te bt e she e s bt e sbeesbeesbeesbeesbeesbeenbeenbeesbeans 116/284
Automatically Detected Transaction Managers..........cceeveereerierienienienienieeseesiee e siee e 116/284
Configuring a Transaction Manager...........c.cuevieiieriinienie ettt siee e 116/284
L0CAl TTaNSACTIONS ...veuvteuretirtieiietesteettet ettt ettt ettt st sbe et sbe et e e st sbe et e tesbeeueennentens 116/284
INtroduCtion VIA@O......cc.eeueeuiiriiniiiiiiiiieeiteete ettt ettt sttt 117/284
(1073 o4 1121 (o) 1 TSSO U S SUSURURRR 117/284
ISOIAtION LLEVEL.....eiuiiiiiiiiieiieiiie ettt st 117/284
Transaction TIMEOULSccuiriririiieiertetee ettt sttt be e 117/284
SAMPIE COUE.....eeieiieiieeiie ettt ettt et e b e bt e bt e bt e bt e bt e bt e bt e bt e beenbeenteenbeenee 118/284
WHhat CAN GO WIONG......eiiiiiiiiiiiiie ettt et s bttt eabe e e baeesbbeenaaees 118/284
PITOIMIANCE.veeititieiietete ettt ettt sttt sae et nae s 118/284
MaNaINg CONTENEIONceuiiiuieitieitieitieet et ettt ee st et ee st tesieesteesteesaeesbeesbeesbeesbeesbeesbeesseenbeenaeens 118/284
What granularity of 10CKing 1S US€AZ.......cccuiiiiiiiiiiiiieieee e 118/284
Performance COMPATISOMS.ccuuiiuiiiiieitieitie ittt st et e st et esbeesbee st e sbeesbeesbeesbeenaeens 118/284
FAQ ettt b bbbt b e e at ettt b et na et en et 119/284
Why do some threads regularly time out and throw an excption?...........ccccocevceervenereernennnn 119/284

Is IBM Websphere Transaction Manager supported?........c..cocveeverirereenienieneenieneneecrenennes 119/284
How do transactions interact with Write-behind and Write-through caches?....................... 119/284
Are Hibernate Transactions SUPPOTEEA?......c..eevuieruierienieiieiie ettt sttt st 120/284
How do I make WebLogic 10 work with Ehcache JTA?.......cccoviiiiiiieeeeee 120/284
How do I make Atomikos work with Ehcache JTA's xa mode?........cccccocevevvevcninennencne. 120/284
Explicit Locking 121/284
INETOQUCTION. ...ttt ettt s h ettt b e et nb s bt et entesbeeaeennenre s 121/284
TRE APttt bttt ettt et nre s 121/284
211110 (U SPSUSUPURRPRN 122/284
SUPPOTLEA TOPOLOZIES. ...ttt ettt et et e bt e et e b e bt e bt e bt e b e e bt enbeenbeebeenee 123/284
HOW T8 WOTKS ..ttt sttt sttt sttt sae e nne s 123/284
Write-through and Write-behind Caching with the CacheWriter 124/284
INETOQUCTION. ..ttt sttt bbbttt ettt s bt et et sbeeaeennenne s 124/284
Potential Benefits of Write-Behind.........c.cocoeviiiiiiiiiiiniiiiiiicciceeceeeeee e 124/284
Limitations & Constraints of Write-Behind............cccceoeriniiiiiiniiiniiiniininicieeccsceceieee 124/284
Transaction BOUNAATIES........coeririiriiriiieieeee ettt sttt 124/284
THMNE AEIAY ..ttt ettt s h e h e b e be e bt esbeesbe e bt e s bt e nbeenaeen 124/284
Applications Tolerant Of INCONSISIENCY......cc.uiruiiiiiriiiiieiie ettt 125/284
Node time SYNCRTONISATIONe.eeuieitieitieitie ittt et ee st e st e sbeesbeesbeesbeesbeesbeesseesbeenaeens 125/284

INO OFAEIING GUATANEEES. ... eeiueeiieitieitieitiestteetteette et e steesteesteesteesteesbeesbeesbeesbeesbeesbeesbeesseenseenaeens 125/284
Using a combined Read-Through and Write-Behind Cache............cccccoooiiiiininiinieee, 125/284
| FV A 00T T 1 1 = OSSOSO SURUPRR 126/284
Caching of @ Partial Datasel.........c.ceueiiiiiiiiiiieiee ettt 126/284

viii

Ehcache 2.5.x Documentation

Write-through and Write-behind Caching with the CacheWriter
INErOAUCLOTY VIA@Q. ...ttt ettt sttt b e sbe et esbe e s b e bt e bt e nbeenbeens
SAMPIE APPIICATION. 1.ttt ettt et b et et e bt e bt e bt e bt e bt e bt ebeeseebeenne
ERCACHE VEISIONS. .. ittt sttt sbe et esheesb e sbee bt e nbeenaeens
Ehcache DX (Standalone ERCAChe)...........coooiiiiiiiiiiiiiiii e
Ehcache EX and FXoooiiii ettt
(01073 1o 1121 (o) | USSR SUSURURRORIN
Configuration ATTTDULES.c..eeiuiiiieiieit ettt sttt et e bt e st e st esbeesaeesbeesbeenaeens

BlockingCache and SelfPopulatingCache

INETOAUCTION. ..ttt ettt sb ettt b e st sb s bt et e st sbeeueenne st
BIOCKING CACKE ...ttt b e sbe et esbee s bt e sbeesbeenbeenaeens
SelfPOPUIAtINGCACKE.eeitiiiieiiee ettt ettt e b e b ettt et et e b e

Terracotta Cluster Events

INEEOAUCTION. ...ttt e h e b e h e e s b e s bt e s bt e bt e sbeesbeesbeesbeenbeenbeenbeans
(@) 11T 1< 07501 (o 2SR PP SUSUPURRIN
Listening FOr CIUSIEr EVENLS.....c...oiiiiiiiiiiieiie ettt sttt siee e
EXAMPIE COC.....eiiiiiiieeiee ettt sb ettt e bt e sbeesbe e s bt e nbeenaeen
USes FOr CIUSLET EVENTS......coiiiiiiiiiiieiieit ettt ettt sttt esbee e

Cache Decorators

INETOQUCTION. ...ttt ettt s b ettt b e e et s bt e et sbeeaeenne b
Creating @ DECOTALOL..........oiuiiiiieitieeiieei ettt ettt e sh e st e s bt e bt e sbeesbeesbeesbeesseenbeesbeens
ProgrammatiCally........cc.coiiiiiiiiiieee ettt
BY CONTIGUIATION. ...ttt ettt sttt e b e bt e s bt e sbeesbeesbeesbeenbeenaeens
Adding decorated caches to the CacheManager............ccueriiiieiieiienierieie e
Using CacheManager.replaceCacheWithDecoratedCache()..........cocveveerienienienienienieneens
Using CacheManager.addDecoratedCache()..........covereeiieiiiniiiienieiiesie e
BUIE-1N DECOTALOTS. c.. ettt sttt ettt sttt sae e nre
BIOCKINGCACKE. ...ttt sttt bee bt e e
SelfPOPUIAtINGCACKE.c..eeieiiiieiieiie ettt ettt e
Caches with Exception Handling,..........ccoueiiiiiiiiiiiieeiesee et

CacheManager Event Listeners

| F0 18 g0 a L0115 To) 1 UURRRRR TR PRRRPRRRPRIR

Cache Event Listeners.

INEEOUCTION. ..ttt ettt ettt ettt b e ettt s bt e e tesbeeueenne st
(1073 o4 1121 (o) | U SUSUSUPURPN
Implementing a CacheEventListenerFactory and CacheEventListener...........ccccevvevienieneenienn.

126/284
126/284
126/284
126/284
126/284
127/284
128/284
1297284
1297284
131/284
131/284
131/284

133/284
133/284
133/284
133/284

134/284
134/284
134/284
135/284
135/284
136/284

137/284
137/284
137/284
137/284
137/284
137/284
138/284
138/284
139/284
139/284
139/284
139/284

140/284
140/284
140/284
140/284

143/284
143/284
143/284
143/284

Ehcache 2.5.x Documentation

Cache Event Listeners

Adding a Listener Programmatically............coociiiiiiiiiiiiiiiie e 146/284

Cache Exception Handlers 147/284
INETOAUCTION. ...ttt s b ettt b e sttt s bt et enbesbeeueenne b 147/284
Declarative ConfIgUIAtION.ceiuiiiiiiitieitieeie ettt et et e st e sbee bt e sbeesbeesbeesbeesseesbeesbeens 147/284
Implementing a CacheExceptionHandlerFactory and CacheExceptionHandler.......................... 147/284
Programmatic CONfIGUIALION.cc.uiiuiiiiiiieitie ettt ettt ettt e st esbee st esaeenaeens 148/284

Cache Extensions 150/284
INETOQUCTION. ...ttt ettt sttt ettt et bt et enbesbeeueennenbens 150/284
Declarative COnfIUIAtION.eeiiiiiiitieitieiie ettt et et e st e sbee bt e sbeesbeesbeesbeesseesbeenbeens 150/284
Implementing a CacheExtensionFactory and CacheEXtension............cccceveerienienienienienceneens 150/284
Programmatic CONfIGUIALION.ccuiiuiiiiiiiieitie ittt e st esbee b e saeesbeeneeens 152/284

Cache Eviction Algorithms 153/284
INETOUCTION. ..ttt ettt sttt b e eae et be et e besbeeueenne b 153/284
Provided MemoryStore Eviction AIOrithms........cccueiiiiiiiiiiieiie et 153/284

Least Recently Used (LRU).......coiiiiiiiiiiiiiiiieteeceeeteee ettt st 153/284

Least Frequently Used (LEFU).....ccccooiiiiiiiiieeee ettt 153/284

First In First Out (FIFO).......cooiiiiiiiiiiiciecee ettt 154/284

Plugging in your own Eviction AlOrithm........cccoiiiiiiiiiiiiiieeeeeee e 154/284
DiskStore Eviction AIZOTTTRIMSc..coiuiiiiiiiiiie ettt 155/284

Class loading and Class Loaders. 156/284
INEEOQUCTION. ...ttt ettt sttt sttt b e et sb e bt et e besbeebeenne b 156/284

PIugin Class 10AINE......cooueiiuiiiiiiiieiee ettt sb et sb e bt et e bt e e 156/284
Loading of ehcache. XMl F@SOUICES.coueiiuiiiiiiieeiieeiieie ettt 157/284
Classloading with Terracotta CIUSIEIING.ccv.uiiuiirieriiiieiierie ettt saee e 157/284
Operations Overview. 158/284
Operations Table Of CONMTENES.......cc.tiitiiiieiieiieiei ettt ettt ettt et e b e beenee e 158/284
Additional Information about OPErationS.........cc.eerierierierieiieniieseeste sttt e sieesiee st eesteesieeseeeseeens 158/284
Tuning Garbage Collection 159/284
INETOQUCTION. ..ttt ettt sttt sh ettt b e ettt be et e besbeeaeenne b 159/284
Detecting Garbage Collection Problems...........coiiiiieiiininieiiniiieicicneecccneseeese e 159/284
Garbage ColleCtion TUNINE. ...cc.eevviririeiiriine ettt sttt et sttt b enenre 159/284
Distributed Caching Garbage Collection TUNING........ccccvereeieririeieriinieeeeneseerese e 159/284
Ehcache Monitor. 161/284
INETOQUCTION. ...ttt ettt sttt ettt s b ettt b e ettt s bt et tesbeeaeenne b 161/284
Installation And CONFIGUIALION......cc.eiitiiiiiiitiiitie ittt e st e b e et e sbeesaeens 161/284
Recommended Deployment TOPOIOZY......ccueruiiiierieiierieeieitie ettt 161/284

PIODE. ..ottt sttt 162/284

Starting the MONITOLe.eeitieiieii ettt ettt et et et e bt et e bt e bt e bt et e e bt enbeeseebeenee 162/284
SECUNG the IMONTLOT.eetiiiieiiet ettt ettt ettt et et et e bt e bt e bt et e bt enbeeeeebeenee 163/284

USING the WED GULL.....coiuiiiiiiiee ettt sttt et e st esbeenbeen 164/284

Ehcache 2.5.x Documentation

Ehcache Monitor
CACNE IMANAZETS. ..ttt ettt ettt b e b et e s bt e sh e sb e e sb e e sbeesbeesbeesbeesbeenbeenbeenaeens 164/284
SEALISEICS. ¢ ettt ette ettt ettt e et e e bt e bt e b e bt e bt e bt e bt e bt e bt e bt e bt e bt e bt e bt e bt e bt et e e be et e enbeenee 164/284
(1073 o 1121 (o) 1 TSSOSO SURURRRN 164/284
(10711155 11 J SRS SUSUPURRR 165/284
(O] 1T £SO SR SUPURR 165/284
FaN o OSSPSR SUSUPUP 165/284
USING the APL.....ei ettt ettt b e s bt e sbee s bt e sbeenbeenbeesbeens 165/284
|3 0155 1 13 o = PSP SUSUPURRORIN 165/284
300011721 () SRS SUSUPURRRN 166/284
History not Implemented.oouiiiiiiiiiiieeee ettt 166/284
Memory Measurement lmMitations.........ccoeeiierierierienienee sttt ee st e siee st sieesbee e 166/284
JMX Management and Monitoring 167/284
INEEOAUCTION. ...ttt b ettt e b e s b e s a e e s bt e bt e sbeesbeesbeesbeenseenbeenbeens 167/284
Terracotta Monitoring PrOQUCES.cc.uiiiiiiiiii ettt 167/284
JIMEX VBT VIBW. ..ttt ettt ettt ettt e e et e e h e e a e b e s bt e e bt e e bt e eh e e sheesbe e bt e sbeesbeesbeesbeenseenbeenbeans 167/284
IMEBRAINS. ...ttt ettt ettt ettt e e h e h e bt h e e b ekt e ekt e e bt e bt e bt e ebeeeheeeheeehee bt e naeenaeen 168/284
TIMEX REIMOTINE . 1.ttt ettt ettt ettt sa e b e s bt e s bt e s bt e sh e e sheesbee bt e sbeesbeesbeesbeenseenbeenbeans 168/284
ObjectName NAMING SCHEIMC.c..ccueiiiriiririieieie ettt sttt st 169/284
The Management SETVICE........cc.cvuiririetininietertirteeit ettt ettt ettt sttt ettt eanentesaeeaeenenrens 169/284
JCONSOIE EXAMPIE. ...couiiiiiiiiiiiiiieeitetee ettt ettt et et e st e i s 170/284
HIDETNALE STATISTICS .. veutteetetieitie ettt et et e b et e bt e s bt e s bt e sbeesbeesbeesbeesbeesbeenseenbeenbeens 171/284
LY G 7o) o T | U SPUURUPURN 171/284
POITOIMANCE. ...ttt h et e bt e bt e s bt e sbeesbeesbee bt e nbeenbeens 171/284
Logging 173/284
INEEOAUCTION. ...ttt ettt b e b e s h e s bt e s bt e s bt e bt e sbeesbeesbeesbeenbeenbeenbeens 173/284
SLEFAT LLOZEINE. .ttt ettt ettt e bt et e bt e bt e bt et e et e e bt e bt e bt e bt e bt enbeenbeebeenne 173/284
Concrete Logging Implementation Use in MaVen..........ccceeiieiieiiinieiienieniesiesee e 173/284
Concrete Logging Implemenation Use in the Download Kit...........ccoocoiiiiiiniiniiniinene. 173/284
Recommended Logging LeVelsS.........ooiiiiiiiiiiiiieiieee ettt 173/284
Shutting Down Ehcache 174/284
INEEOAUCTION. ..ttt ettt et e s b e e h e e bt e s h e e s bt e bt e sbeesbeesbeesbeenbeenbeenbeans 174/284
NS W (0107011 40 B) 151 1<) o OO 174/284
The ShutdoWn HOOKc.oiiiiiiiiiee ettt sttt 174/284
When to use the Shutdown hOOK..........cccuoiiiiiiiiiiii e 174/284
What the shutdown hOOK dOES.........ccueiiiiiiiiiiiiiieee e e 174/284
When a shutdown hook will run, and when it Will NOT............uveeuiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeean 175/284
DITEY SHUEAOWIL. ...ttt ettt st e sh e s bt e bt e bt e s bt e sbeesbeesbeenbeenbeenbeans 175/284
Remote Network debugging and monitoring for Distributed Caches 176/284
INEEOAUCTION. ..ttt et b e b e s bt e s bt e s bt e bt e s bt e sbeesbeesbeenseenbeenbeens 176/284
PaACKAZING ..ottt ettt b et e s h e s a e s bt e bt e s bt e shee s b e e ehee bt e nbeenbeen 176/284
30001121 () USRS UUSURURN 176/284
L8 TSRS SUSUPURRPRN 176/284
OUEPUL . ettt ettt e h e b e b e bt e bt e et e e eb e e bt e b e e b e e bt e bt e bt e bt enbe et e enbeenbeenbeenne 176/284

Xi

Ehcache 2.5.x Documentation

Remote Network debugging and monitoring for Distributed Caches

Providing more Detailed LOZZING......ccueiiiiiiiiiiiiiieese sttt 177/284
Yes, but I still have a cluster problemi............ooiiiiiiiiiiiie e 177/284
Replication Overview 178/284
Replication Table Of CONLENES.......cc.uiiuiiiiiiieiieiie ettt ettt et e st e sbeesbeesaeenbeeseeens 178/284
Additional Information about Replication............cccueiiiiiiiiiiieiie et 178/284
RMI Replicated Caching 179/284
INETOQUCTION. ...ttt ettt sttt s b et b e ettt e entesbeebeenne b 179/284
Suitable EIEMEnt TYPES......coveiiririiiiiiiiriieee ettt sttt 179/284
Configuring the Peer ProvIder...........couiiiiiiiiiiiiee e 180/284
PRI DISCOVETY...ctiiiiet ettt ettt ettt a e sb et e st e s bt e sbeesbeesbeenbeenaeens 180/284
AULOMALIC PEET DISCOVETY.....iiiiiiiiiiiieiiieitie ettt sttt st 180/284
Manual Peer Discovery {#Manual Peer DiSCOVEry }......cccceriiiiiiiiniiiieiieniesieeeeeeeae 181/284
Configuring the CacheManagerPeerLiStener............couiiiiiiiiiiiieiieieeee e 181/284
Configuring Cache RePICAtOrS.....c..eiiuiiiiiiiiiie ettt 182/284
Configuring Bootstrap from a Cache Peer............coooiiiiiiiiiiiiiieeeeee e 183/284
FUIL EXAMIPIE. ...etiiiiiiiieeeiteeie ettt ettt sttt ettt e e bt e e nabeenaeeas 183/284
COmMMON PrODICINS. ...ttt sttt et st nne 184/284
Tomeat 0N WINAOWS......coueeiiriiririiienieeitetee ettt et b sttt st nae e 184/284
MUItiCASt BIOCKING ..ottt ettt ettt st et et e bt e naee 184/284
Multicast Not Propagating Far Enough or Propagating Too Far...........cccccooiniinininincnn. 184/284
Replicated Caching using JGroups. 185/284
INETOQUCTION. ...ttt ettt sttt bbbt b e ettt s bt e entesbeeueenne b 185/284
SUIADIE EIEMENE TYPES...ceuiiiiiiiitieitieitte ettt ettt ettt ettt et et et e bt et e bt et e beebeenee 185/284
PRI DISCOVETY ..ttt ettt e b e b e b e s b e s at e s bt e ebe e s bt e sbeesbeesbeenseenbeenbeens 185/284
(01073 o4 1121 (o) | PRSP SUSUPURRPIN 185/284
Example configuration using UDP MUltiCast...........cecueriiiiiiieiieiieniesiieiee et 185/284
(01073 o 1121 (o) | PRSP SUSUPURRN 186/284
Example configuration using UDP MUltiCast...........ceoueriiiiiiiiiieiiesiesieiee et 186/284
Example configuration using TCP UnICaSt.......c..eevieiiiiiiniiiieiie ettt 186/284
ProtocO] CONSIAETALIONS. ...c..eiveiuieiiriietietite ettt ettt sttt ettt st et sae e enenne s 186/284
Configuring Cache@RePIICALOTS.cc.eiiuiiiiiiieiie ettt 187/284
Complete Sample CONTIGUIATION.iiuiiiiiiieiie ittt e st esbeesaeesbeeseeens 187/284
COmMMON PrODICINS. c..c..eeiiiiiiiiieiieete ettt ettt s nne 188/284
Replicated Caching using JMS. 189/284
INETOAUCTION. ..ttt ettt bbbt b e st na st entesbeeaeennenre s 1897284
Ehcache Replication and External PubliShers...........ccccccviririiiiniiiiiininiccineeeee e 189/284
CONTIZUIALION. c..c.eevteititiett ettt ettt ettt sttt sbe bbbt e enaenaes 190/284
External JMS PUDBIISNETS.......cooiiiiiiiiiiiiiiecc ettt 193/284
Using the IMSCacheLoader..........coeoiiiiriiiiiiiirieteenteee ettt 196/284
Example Configuration Using Active MQ......cccocueriiririeniininiiiencniececiene e 197/284
Example Configuration Using Open MQ..........cccciiririiniininieienineeeeicne e 198/284
Configuring Clients for Message Queue Reliability......c..coceeeveririiieniininieiiniinieencnceeeenes 198/284
Tested MeSSAZE QUEUES....c..eoiuiiiiiiiieiieieeee ettt ettt ettt et sae e esae e saeesaeens 199/284

Xii

Ehcache 2.5.x Documentation

Replicated Caching using JMS

Sun Open MQL...c..ooiiie e e 199/284
ACTVE MQUuciiiiit ettt ettt et st a et 199/284
OTACIE A Q... t e bt ettt be ettt bt et eaenae 199/284
TBOSS QUEUE.......eiiieeiiiie ettt ettt e e et e e ettt e e e bt e e e nsbeeeeabeeeennsbeeeannbeeeenseeeeennees 199/284
KNOWN JIMS ISSUES......eiiiiiiiiie ettt et 199/284
Active MQ Temporary DestiNatons.........ccc.coireeieriinirienienieneetenie ettt 199/284
WeEBSPhEre 5 and O......c..coueeieiiiiiiiiiicee ettt 199/284
Modules Overview. 200/284
Modules Table Of CONENES........ccuiririeiiririietetire ettt ettt ettt sttt et st eaeenenne e 200/284
Additional Information about the Modules.............ccceciririiiiininiiiiiineeeee e 200/284
Cache Server 201/284
INETOQUCTION. ...ttt ettt ettt sb ettt b e et nb e bt et e besbeeaeenne st 201/284
RESTIUI WED SEIVICES.....cuiitiiiiiiiniiiitiiinieeit ettt sttt sttt st nae s 201/284
RESTFul Web Services APL.......cc.coiiiiiiiiiieineseteec et 201/284
CacheManager Resource OPerations..........c..ueiiereerierienieniiesiiesiiesieesteesieeseeesieesieesieesseesaeens 201/284
Cache ResOUICE OPETAtiONS.ccueerueeitieriieitieaiiestieettesteesteesttesieesteesteesbeesteesteesbeesaeesseesseenaeens 201/284
Element ReSOUICE OPETrations.........couueiuieriieriieniieniesiiestiesitesitesieesteeseeesbeesteesaeesaeesaeesieesbeesaeens 202/284
Cache ResOUICE OPETAtiONS.cc.eerueeiuieriieitiesiiesiiestiesteesteestte st e steesteesbeesteesteesbeesaeesseesseenaeens 202/284
Element ReSOUICE OPETrations.........coueeiuteriieriieniieniieniiestiesitestte st e sttesteesbeesteesteesaeesaeesieenbeesaeens 203/284
ReSoUrce RePreSeNtations.cc.ueiuiiiuieitieitieiiie ettt ettt sttt e st e bt e sbeesaeesbeenaeens 203/284
{RESTTul Code SamPIESJ...c..eeiuiiiiiiiiiieiie ittt 204/284
Creating Massive Caches with Load Balancers and Partitioning.........c..cececevevercvencnicneencnnens 209/284
Non-redundant, Scalable with client hash-based routing.............ccccocceveeveninveencnineecrenenne. 209/284
Redundant, Scalable with client hash-based routing.............cceceeoeniiiiinieniinieneeceee 210/284
Redundant, Scalable with load balancer hash-based routing.............ccccceveevienienienienieneene 211/284
W3C (SOAP) WED SEIVICES....cueeuiiiiriieitiniiriieiietesteeitetenie ettt sttt sttt sttt 212/284
W3C WeD Services APL........ooiiiiiiiiiiieenieee ettt 212/284

S CUITEY ettt ettt ettt b e b e b e bt e bt e b e e e bt e bt e bt e bt e bt e bt e bt e bt e bt et e et e et e enbeenne 212/284
REQUITEIMEIIES. ...ttt b e b e b e h e sh e s aeesb e e bt e sbeesbeesbeesbeenseenbeenbeans 213/284
JAVA ettt sttt et 213/284
Web Container (WAR packaged version only)........ccooceeiiiiiiiiiiiieiieeeeieeee e 213/284
DOWNIOAAINEG ...ttt ettt ettt e st e b e e h e s bt e s bt e sbe e bt e sbeesbeesbeesbeenseenbeenbeens 213/284
SOUTCETOTEE. ...ttt ettt et h e bbbt e bt e bt e bt e bt e bt et e e be et e enbeenne 213/284
IMIAVEIL. ...ttt sttt 2147284
INSEALLATION. c..cteeet ettt s h ettt ettt aesa et nre 214/284
Installing the WAR ..ottt sttt e sbee e 214/284
Configuring the Web APPIICAtION.......cc.eiiiiiiiiieiieiier ettt sttt 214/284
Installing the Standalone SEIVeT............oiiiiiiiiiiie et 215/284
Configuring the Standalone SEeTVeT............coiiiiiiiiiiiiiee e 215/284
Starting and Stopping the Standalone Server...........coocieriiiiiiieiieiieeeeeeeee e 215/284

11 0] 1L 70) 01 Y- USRS RSUSUPUSIN 216/284
Remotely Monitoring the Standalone Server with JMXcccccoooiiiiiiiniiiiieeeeeee 216/284
DOWNIOA......ceiiiiiiiee ettt 217/284
FAQ ettt b e bbbttt a e bttt na et e et 217/284
Does Cache Server work with WebLoZiC?.........coiiiiiiiiiiiiiereee e 217/284

Xiii

Ehcache 2.5.x Documentation

Web Caching

218/284

Introduction.......

Gzipping............

CaChING HEAETS. ...ttt h et at e bt e bt e sheesbeesbeesbeenbeenbeens

Init-Params........
Re-entrance........

Hibernate Overview

218/284
218/284
218/284
218/284
218/284
2197284
219/284
2197284
2207284
2207284
2207284
222/284
222/284
222/284
222/284
222/284

223/284

Hibernate Table Of CONLENTS........uuuiieieieiiieeieieeeee et e e e et e e e e e eaaesaanaaes
Important Notices - PLEASE READL........cccoiiiiii et
Additional Information about HIDEINAE...........coovviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee s

Integrations Overview.

223/284
223/284
223/284

224/284

Integrations Table Of CONENTS.c..uiiiiiiiiieiie ettt sttt e sbee s e saeeseeens
Additional Information about Integrating Ehcache..............coocoiiiiiiiiiiinieeeeee

Using Coldfusion and Ehcache.

Introduction.......

2247284
2247284

225/284

Using Ehcache with ColdFusion 9 and 9.0.1.......ccccocveiiiiiiiiiiiiiicieeccieeeee e
Switching from a local cache to a distributed cache with ColdFusion 9.0.L........c.cccccocervenennenn.
Using Ehcache with COIdFUSION 8........ccoiiiiiiiiiiiieiieee e

Using Spring and Ehcache

Introduction.......
Spring 3.1...........
@Cacheable

225/284
225/284
225/284
225/284
225/284
226/284

228/284

@ ECACHEEVICT. ..ottt et e e e e eeeeeeeeeeeeeeeee e e e e e e e e e e ereeeeeaaaaaas

Spring 2.5 - 3.1:
@Cacheable

Ehcache Annotations FOr SPring.........cccceeveerieiiieniieniienieeeieeeeeee e

@TTIEETSREMOVE. ...ttt sttt e st e st e st e bt e naeenbeens

Hibernate Second-Leve
Introduction.......

1 Cache

228/284
228/284
228/284
228/284
228/284
228/284
2297284

230/284

2307284
2307284
2307284

Xiv

Ehcache 2.5.x Documentation

Hibernate Second-Level Cache

Configure Ehcache as the Second-Level Cache Provider............coocevieiiiiiiniinienienieieeeeens 231/284
Hibernate 3.3 and Righer.........coooiiiiiiii e 231/284
Hibernate 3.0 - 3.2 ..ot e 231/284

Enable Second-Level Cache and Query Cache Settings..........ccoovevierienienienienienienienieniceniens 232/284

(0515071 F: | KOTSRS 232/284
Ehcache Configuration Resource Name............cooeeiiiiiiiiiiieiieeieeeee et 232/284
Set the Hibernate cache provider programmatically.............cccceeieiiiiniiniinienienieeeeee 232/284

Putting it all tOZENET.....c..eoiuiiiiiie ettt 232/284

Configure Hibernate Entities to use Second-Level Caching............ccoceviiiiiiiiniinieniinienienens 233/284
Definition of the different cache Strategies.........ccoueviiriiiiiiriiinieiieee e 233/284

(10731 124 L1 USRS SUSUPURROIN 234/284
DOMAIN ODJECLS ... etitietieitte ettt ettt e b et esht e st e sbeesbeesbeesbeesbeesbeesbeesbeenbeenaeens 234/284
COLLECHIONS ...ttt et ettt sttt sbe bbbt st s e bt sbe e naenaes 234/284
QUIBTICS. ..ttt ettt e ettt ettt ettt e e ettt e e ettt e e e e etaeeeetaeeeeeateeeeeaseeeeaasseeeeataeeeeaasseeeantbeeeaateeeeaarreaan 235/284

|0 I AN o) oS UTUSUSUSUPURRPIN 236/284
Hibernate TULOTIAL......ccueoieiiiiiiiiieerceeet ettt ettt 236/284
EXAMINALTOT. ..ttt ettt ettt e b et sb e ebe bbbt esa e bt st naenas 237/284

PerfOrmManCe TiPS eeueeieieieieit ettt sttt sh e st e bt e bt e s bt e sheesbeesbee bt e nbeenbeens 237/284
SESSION.JOAM.eeeeiieiieiieitct ettt et 237/284
Session.find and QUEry.find..........cooiiiiiiiiiiie e 237/284
Session.iterate and QUETY.IEETALEevueertiertiertieitiertierte et tert ettt et et e et e et et beebe e e e ebe e 237/284

HOW 10 SCALE....c..eiuiitieiieetee ettt sttt ettt sttt sae e nae 237/284
Using Distributed ERCACKE..........ccuiiiiiiiiiiiiiee et 238/284

Configuring Replicated Caching using RMI, JGroups, or JMS........ccccoiiiiiiniiniinienienieneeene 238/284
Configuring for RMI Replication..........coiiiiiiiiiiiiiiiee et 238/284
Configuring for JGroups RepliCation..........cocceeeieriinirieniininieieicneeecene et 239/284
Configuring for JMS ReplCation.........ccccecuiririeiiiniiniiieicsetcecneeecese e 239/284

FAQ ettt bbbttt b ettt b et nheeaeenenre s 240/284
If I'm using Ehcache with my app and with Hibernate for second-level caching, should I

try to use the CacheManager created by Hibernate for my app's caches?..................... 240/284
Should I use the provider in the Hibernate distribution or in Ehcache?...............cccccocceeien 240/284
What is the relationship between the Hibernate and Ehcache projects?..........c.cccoceeceeenenee. 240/284
Does Ehcache support the new Hibernate 3.3 2nd level caching SPI?...........cccoceiiniicen. 240/284
Does Ehcache support the transactional Strate@y?..........ccceereerierienienienieniesiesie e siee e 240/284
Why do certain caches sometimes get automatically cleared by Hibernate®........................ 241/284
Is Ehcache CIUSIEr Safe?.......cooviiiiiiiiiiiiiiiicieeet ettt 241/284
How are Hibernate Entities Keyed?........cccoiiiiiiiiiiiieeeeeeee e 241/284
Can you use Identity mode with the Terracotta SErver Array.......ccocceveeereereeneenieneeneenens 241/284
I get org.hibernate.cache.ReadWriteCache - An item was expired by the cache while it

was locked error messages. What 1S 167.......cocuiiiiiiiiiiiiiiieeieeee e 241/284

I get java.lang.ClassCastException: org.hibernate.cache.ReadWriteCache$Item

incompatible with

net.sf.ehcache.hibernate.strategy.AbstractReadWriteEhcache AccessStrategy$Lockabk2/284
Are compound Keys SUPPOTTEAT......cc.eeiuiiiiiiiiieiieeieeiiee ettt ettt st 242/284
Why do I not see replicated data when using nonstrict mode?...........cccceecerierieenieniieniennne. 242/284

XV

Ehcache 2.5.x Documentation

JRuby and Rails Caching 243/284
INETOQUCTION. ...ttt ettt s b ettt b e ettt et e besbeeueenne b 243/284
INSEALLATION. c..cveeee ettt sttt ettt b ettt sa et nre 243/284

Installation fOr JRUDY......cc.ciiiiiiii ettt 243/284
Installation fOr RailS.......ccceoiiriiiiiiiiiiecec et 243/284
DEPENACIICIES. ...ttt ettt et s h e s a e bt e bt e bee s bt e sbeesbeesbeenbeenbeenaeens 243/284
Configuring BRCACKE.ooiiiiiii e 243/284
Using the jruby-ehcache APT dir€Ctly.......ccuiiiiiiiiiiiiiiieiiee e 2447284
BaSIC OPETAtIONS. ...ceueiitieitieitie ettt ettt et e bt e s ht e st e sbeesbeesbeesbeesbeesbeesbeesbeenbeenaeens 2447284
SUPPOTLEA PrOPETTIES. ... ettt ettt ettt et e b e bttt e b enae e 244/284
Example CONfiGUIAtION.......ciuiiiiiiiiiieitieitie ettt sttt sttt e st e bt e bt e beesbeenaeens 245/284
Using Ehcache from within Rails..........ooooiiiiiiiiiii e 245/284
GENETAL OVEIVIEW....cutitiiieiiiiiniteeiete sttt ettt sttt sttt st sae et bt st e e e 245/284
Setting up a Rails Application with Ehcache............ccccooiiiiiiiiiiieeeeeee 246/284
Adding BigMemory under RailS........c.ccooiiiiiiiiiiiiiee e 248/284

Google App Engine (GAE) Caching 249/284
INETOQUCTION. ...ttt sttt s b ettt b e et nb st enbesbeeaeenne b 249/284
COMPALDILILY. ...ttt sttt et sa st e st st e enenne 249/284
LAMIEEATIONS . ettt ettt ettt ettt ettt st et b e s bt bt e st bt eae et s bt et e b sheebeenn et 249/284
DEPEINACIICIES. ..c..ccventiteiteterteee ettt ettt sttt s h bttt b e ettt s bt ees et sae et ennenne s 249/284
Configuring ehcache. XMLccoooiiiiiiiiiiiiii ettt 249/284
R CIPES -ttt ettt b e b e e b e s bt e e bt e e h e e e bt e bt e e bt e she e e bt e nheenaeenbeenbeen 250/284

Setting up Ehcache as a local cache in front of memcacheg........ccccceeeevienienieninnieneeee 250/284
Using memcacheg in place of a DiSKStOre.........cocuoiiiiiiiiiiiiiieieeeeee e 250/284
Distributed CaChing.......cooeeiieiiiiieie ettt st sbee e 250/284
Dynamic Web Content Caching.........cccceiiiiiiiiiiieiieieie ettt 250/284
TTOUDIESNOOTINE ...ttt ettt st e st be e bt e s bt e sbeesbeesbeesbeenbeenbeens 251/284
NoOCIassDefFOUNAEITOL.cc.coiiiiiiiiiiiiciceeccte et 251/284
SAMPIE APPIICATION. ...ttt ettt et et e b et e b e et e e bt e bt e bt e bt e bt enbeenseebeenee 251/284

Tomcat Issues and Best Practices 252/284
INEEOQUCTION. ...ttt ettt s h ettt s sa s bt e e besbeeueenne st 252/284
Problem rejoining a cluster after a reload...........cooeiiiiiiiiiiiee e 252/284
Class-loader MemMOTY [8aK.........coiiiiiiiiiiieiie ettt sttt sbe et esaee e 252/284
RMI CacheException - problem starting listener for RMICachePeer.............ccooceevieniinenencnn. 252/284
Multiple host entries in Tomcat's server.xml stops replication from occurring...........cccceeeeee. 252/284

JDBC Caching 253/284
INETOAUCTION. ...ttt ettt ettt bbb b e sttt s bt e e besbeeaeenne b 253/284
Adding JDBC caching to @ DAO/DAL JaYer........ccceiiiiiiiiiiieiieeiesieeete et 253/284

Identifying methods which can be cached............ccooiiiiiiiiiiiiiie e 253/284
Instantiate a cache and add a member variable............ccceeiririiiiniiiiiiiinincee e 253/284
Put and get values from the cache.........coocoiiiiiiiiiiii e 253/284
Putting it all together - an eXamPIe.......cccuoviiiiiiiiiieee e 254/284
The eXamMPIE fI1ES.......eiitiiiiieiiee ettt sttt st esbeesbee e 254/284

XVi

Ehcache 2.5.x Documentation

OpenJPA Caching Provider

257/284

Introduction....................
Installation......................
Configuration.................
Default Cache.................
Troubleshooting.............
For Further Information..

257/284
257/284
257/284
258/284
258/284
258/284

Using Grails and Ehcache.
Introduction....................
Configuring Ehcache As
Overriding Defaults........
Springcache Plugin.........
Clustering Web Sessions

the Second Level Hibernate Cache.............euvveveeeieiiieiiiiiiiiieeeeeeeeeeeeenn.

259/284
259/284
259/284
259/284
260/284
260/284

261/284

Glassfish How To & FAQ
Introduction....................
Versions........ccceeeveereveenns
Deployment....................
Troubleshooting.............

How to get around the EJB Container restrictions on thread creation...........cc.cceeceeveeneenncene
Ehcache throws an IllegalStateException in Glassfish..........ccocoviiiiiiinininienieeeee
PayloadUltil reports Could not ungzip. Heartbeat will not be working. Not in GZIP

261/284
261/284
261/284
261/284
262/284
262/284

262/284

JSR107 (JCACHE) Support

263/284

264/284

Recipes Overview.

Recipes Table Of CONENES.....c..uiiiiiiiiiieitieiieit ettt et ee st sbe e bt e st e sbeesbeesbeesseesbeenbeens

Let's Add More...............

Web Page and Web Page Fragment Caching

Introduction....................
Problem.........ccccoovuueee.n.
Solution.........coceevvveeennn.
Discussion...........ccuue......

264/284
264/284

265/284

Step 1 - Add a filter to your Web.Xml........cocooiiiiiiiiiieieeeeeee e
Step 2 - Configure an ehcache.Xml........coooiiiiiiiiiiiiiee e
Step 3 - Start your appliCation SEIVEL.......eeiueerueerieertiertientientienteenteesteenteenteenteesbeenseenseeseenseenne

More details....................

Using Grails and Ehcache.

265/284
265/284
265/284
265/284
265/284
266/284
266/284
266/284

267/284

Introduction....................
Configuring Ehcache As
Overriding Defaults........
Springcache Plugin.........
Clustering Web Sessions

the Second Level Hibernate Cache.............euveeeeeeieieieieiiiiiiiiieeeeeeeeeeenn.

267/284
267/284
267/284
268/284
268/284

XVii

Ehcache 2.5.x Documentation

Data Freshness and Expiration 269/284
INEFOAUCTION. ...ttt ettt et e et e e et e e st e e esbeeestbeessaeessseessbeessseeenseeenseeenses 269/284
PrODICIIL. ..ottt e et e et e et e e sab e e sbeeenbeeenbeeeaeeennes 269/284
SOIULION ...ttt ettt e et e e e b e e e beeeteeessaeesbeessbeessseeesseesnsaeenseeensseensseenssens 269/284
DISCUSSION.....etiiiitieeiiie ettt ettt eit e et e et eeebeeetee e tbeeseseessbeessseessseeassseensssessseesseessseeesseeenseeenses 269/284

Enable Terracotta Support Programmatically. 270/284
3T qoTe L Ie o) FO SRR PR PP 270/284
PrODICIIL. ..ottt e et e e bt e e ta e e sab e e st e e enbeeenbeeeaeeennes 270/284
SOIULION ...ttt ettt e et e e et e e ebeeeteeestaeesbeessbeessseessseeensaeensseenssaessseenssens 270/284
DISCUSSION. ... tiieitieettieetie et ettt e et e et e e bt e etee e tbeestseeesbeessseessseeassseensssesseesseessseeesseeensseenses 270/284

Strategies For Setting Up WAN Replication 272/284
INEFOAUCTION. ...ttt ettt et e e et e e st e e ssbeeestbeessaeessseessbeesssaeenseeenseeensns 272/284
PrODICIIL....oooniiiiitie ettt e e et e et e e tb e e sab e e sbeeenbeeenteeenteeennes 272/284
SOIULIONS. 1.ttt ettt et e et e e e b e e eabeeeteeessaeessbeessbeessseessseessseeenseeenssaessseenssens 272/284

Solution 1: Terracotta Active/Mirror Replication...........ccceveeveeieiiieiieieeeeeee 272/284
Solution 2: Transactional Cache Manager Replication............ccocceeveeiieniennieeniennnenne. 273/284
Solution 3: Messaging based (AMQ) replication..........coceevueevieerieeiieeiiienieeieeieeeenne 274/284

Caching Empty Values. 275/284
INEFOAUCTION. ...ttt ettt ettt et e e et e e st e e ssbeeestbeessaeessseessbeessseeesseeenseeennns 275/284
PrODICIIL. ..ot ettt e et e e b e e ta e e saa e e st e e eebeeenbeeenaeeenees 2751284
SOIULION ...ttt et e et e e e b e ebeeeteeessaeesbeessbeessseessseeenseeenseeensseessseenssens 275/284
DISCUSSION. ... tiiutieeiiieetie ettt ettt e et e et e et e etee e tbeeseseessseessseessseeassseensssessseesseessseeenseeensseenses 275/284

Thundering Herd. 277/284
INEFOAUCTION. ...ttt et ettt et e e et e e s b e e esbeeestbeesseeessseessbeessseeenseeenseeensns 2771284
PIODICIIL. ..ottt et et e et e e b e e ta e e sab e e sbeeenbeeebeeeaeeenees 2771284
SOIULION ...ttt e et e e et e e ebeeeteeestaeeabeessbeessseeesseeensaeenseeensseessseensseas 2771284
DISCUSSION. ... tiiiitieeitieeiee et ettt e et e et eeebeeetee e tbeesaseessseessseessseeassseessssessseessseessseeenseeensseanses 2771284

Ehcache Write-Behind 279/284
INEFOAUCTION. ...ttt et ettt et e e et e e s b e e esbeeestbeesseeessseessbeessseeenseeenseeensns 279/284
PrODICIIL. ..ottt et e et e e tb e e sab e e rbeeeebeeenbeeenaeeenees 279/284
SOIULION ...ttt ettt ettt e ettt e e bt eebeeesteeestaeesbeessbeessseessseeasseeenseeensseessseensseas 279/284
DISCUSSION. ... tiiitieeiiie ettt ettt ettt e et e et e e ebeeetee e tbeessseeesbeessseessseeassseessssessseessseessseeesseeensseensns 279/284

Caching Methods with Spring 3 Annotations 281/284
3T qoTe L Ie o) FO O SRR UPRRPRR 281/284
PrODICIIL. ..ottt et e e et e et e et e e sab e e rbeeeebeeenbeeenaeeennes 281/284
SOIULION ...ttt et e ettt e e b e eabeeesteeessaeesbeessbeesssaesssaeenseeensseensseensseenssens 281/284
DISCUSSION. ... tiiiutieeiiie ettt ettt e ettt e et e et e e e beeetee e tteesaseessbeessseessseeassseessseessseessseesssesesseeensseenses 281/284

Echache Wrapper. 283/284
3T qoTe L Ie o) FO RS RUUURURUP PP 283/284
PrODICIIL. ..ottt ettt e et e et e e ta e e sab e e rbeeenbaeenbeeeaeeennes 283/284
SOIULION ...ttt ettt et e ettt e e bt eebeeeteeessaeesbeessbeessseessseeesseeenseeensseensseenssens 283/284

XViii

Ehcache 2.5.x Documentation

Echache Wrapper
BT 01 1 1o) PRSPPI 283/284

XiX

Getting Started Overview

The following sections provide a documentation Table of Contents and additional information sources for
getting started with Ehcache.

"Getting Started” Table of Contents

Topic Description

Hello, Ehcache Introduction to caching with Ehcache and the benefits of caching.

Cache This overview of the Ehcache caching topologies highlights the differences between
Topologies distributed and replicated caching.

Key Classes and Definitions of terms, key Ehcache classes, and cache usage patterns, as well as explanations
Methods of the CacheManager and the Ehcache interface.

About Distributed Ehcache combines an in-process Ehcache with the Terracotta Server Array
Distributed acting as a backing cache store. This page details architecture and development for

Cache Distributed Ehcache running in a Terracotta cluster.

Consistency Explanation of the Distributed Ehcache consistency models in terms of standard distributed
Options systems theory, plus use cases and recommended practices.

Description of the three storage options for Ehcache--MemoryStore, OffHeapStore, and
Storage Options DiskStore--plus suitable Element types, configuration examples, and performance
considerations.

A quick guide to get you started with the packed Ehcache kit and using Ehcache with

Using Ehcache several popular platforms.

Building From
Source

Getting Started in Theory and Practice

Create your own Ehcache or distributed Ehcache build, rather than using the packed kit.

The following pages cover general caching theory:

e Hello, Ehcache
¢ Cache Topologies
e About Distributed Cache

The following pages provide background information that will help you to make informed decisions when
configuring Ehcache:

¢ Cache Concepts
¢ Cache Consistency Options
¢ Storage Options
The following pages get you up and running:
¢ Using Ehcache

¢ About Distributed Cache Code Samples
¢ Building From Source

Getting Started Overview 1/284

Hello, Ehcache

Introduction

Ehcache is a cache library introduced in October 2003 with the key goal of improving performance by
reducing the load on underlying resources. Ehcache is not just for general-purpose caching, however, but also
for caching Hibernate (second-level cache), data access objects, security credentials, web pages. It can also be
used for SOAP and RESTful server caching, application persistence, and distributed caching.

Definitions

¢ cache: Wiktionary defines a cache as "a store of things that will be required in future, and can be
retrieved rapidly." That is the nub of it. In computer science terms, a cache is a collection of
temporary data which either duplicates data located elsewhere or is the result of a computation. Once
in the cache, the data can be repeatedly accessed inexpensively.

e cache-hit: When a data element is requested of the cache and the element exists for the given key, it
is referrred to as a cache hit (or simply 'hit").

¢ cache-miss: When a data element is requested of the cache and the element does not exist for the
given key, it is referred to as a cache miss (or simply 'miss').

¢ system-of-record: The core premise of caching assumes that there is a source of truth for the data.
This is often referred to as a system-of-record (SOR). The cache acts as a local copy of data retrieved
from or stored to the system-of-record. This is often a traditional database, although it may be a
specialized file system or some other reliable long-term storage. For the purposes of using Ehcache,
the SOR is assumed to be a database.

® SOR: See system-of-record.

Why caching works

Locality of Reference
While Ehcache concerns itself with Java objects, caching is used throughout computing, from CPU caches to

the DNS system. Why? Because many computer systems exhibit "locality of reference". Data that is near
other data or has just been used is more likely to be used again.

The Long Tail

Chris Anderson, of Wired Magazine, coined the term "The Long Tail" to refer to Ecommerce systems. The
idea that a small number of items may make up the bulk of sales, a small number of blogs might get the most
hits and so on. While there is a small list of popular items, there is a long tail of less popular ones.

Hello, Ehcache 2/284

http://en.wikipedia.org/wiki/System_of_record

The Long Talil

The Long Tail is itself a vernacular term for a Power Law probability distribution. They don't just appear in
ecommerce, but throughout nature. One form of a Power Law distribution is the Pareto distribution,
commonly know as the 80:20 rule. This phenomenon is useful for caching. If 20% of objects are used 80% of
the time and a way can be found to reduce the cost of obtaining that 20%, then the system performance will
improve.

Will an Application Benefit from Caching?

The short answer is that it often does, due to the effects noted above.

The medium answer is that it often depends on whether it is CPU bound or I/O bound. If an application is I/O
bound then then the time taken to complete a computation depends principally on the rate at which data can be
obtained. If it is CPU bound, then the time taken principally depends on the speed of the CPU and main
memory.

While the focus for caching is on improving performance, it it also worth realizing that it reduces load. The

time it takes something to complete is usually related to the expense of it. So, caching often reduces load on
scarce resources.

Speeding up CPU-bound Applications
CPU bound applications are often sped up by:
¢ improving algorithm performance
¢ parallelizing the computations across multiple CPUs (SMP) or multiple machines (Clusters).
¢ upgrading the CPU speed.
The role of caching, if there is one, is to temporarily store computations that may be reused again. An example

from Ehcache would be large web pages that have a high rendering cost. Another caching of authentication
status, where authentication requires cryptographic transforms.

Speeding up 1/0-bound Applications

Many applications are I/O bound, either by disk or network operations. In the case of databases they can be
limited by both.

Hello, Ehcache 3/284

Speeding up I/O-bound Applications

There is no Moore's law for hard disks. A 10,000 RPM disk was fast 10 years ago and is still fast. Hard disks
are speeding up by using their own caching of blocks into memory.

Network operations can be bound by a number of factors:
® time to set up and tear down connections
e latency, or the minimum round trip time
e throughput limits
¢ marshalling and unmarhshalling overhead

The caching of data can often help a lot with I/O bound applications. Some examples of Ehcache uses are:

e Data Access Object caching for Hibernate
® Web page caching, for pages generated from databases.

Increased Application Scalability

The flip side of increased performance is increased scalability. Say you have a database which can do 100
expensive queries per second. After that it backs up and if connections are added to it it slowly dies.

In this case, caching may be able to reduce the workload required. If caching can cause 90 of that 100 to be
cache hits and not even get to the database, then the database can scale 10 times higher than otherwise.

How much will an application speed up with Caching?

The short answer
The short answer is that it depends on a multitude of factors being:

* how many times a cached piece of data can and is reused by the application
e the proportion of the response time that is alleviated by caching

In applications that are I/O bound, which is most business applications, most of the response time is getting
data from a database. Therefore the speed up mostly depends on how much reuse a piece of data gets.

In a system where each piece of data is used just once, it is zero. In a system where data is reused a lot, the
speed up is large.

The long answer, unfortunately, is complicated and mathematical. It is considered next.

Applying Amdahl's Law

Amdahl's law, after Gene Amdahl, is used to find the system speed up from a speed up in part of the system.
1 / ((1 - Proportion Sped Up) + Proportion Sped Up / Speed up)

The following examples show how to apply Amdahl's law to common situations. In the interests of simplicity,
we assume:

® a single server

Hello, Ehcache 4/284

Applying Amdahl's Law

® a system with a single thing in it, which when cached, gets 100% cache hits and lives forever.
Persistent Object Relational Caching
A Hibernate Session.load() for a single object is about 1000 times faster from cache than from a database.

A typical Hibernate query will return a list of IDs from the database, and then attempt to load each. If
Session.iterate() is used Hibernate goes back to the database to load each object.

Imagine a scenario where we execute a query against the database which returns a hundred IDs and then load
each one. The query takes 20% of the time and the roundtrip loading takes the rest (80%). The database query
itself is 75% of the time that the operation takes. The proportion being sped up is thus 60% (75% * 80%).

The expected system speedup is thus:

/ ((1 - .6) + .6 / 1000)
1/ (.4 + .0006)
2.5 times system speedup

mn =

Web Page Caching

An observed speed up from caching a web page is 1000 times. Ehcache can retrieve a page from its
SimplePageCachingFilter in a few ms.

Because the web page is the end result of a computation, it has a proportion of 100%.

The expected system speedup is thus:

1/ ((1 - 1) + 1 / 1000)
1/ (0 + .0001)
1000 times system speedup

Web Page Fragment Caching

Caching the entire page is a big win. Sometimes the liveness requirements vary in different parts of the page.
Here the SimplePageFragmentCachingFilter can be used.

Let's say we have a 1000 fold improvement on a page fragment that taking 40% of the page render time.

The expected system speedup is thus:

1/ ((1 - .4) + .4 / 1000)
=1/ (.6 + .0004)
= 1.6 times system speedup

Cache Efficiency
In real life cache entrie do not live forever. Some examples that come close are "static" web pages or
fragments of same, like page footers, and in the database realm, reference data, such as the currencies in the

world.

Factors which affect the efficiency of a cache are:

Hello, Ehcache 5/284

Cache Efficiency

¢ liveness—how live the data needs to be. The less live the more it can be cached

e proportion of data cached—what proportion of the data can fit into the resource limits of the
machine. For 32 bit Java systems, there was a hard limit of 2GB of address space. While now relaxed,
garbage collection issues make it harder to go a lot large. Various eviction algorithms are used to evict
excess entries.

¢ Shape of the usage distribution—If only 300 out of 3000 entries can be cached, but the Pareto
distribution applies, it may be that 80% of the time, those 300 will be the ones requested. This drives
up the average request lifespan.

e Read/Write ratio—The proportion of times data is read compared with how often it is written.
Things such as the number of rooms left in a hotel will be written to quite a lot. However the details
of a room sold are immutable once created so have a maximum write of 1 with a potentially large
number of reads.

Ehcache keeps these statistics for each Cache and each element, so they can be measured directly rather than
estimated.

Cluster Efficiency

Also in real life, we generally do not find a single server? Assume a round robin load balancer where each hit
goes to the next server. The cache has one entry which has a variable lifespan of requests, say caused by a
time to live. The following table shows how that lifespan can affect hits and misses.

Server 1 Server 2 Server 3 Server 4
M M M M
H H H H
H H H H
H H H H
H H H H

The cache hit ratios for the system as a whole are as follows:

Entry

Lifespan Hit Ratio Hit Ratio Hit Ratio Hit Ratio
in Hits 1 Server 2 Servers 3 Servers 4 Servers
2 1/2 0/2 0/2 0/2

4 3/4 2/4 1/4 0/4
10 9/10 8/10 7/10 6/10
20 19/20 18/20 17/20 16/10
50 49/50 48/50 47/20 46/50

The efficiency of a cluster of standalone caches is generally:
(Lifespan in requests — Number of Standalone Caches) / Lifespan in requests

Where the lifespan is large relative to the number of standalone caches, cache efficiency is not much affected.
However when the lifespan is short, cache efficiency is dramatically affected. (To solve this problem, Ehcache
supports distributed caching, where an entry put in a local cache is also propagated to other servers in the
cluster.)

Hello, Ehcache 6/284

A cache version of Amdahl's law

A cache version of Amdahl's law

From the above we now have:

1 / ((1 - Proportion Sped Up * effective cache efficiency) +
(Proportion Sped Up * effective cache efficiency)/ Speed up)
effective cache efficiency = (cache efficiency) * (cluster efficiency)

Web Page example

Applying this to the earlier web page cache example where we have cache efficiency of 35% and average
request lifespan of 10 requests and two servers:

cache efficiency = .35
cluster efficiency = . (10 - 1) / 10
= .9
effective cache efficiency = .35 * .9

= .315
1/ ((1L -1 * .315) + 1 * .315 / 1000)
=1/ (.685 + .000315)
1.45 times system speedup

What if, instead the cache efficiency is 70%; a doubling of efficiency. We keep to two servers.

cache efficiency = .70
cluster efficiency = . (10 - 1) / 10
= .9
effective cache efficiency = .70 * .9
= .63

1/ ((1 -1 * .63) + 1 * .63 / 1000)
1/ (.37 + .00063)
2.69 times system speedup

What if, instead the cache efficiency is 90%. We keep to two servers.

cache efficiency = .90
cluster efficiency = . (10 - 1) / 10
= .9
effective cache efficiency = .9 * .9
= .81

1/ ((1 -1 * .81) + 1 * .81 / 1000)
1/ (.19 + .00081)
5.24 times system speedup

Why is the reduction so dramatic? Because Amdahl's law is most sensitive to the proportion of the system that
is sped up.

Hello, Ehcache 7/284

Cache Topologies

Introduction

Ehcache is used in the following topologies:

e Standalone — The cached data set is held in the application node. Any other application nodes are
independent with no communication between them. If standalone caching is being used where there
are multiple application nodes running the same application, then there is Weak Consistency between
them. They contain consistent values for immutable data or after the time to live on an Element has
completed and the Element needs to be reloaded.

¢ Distributed Ehcache — The data is held in a Terracotta Server Array with a subset of recently used
data held in each application cache node. The distributed topology supports a very rich set of
consistency modes.

¢ More information on configuring consistency
¢ More information on how consistency affects performance
¢ More in-depth information on how consistency works
® Replicated &— The cached data set is held in each application node and data is copied or invalidated
across the cluster without locking. Replication can be either asynchronous or synchronous, where the
writing thread blocks while propagation occurs. The only consistency mode available in this topology
is Weak Consistency.

Many production applications are deployed in clusters of multiple instances for availability and scalability.
However, without a distributed or replicated cache, application clusters exhibit a number of undesirable
behaviors, such as:

e Cache Drift -- if each application instance maintains its own cache, updates made to one cache will
not appear in the other instances. This also happens to web session data. A distributed or replicated
cache ensures that all of the cache instances are kept in sync with each other.

¢ Database Bottlenecks -- In a single-instance application, a cache effectively shields a database from
the overhead of redundant queries. However, in a distributed application environment, each instance
much load and keep its own cache fresh. The overhead of loading and refreshing multiple caches
leads to database bottlenecks as more application instances are added. A distributed or replicated
cache eliminates the per-instance overhead of loading and refreshing multiple caches from a database.

The following sections further explore distributed and replicated caching.

Distributed Caching (Distributed Ehcache)

Ehcache provides distributed caching using the Terracotta Server Array, enabling data sharing among multiple
CacheManagers and their caches in multiple JVMs. By combining the power of the Terracotta Server Array
with the ease of Ehcache application-data caching, you can:

¢ linearly scale your application to grow with requirements;

e rely on data that remains consistent across the cluster;

e offload databases to reduce the associated overhead;

¢ increase application performance with distributed in-memory data;
e access even more powerful APIs to leverage these capabilities.

Cache Topologies 8/284

http://terracotta.org/documentation/enterprise-ehcache/configuration-guide#95592
http://terracotta.org/documentation/enterprise-ehcache/reference-guide#30971

Distributed Caching (Distributed Ehcache)

Using distributed caching is the recommended method of operating Ehcache in a clustered or scaled-out
application environment. It provides the highest level of performance, availability, and scalability.

Adding distributed caching to Ehcache takes only two lines of configuration. To get started, see the tutorial
for distributed caching with Terracotta.

Replicated Caching

In addition to the built-in distributed caching, Ehcache has a pluggable cache replication scheme which
enables the addition of cache replication mechanisms. The following additional replicated caching
mechanisms are available:

e RMI

¢ JGroups

* JMS

e Cache Server

Each of the is covered in its own chapter. One solution is to replicate data between the caches to keep them
consistent, or coherent. Typical operations include:

® put
¢ update (put which overwrites an existing entry)
® remove

Update supports updateViaCopy or updateVialnvalidate. The latter sends the a remove message out to the
cache cluster, so that other caches remove the Element, thus preserving coherency. It is typically a lower cost
option than a copy.

Using a Cache Server

Ehcache 1.5 supports the Ehcache Cache Server. To achieve shared data, all JVMs read to and write from a
Cache Server, which runs it in its own JVM. To achieve redundancy, the Ehcache inside the Cache Server can
be set up in its own cluster. This technique will be expanded upon in Ehcache 1.6.

Notification Strategies

The best way of notifying of put and update depends on the nature of the cache. If the Element is not available
anywhere else then the Element itself should form the payload of the notification. An example is a cached
web page. This notification strategy is called copy. Where the cached data is available in a database, there are
two choices. Copy as before, or invalidate the data. By invalidating the data, the application tied to the other
cache instance will be forced to refresh its cache from the database, preserving cache coherency. Only the
Element key needs to be passed over the network. Ehcache supports notification through copy and invalidate,
selectable per cache.

Potential Issues with Replicated Caching

Cache Topologies 9/284

http://terracotta.org/documentation/enterprise-ehcache/get-started

Potential Issues with Replicated Caching

Potential for Inconsistent Data

Timing scenarios, race conditions, delivery, reliability constraints and concurrent updates to the same cached
data can cause inconsistency (and thus a lack of coherency) across the cache instances. This potential exists
within the Ehcache implementation. These issues are the same as what is seen when two completely separate
systems are sharing a database, a common scenario. Whether data inconsistency is a problem depends on the
data and how it is used. For those times when it is important, Ehcache provides for synchronous delivery of
puts and updates via invalidation. These are discussed below:

Synchronous Delivery

Delivery can be specified to be synchronous or asynchronous. Asynchronous delivery gives faster returns to
operations on the local cache and is usually preferred. Synchronous delivery adds time to the local operation,
however delivery of an update to all peers in the cluster happens before the cache operation returns.

Put and Update via Invalidation

The default is to update other caches by copying the new value to them. If the replicatePutsViaCopy property
is set to false in the replication configuration, puts are made by removing the element in any other cache
peers. If the replicateUpdatesViaCopy property is set to false in the replication configuration, updates are
made by removing the element in any other cache peers. This forces the applications using the cache peers to
return to a canonical source for the data. A similar effect can be obtained by setting the element TTL to a low
value such as a second. Note that these features impact cache performance and should not be used where the
main purpose of a cache is performance boosting over coherency.

Use of Time To Idle
Time To Idle is inconsistent with replicated caching. Time-to-idle makes some entries live longer on some
nodes than in others because of cache usage patterns. However, the cache entry "last touched" timestamp is

not replicated across nodes. Do not use Time To Idle with replicated caching, unless you do not care about
inconsistent data across nodes.

Cache Topologies 10/284

Key Classes and Methods

Introduction

Ehcache consists of a CacheManager, which manages caches. Caches contain Elements, which are
essentially name value pairs. Caches are physically implemented, either in-memory or on disk. The logical
representations of these components are actualized mostly through the classes discussed below. The methods
provided by these classes are largely responsible for providing programmatic access to working with Ehcache.

CacheManager

Creation of, access to, and removal of caches is controlled by the CacheManager.
CacheManager Creation Modes

CacheManager supports two creation modes: singleton and instance.

Versions of Ehcache before version 2.5 allowed any number of CacheManagers with the same name (same

configuration resource) to exist in a JVM. Therefore, each time new CacheManager (...) was called, a
new CacheManager was created without regard to existing CacheManagers. Calling
CacheManager.create (.. .) returned the existing singleton CacheManager with the configured name

(if it existed) or created the singleton based on the passed-in configuration.

Ehcache 2.5 and higher does not allow multiple CacheManagers with the same name to exist in the same
JVM. CacheManager () constructors creating non-Singleton CacheManagers can violate this rule, causing
a NullPointerException. If your code may create multiple CacheManagers of the same name in the same JVM,
avoid this error by using the static CacheManager.create () methods, which always return the named
(or default unnamed) CacheManager if it already exists in that JVM. If the named (or default unnamed)
CacheManager does not exist, the CacheManager.create () methods create it.

NOTE: In Ehcache 2.5.0/2.5.1 Cachemanager.create (...) gets or creates the CacheManager
regardless of whether it is a singleton or not. In Ehcache 2.5.2, calling CacheManager.create (.. .)
returns the existing singleton CacheManager with the configured name (if it exists) or creates the singleton
based on the passed-in configuration.

Ehcache 2.5.2 introduced the CacheManager.newInstance (.. .) method, which parses the passed-in
configuration to either get the existing named CacheManager or create that CacheManager if it doesn't exist.

With Ehcache 2.5.2 and higher, the behavior of the CacheManager creation methods is as follows:

® CacheManager.newInstance (Configuration configuration) — Create a new
CacheManager or return the existing one named in the configuration.

® CacheManager.create () — Create a new singleton CacheManager with default configuration,
or return the existing singleton. This is the same as CacheManager.getInstance ().

® CacheManager.create (Configuration configuration) — Create a singleton
CacheManager with the passed-in configuration, or return the existing singleton.

® new CacheManager (Configuration configuration) — Create a new CacheManager, or
throw an exception if the CacheManager named in the configuration already exists.

Key Classes and Methods 11/284

http://ehcache.org/apidocs/net/sf/ehcache/CacheManager
http://ehcache.org/apidocs/net/sf/ehcache/CacheManager

CacheManager

See the Ehcache API documentation for more information on these methods, including options for passing in
configuration. For examples, see Code Samples.

Singleton Mode

Ehcache-1.1 supported only one CacheManager instance which was a singleton. CacheManager can still be
used in this way using the static factory methods.

Instance Mode

From ehcache-1.2, CacheManager has constructors which mirror the various static create methods. This
enables multiple CacheManagers to be created and used concurrently. Each CacheManager requires its own
configuration.

If the Caches under management use only the MemoryStore, there are no special considerations. If Caches use
the DiskStore, the diskStore path specified in each CacheManager configuration should be unique. When a
new CacheManager is created, a check is made that there are no other CacheManagers using the same
diskStore path. If there are, a CacheException is thrown. If a CacheManager is part of a cluster, there will also
be listener ports which must be unique.

Mixed Singleton and Instance Mode
If an application creates instances of CacheManager using a constructor, and also calls a static create method,

there will exist a singleton instance of CacheManager which will be returned each time the create method is
called together with any other instances created via constructor. The two types will coexist peacefully.

Ehcache

All caches implement the Ehcache interface. A cache has a name and attributes. Each cache contains
Elements.

A Cache in Ehcache is analogous to a cache region in other caching systems.

Cache elements are stored in the MemoryStore. Optionally they also overflow to a DiskStore.

Element

An element is an atomic entry in a cache. It has a key, a value and a record of accesses. Elements are put into
and removed from caches. They can also expire and be removed by the Cache, depending on the Cache
settings.

As of ehcache-1.2 there is an API for Objects in addition to the one for Serializable. Non-serializable Objects
can use all parts of Ehcache except for DiskStore and replication. If an attempt is made to persist or replicate
them they are discarded without error and with a DEBUG level log message.

The APIs are identical except for the return methods from Element. Two new methods on Element:
getObjectValue and getKeyValue are the only API differences between the Serializable and Object APIs. This
makes it very easy to start with caching Objects and then change your Objects to Seralizable to participate in
the extra features when needed. Also a large number of Java classes are simply not Serializable.

Key Classes and Methods 12/284

http://ehcache.org/apidocs/net/sf/ehcache/CacheManager

About Distributed Cache

Introduction

Distributed Cache, formally called Terracotta Distributed Ehcache, is Ehcache running in a Terracotta cluster.
Distributed caching is the recommended method of operating Ehcache in a clustered or scaled-out application
environment, as it enables data sharing among multiple CacheManagers and their caches in multiple JVMs.

You can find tutorials, installation procedures, best practices, details on the Terracotta Server Array, and more
in the Terracotta documentation.

Architecture

Distributed Ehcache combines an in-process Ehcache with the Terracotta Server Array acting as a backing
cache store.

Logical View

With Terracotta Server Array the data is split between an Ehcache node (the L1 cache) and the Terracotta
Server Array itself (the L2 Cache). As with the other replication mechanisms, the L1 can hold as much data as
is comfortable. But there is always a complete copy of all cache data in the L2. The L1 therefore acts as a
hot-set of recently used data. Distributed Ehcache is persistent and highly available, leaving the cache
unaffected by the termination of an Ehcache node. When the node comes back up it reconnects to the
Terracotta Server Array L2 and as it uses data fills its local L1.

,

App Server

App Server App Server

- e
‘s’ TERRACOTTA DRIVER
L2 TERABYTE SCALE CACHE SERVER ARRAY

OEVELOFER PLUG-IN OFERATIONS
DURABILITY MIERORING — STRIPING CONSOLE MONTORIN CENTER
G

Network View

From a network topology point of view Distributed Ehcache consists of:

About Distributed Cache 13/284

http://terracotta.org/documentation/enterprise-ehcache/get-started
http://terracotta.org/documentation/enterprise-ehcache/installation-guide
http://terracotta.org/documentation/best-practices
http://terracotta.org/documentation/terracotta-server-array/introduction

Network View

¢ 1 - the Ehcache library is present in each app. An Ehcache instance, running in-process sits in each
JVM.

e [.2 - Each Ehcache instance (or node) maintains a connection with one or more Terracotta servers.
These are arranged in pairs for high availability. A pair is known as a mirror group. For high
availability each server runs on a dedicated server. For scale out multiple pairs are added. Consistent
hashing is used by the Ehcache nodes to store and retrieve cache data in the correct server pair. The
terms Stripe or Partition are then used to refer to each mirror group.

Terracotta Server Array

Application
L1 L2 —
Ehcache Terracotta Tarracotia
Server Server
Application] U
Ehcache Terracotta Terracotta o
— Server Server
e | |
Application U I
Terracotia
—is Terracotia Sarvar
e Sarver i
T : ‘_-I_
Application D
Ehcache

Memory Hierarchy View

Another way to look at the architecture of Distributed Ehcache is as a tiered memory hierarchy. Each
in-process Ehcache instance (L1s) can have:

¢ Heap memory
e Off-heap memory (BigMemory). This is stored in direct byte buffers.

The Terractta servers (L2s) run as Java processes with their own memory hierarchy:

¢ Heap memory

e Off-heap memory (BigMemory). This is stored in direct byte buffers.

¢ Disk storage. This is optional. It provides persistence in the event both servers in a mirror group suffer
a crash or power outage at the same time.

About Distributed Cache 14/284

Memory Hierarchy View

Client Tier

Server Tier \
Heap Store ‘

Scale Out

BigMemory

Differences Between Terracotta Distributed Cache and
Standalone or Replicated Cache

Differences in behavior and available functionality between distributed cache and standalone and replicated
caches are called out in the documentation. Some major differences are listed here:

¢ In distributed caches locking takes effect on individual keys, while in standalone caches locking takes
effect on segments that include a number of keys.

¢ In distributed caches, all cache stores are shared.

® Only distributed caches can be made transactional caches (<cache
transactionalMode="xa">).

¢ Standalone caches load very quickly and do not require a bulk-loading API.

¢ Distributed caches are "cluster safe" for Hibernate (locks are used for writing to distributed caches).
There is no need for session.refresh () as with replicated caches.

¢ Extreme scaling using multiple server stripes is available for distributed cache.

¢ Replication requires use of CacheEventListeners.

¢ Distributed caching can be used to create a clustered message queue for updating a database in a way
that keeps data consistent.

¢ Distributed caches come with Terracotta High Availability and durability, greatly benefitting use
cases requiring features such as write-through (CacheWriter) queues (<cacheWriter
writeMode="write—-behind">).

® When using read-through with write-behind, distributed caches can add cluster-wide consistency to
cache data.

About Distributed Cache 15/284

Code Samples
Code Samples

As this example shows, running Ehcache with Terracotta clustering is no different from normal programmatic
use.

import net.sf.ehcache.Cache;

import net.sf.ehcache.CacheManager;

import net.sf.ehcache.Element;

public class TerracottaExample {

CacheManager cacheManager = new CacheManager () ;

public TerracottaExample () {
Cache cache = cacheManager.getCache ("sampleTerracottaCache");
int cacheSize = cache.getKeys () .size();
cache.put (new Element ("" + cacheSize, cacheSize));
for (Object key : cache.getKeys()) {

System.out.println("Key:" + key);
}
}
public static void main(String[] args) throws Exception {
new TerracottaExample();

}

The above example looks for sampleTerracottaCache. In ehcache.xml, we need to uncomment or add the
following line:

<terracottaConfig url="localhost:9510"/>

This tells Ehcache to load the Terracotta server config from localhost port 9510. For ur1 configuration
options, refer to "Adding an URL Attribute" in Terracotta Clustering Configuration Elements. Note: You must
have a Terracotta 3.1.1 or higher server running locally for this example.

Next we want to enable Terracotta clustering for the cache named sampleTerracottaCache.
Uncomment or add the following in ehcache.xml.

<cache name="sampleTerracottaCache"
maxEntriesLocalHeap="1000"
eternal="false"
timeToIdleSeconds="3600"
timeToLiveSeconds="1800"
overflowToDisk="false">
<terracotta/>

&1t /cache>

That's it!

Development with Maven and Ant

With a Distributed Ehcache, there is a Terracotta Server Array. At development time, this necessitates running
a server locally for integration and/or interactive testing. There are plugins for Maven and Ant to simplify and
automate this process.

For Maven, Terracotta has a plugin available which makes this very simple.

About Distributed Cache 16/284

Setting up for Integration Testing

Setting up for Integration Testing

<pluginRepositories>
<pluginRepository>
<id>terracotta-snapshots</id>
<url>http://www.terracotta.org/download/reflector/maven2</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>true</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>
<plugin>
<groupId>org.terracotta.maven.plugins</groupId>
<artifactId>tc-maven-plugin</artifactId>
<version>1.5.1</version>
<executions>
<execution>
<id>run-integration</id>
<phase>pre—-integration-test</phase>
<goals>
<goal>run-integration</goal>
</goals>
</execution>
<execution>
<id>terminate-integration</id>
<phase>post-integration-test</phase>
<goals>
<goal>terminate-integration</goal>
</goals>
</execution>
</executions>
</plugin>

Interactive Testing
To start Terracotta:

mvn tc:start

To stop Terracotta:

mvn tc:stop

See the Terracotta Forge for a complete reference.

About Distributed Cache

17/284

http://forge.terracotta.org/releases/projects/tc-maven-plugin/

Cache Consistency Options

Introduction

This page explains the Distributed Ehcache consistency models in terms of standard distributed systems
theory.

For a practical discussion of how performance and consistency interact in Distributed Ehcache, see this
section.

Server-Side Consistency

Leaving aside the issue of data also held in the Ehcache nodes, let us look at the server side consistency of the
Terracotta Server Array (TSA).

Server Deployment Topology

Large datasets are handled with partitions which are managed automatically using a consistent hashing
algorithm once a set of "stripes" are defined in the <tc-config>. There is no dynamic resizing of clusters, so
the consistent hash always resolves to the same stripe. The TSA is typically deployed with a pair of servers
per partition of data, which is known in the <tc-config> as a Mirror Group. A mirror group has an active
server which handles all requests for that partition and a mirror server, or hot standby, which does not service
any requests. The active server propagates changes to the mirror server. In the language of consistency
protocols, the active and mirror are replicas - they should contain the same data.

Restating in terms of Quorum based replicated-write protocols

To use the terminology from Gifford (1979), a storage system has N storage replicas. A write is a W. A read is
an R. The server-side storage system will be strongly consistent if:

*R+W>N

and
W >N/2

In Terracotta, there is one active and one mirror. The acknowledgement is not sent until all have been written
to. We always read from only one replica, the Active. So R =1, W =2, N = 2. Substituting the terms of R +
W >N, we get 1 +2 > 2, which is clearly true. And for W > N/2 we get 2 > 2/2 =>2 > 1 which is clearly true.
Therefore we are strongly consistent server side.

Client-Side Consistency

Because data is also held in Ehcache nodes, and Ehcache nodes are what application code interacts with, there
is more to the story than consistency in the TSA. Werner Vogel's seminal "Eventually Consistent" paper
presented standard terms for client-side consistency and a way of reasoning about whether that consistency
can be achieved in a distributed system. This paper in turn referenced Tannenbaum's Distributed Systems:
Principles and Paradigms (2nd Edition).

Cache Consistency Options 18/284

http://terracotta.org/documentation/enterprise-ehcache/reference-guide#30971
http://terracotta.org/documentation/enterprise-ehcache/reference-guide#30971
http://www.amazon.com/Distributed-Systems-Principles-Paradigms-2nd/dp/0132392275/ref=dp_ob_title_bk
http://www.amazon.com/Distributed-Systems-Principles-Paradigms-2nd/dp/0132392275/ref=dp_ob_title_bk

Client-Side Consistency

Tannenbaum was popularising research work done on Bayou, a database system. See page 290 of "Distributed
Systems, Principles and Paradigms" by Tannenbaum and Van Steen for detailed coverage of this material.

Model Components

Before explaining our consistency modes, we need to expain the standard components of the the reference
model, which is an abstract model of a distributed system that can be used for studying interactions.

¢ A storage system. The storage system consists of data stored durably in one server or multiple servers
connected via a network. In Ehcache, durability is optional and the storage system might simply be in
memory.

® Client Process A. This is a process that writes to and reads from the storage system.

¢ Client Processes B and C. These two processes are independent of process A and write to and read
from the storage system. It is irrelevant whether these are really processes or threads within the same
process; what is important is that they are independent and need to communicate to share information.
Client-side consistency has to do with how and when observers (in this case the processes A, B, or C)
see updates made to a data object in the storage systems.

Mapping the Model to Distributed Ehcache
The model maps to Distributed Ehcache as follows:

e there is a Terracotta Server Array which is the 'storage system’;

e there are three nodes connected to the Terracotta Server Array: Ehcache A, B and C, mapping to the
processes in the standard model;

® a "write" in the standard model is a "put" or "remove" in Ehcache.

Standard Client-Side Consistency Modes
It then goes on to define the following consistencies where process A has made an update to a data object:

e Strong consistency. After the update completes, any subsequent access (by A, B, or C) will return the
updated value.

® Weak consistency. The system does not guarantee that subsequent accesses will return the updated
value.

¢ Eventual consistency. This is a specific form of weak consistency; the storage system guarantees that
if no new updates are made to the object, eventually all accesses will return the last updated value. If
no failures occur, the maximum size of the inconsistency window can be determined based on factors
such as communication delays, the load on the system, and the number of replicas involved in the
replication scheme.

Within eventual consistency there are a number of desirable properties:

® Read-your-writes consistency. This is an important model where process A, after it has updated a data
item, always accesses the updated value and will never see an older value. This is a special case of the
causal consistency model.

e Session consistency. This is a practical version of the previous model, where a process accesses the
storage system in the context of a session. As long as the session exists, the system guarantees
read-your-writes consistency. If the session terminates because of a certain failure scenario, a new
session needs to be created and the guarantees do not overlap the sessions.

Cache Consistency Options 19/284

Standard Client-Side Consistency Modes

® Monotonic read consistency. If a process has seen a particular value for the object, any subsequent
accesses will never return any previous values.

® Monotonic write consistency. In this case the system guarantees to serialize the writes by the same
process. Systems that do not guarantee this level of consistency are notoriously hard to program.

Finally, in eventual consistency, the period between the update and the moment when it is guaranteed that any
observer will always see the updated value is dubbed the inconsistency window.

Consistency Modes in Distributed Ehcache

The consistency modes in Terracotta distributed Ehcache are "strong" and "eventual”". Eventual consistency is
the default mode.

Strong Consistency

In the distributed cache, strong consistency is configured as follows:

<cache name="sampleCachel"
/>
<terracotta consistency="strong" />
</cache>

We will walk through how a write is done and show that it is strongly consistent.

1. A thread in Ehcache A performs a write.

2. Before the write is done, a write lock is obtained from the Terracotta Server (storage system). The
write lock is granted only after all read locks have been surrendered.

3. The write is done to an in-process Transaction Buffer. Within the Java process the write is
thread-safe. Any local threads in Ehcache A will have immediate visibility of the change.

4. Once the change has hit the Transaction Buffer which is a LinkedBlockingQueue, a notify occurs, and
the Transaction Buffer initiates sending the write (update) asynchronously to the TSA (storage
system).

5. The Terracotta Server is generally configured with multiple replicas forming a Mirror Group. Within
the mirror group there is an active server, and one or more mirror servers. The write is to the active
server. The active server does not acknowledge the write until it has written it to each of the mirror
servers in the mirror group. It then sends back an acknowledgement to Ehcache A which then deletes
the write from the Transaction Buffer.

6. A read or write request from Ehcache A is immediately available because a read lock is automatically
granted when a write lock has already been acquired. A read or write request in Ehcache B or C
requires the acquisition of a read or write lock, respectively, which will block until step 5 has
occurred. In addition, if you have a stale copy locally, it is updated first. When the lock is granted, the
write is present in all replicas. Because Ehcache also maintains copies of Elements in-process in
potentially each node, if any of Ehcache A, B or C have a copy they are also updated before Step 5
completes.

Note: This analysis assumes that if the nonstop is being used, it is configured with the default of Exception,

so thaton a clusterOffline event no cache operations happen locally. Nonstop allows fine-grained
tradeoffs to be made in the event of a network partition, including dropping consistency.

Cache Consistency Options 20/284

Eventual Consistency

Eventual Consistency
Distributed Ehcache can have eventual consistency in the following ways:

¢ Configured with consistency="eventual".

¢ Set programmatically with a bulk-loading mode, using setNodeBulkLoadEnabled (boolean).

¢ Configured with <UnlockedReadsView>, a CacheDecorator that can be created like a view on a
cache to show the latest writes visible to the local Ehcache node without respect for any locks.

¢ Using bulk-loading Cache methods putAll(), getAll(), and removeAll(). These can also be used with
strong consistency. If you can use them, it's unnecessary to use bulk-load mode. See the API
documentation for details.

Regardless, Ehcache B and C will eventually see the change made by Ehcache A, generally with consistency
window of 5Sms (with no partitions or interruptions). If a GC happens on a TSA node, or Ehcache A or B, the
inconsistency window is increased by the length of the GC.

If setNodeBulkLoadEnabled (true) is used, it causes the TSA to not update Ehcache B and C.
Instead, they are set to a 5 minute fixed TTL. The inconsistency window thus increases to 5 minutes plus the
above.

If a network partition occurs that is long enough to cause an Ehcache A to be ejected from the cluster, the only
configurable option is to discard on rejoin. Once this happens Ehcache A or B gets the write. From the
perspective of other threads in Ehcache A, all writes are thread-safe.

Java Memory Model Honored

In all modes the happens-before requirement of the Java Memory Model is honored. As a result the following
is true:

e A thread in Ehcache A will see any writes made by another thread. => Read your writes consistency.
® Monotonic Read Consistency in Ehcache A is true.
® Monotonic Write Consistency is Ehcache A is true.

Consistency in Web Sessions

It should be noted that desirable characteristics of eventual consistency are from the point of view of Ehcache
A. From the context of a web application, in order for an end user interacting with a whole application to see
this behaviour use sticky sessions.

This way the user interacts with the same node (Ehcache A) for each step. If an application node falls over, a
new session will be established. The time between the last write, failure, detection by the load balancer and
allocation to a new application node will take longer than the Sms+ that it takes for all Ehcache nodes in the
cluster to get the write. So when the new application node is switched to, eventual consistency has occurred
and no loss of consistency is observed by the user.

If you want to avoid sticky sessions, try relying on the time gap between a click or submit and the next one in
a "click path" that takes much longer than the Sms+ that it takes for other nodes to become eventually

consistent.

In an Internet context the user is sufficiently distant from the server so that the response time is at least an

Cache Consistency Options 21/284

http://ehcache.org/apidocs
http://ehcache.org/apidocs
http://terracotta.org/documentation/enterprise-ehcache/reference-guide#71266

Other Safety Features

order of magnitude greater than the inconsistency window. Probabilistically it is therefore unlikely that a user
would see inconsistency.

Other Safety Features

Ehcache offers a rich set of data safety features. In this section we look at some of the others and how they
interact with the st rong and eventual consistency.

CAS Cache Operations

We support three Compare and Swap (CAS) operations:

® cache.replace (Element old, Element new)
® cache.putIfAbsent (Element)
® cache.remove (Element)

In each case the TSA will only perform the write if the old value is the same as that presented. This is
guaranteed to be done atomically as required by the CAS pattern. CAS achieves strong consistency between
A, B and C. The key difference is that it achieves it with optimistic locking rather than pessimistic locking. As
with all optimistic locking approaches, the operations are not guaranteed to succeed. If someone else got in
and changed the Element ahead of you, the methods will return false. You should read the new value, take
that into account in your business logic and then retry your mutation.

CAS will work with both st rong and eventual consistency modes, but because it does not use the locks
it does not need st rong. However, with eventual consistency two simultaneous replace () operations in

different nodes (or threads) can both return true. But at the TSA, only one of the operations is allowed to
succeed and all competing values are invalidated, eventually making the caches consistent in all nodes.

Use Cases And Recommended Practices

In this section we look at some common use cases and give advice on what consistency and safety options
should be used. These serve as a useful starting point for your own analysis. We welcome commentary and
further discussion on these use cases. Please post to the Ehcache mailing list or post your questions on the
forums.

Shopping Cart - optimistic inventory

Problem

A user adds items to a shopping cart. Do not decrement inventory until checkout.
Solution

Use eventual consistency.

Shopping Cart with Inventory Decrementing

Cache Consistency Options 22/284

Shopping Cart with Inventory Decrementing

Problem

A user adds items to a shopping cart. There is limited inventory and the business policy is that the first user to
add the inventory to their shopping cart can buy it. If the user does not proceed to checkout, a timer will
release the inventory back. As a result, inventory must be decremented at the time the item is added to the
shopping cart.

Solution

Use strong consistency with one of:
e explicit locking
® local transactions

e XA transactions

The key thing here is that two resources have to be updated: the shopping cart, which is only visible to one
user, and on it's own has low consistency requirements, and an inventory which is transactiional in nature.

Financial Order Processing - write to cache and database
Problem

An order processing system sends a series of messages in a workflow, perhaps using Business Process
Management software. The system involves multiple servers and the next step in the processing of an order
may occur on any server. Let's say there are 5 steps in the process. To avoid continual re-reading from a
database, the processing results are also written to a distributed cache. The next step could execute in a few
ms to minutes depending on what other orders are going through and how busy the hardware is.

Solution

Use strong consistency plus XA transactions. Because the execution step cannot be replayed once completed,
and may be under the control of a BPM, it is very important that the change in state gets to the cache cluster.
Synchronous writes can also be used (at a high performance cost) so that the put to the cache does not return
until the data has been applied. If an executing node failed before the data was transferred, the locks would

still be in place preventing readers from reading stale data, but that will not help the next step in the process.
XA transactions are needed because we want to keep the database and the cache in sync.

Immutable Data
Problem

The application uses data that once it comes into existence is immutable. Nothing is immutable forever. The
key point is that it is immutable up until the time of the next software release. Some examples are:

e application constants
e reference data - zip and post codes, countries etc.

If you analyse database traffic commonly used reference data turns out to be a big hitter. As they are
immutable they can only be appended or read, never updated.

Cache Consistency Options 23/284

Immutable Data

Solution

In concurrent programming, immutable data never needs further concurrency protection. So we simply want
to use the fastest mode. Here we would always use eventual consistency.

Financial Order Processing - write to cache as SOR
Problem

An order processing system sends a series of messages in a workflow, perhaps using Business Process
Management software. The system involves multiple servers and the next step in the processing of an order
may occur on any server. Let's say there are 50 steps in the process. To avoid overloading a database the
processing results at each step only written to a distributed cache. The next step could execute in a few ms to
minutes depending on what other orders are going through and how busy the hardware is.

Solution
Use one of:

e strong consistency and local transactions (if changes are needed to be applied to multiple caches or
entries). Because the execution step, once completed cannot be replayed, and may be under the
control of a BPM, it is very important that the change in state gets to the cache cluster. Synchronous
writes can also be used (at a high performance cost) so that the put to the cache does not return until
the data has been applied. If an executing node failed before the data was transferred, the locks would
still be in place preventing readers from reading stale data, but that will not help the next step in the
process.

e CAS operations with eventual consistency. The CAS methods will not return until the data has been
applied to the server, so it is not necessary to use synchronous writes. In a 50 step process it is likely
there are key milestones. Often it is desirable to record these in a database with the non-milestone
steps recorded in the cache. For these key milestones use the "Financial Order Processing - write to
cache and database" pattern.

E-commerce web app with Non-sticky sessions

Here a user makes reads and writes to a web application cluster. There are n servers where n > 1. The load
balancer is non-sticky, so any of the n servers can be hit on the next HTTP operation. When a user submits
using a HTML form, either a GET or POST is done based on the form action. And if it is an AJAx app, then
requests are being done with XMLHtt pRequest and any HTTP request method can be sent. If POST (form
and AJAX) or PUT (AJAX) is used, no content is returned and a separate GET is required to refresh the view
or AJAX app.

The key point is that sending a change and getting a view may happen with one request or two. If it happens
with two, then the same server might respond to the second request or not. The probability that the second
server will be the same as the first is 1/n. AJAX apps can further exacebate this situation. A page may make
multiple requests to fill different panels. This opens up the possibility of, within a single page, having data
come from multiple servers. Any lack of consistency could be glaring indeed.

Cache Consistency Options 24/284

E-commerce web app with Non-sticky sessions

Solution
Use one of:

e strong consistency
* CAS

Other options can be added depending on what is needed for the request. e.g. XA if a database plus the cache
is updated.

E-commerce web app with sticky sessions
Problem

Here a user makes reads and writes to a web application cluster. The load balancer is sticky, so the same
server should be hit on the next HTTP operation. There are different ways of configuring sticky sessions. The
same server might be used for the length of a session, which is the standard meaning, or a browser's IP can
permanently hash to a server. In any case, each request is guaranteed to hit the same server.

Solution

The same server is always hit. The consistency mode depends on whether only the user making the changes
needs to see them applied (read your writes, monotonic reads, monotonic writes), or whether they are
mutating shared-state, like inventory where write-write conflicts might occur. For mutating user-only
consistency, use eventual consistency. For multi-user shared state, use strong consistency at a minimum plus
further safety mechanisms depending on the type of mutation.

E-commerce Catalog
Problem

Catalogues display inventory. There are product details and pricing. There may be also be an inventory status
of available or sold out. Catalogue changes are usually made by one user or process (for example a daily
update load from a supplier) and usually do not have write-write conflicts. While the catalogue is often
non-sticky, admin users are typically configured sticky. There is often tolerance for the displayed catalogue to
lag behind the change made. Users following a click path are usually less tolerant about seeing
inconsistencies.

Solution

The person making the changes can see a consistent view by virtue of the sticky session. So eventual
consistency will often be enough. For end users following a click path, they need a consistent view. However,
the network or Internet time, plus their think time to move along the path, adds up to seconds and minutes,
while eventual consistency will propagate in the order of 2+ milliseconds. With eventual consistency, it is
very unlikely they will see inconsistency. The general recommendation is therefore to use eventual
consistency.

Cache Consistency Options 25/284

Storage Options

Introduction

Ehcache has three stores:

® a MemoryStore
¢ an OffHeapStore (BigMemory, Enterprise Ehcache only) and
¢ a DiskStore (two versions: open source and Ehcache Enterprise)

This page addresses relevant storage issues and provides the suitable element types for each storage option.

Memory Store

The MemoryStore is always enabled. It is not directly manipulated, but is a component of every cache.

Suitable Element Types
All Elements are suitable for placement in the MemoryStore. It has the following characteristics:

e Safe
¢ Thread safe for use by multiple concurrent threads.
¢ Tested for memory leaks. The MemoryCacheTest passes for Ehcache but exploits a number
of memory leaks in JCS. JCS will give an OutOfMemory error with a default 64M in 10
seconds.
¢ Backed By JDK LinkedHashMap—The MemoryStore for JDK1.4 and higher is backed by an
extended LinkedHashMap. This provides a combined linked list and a hash map, and is ideally suited
for caching. Using this standard Java class simplifies the implementation of the memory cache. It
directly supports obtaining the least recently used element.
¢ Fast—The memory store, being all in memory, is the fastest caching option.

Memory Use, Spooling, and Expiry Strategy
All caches specify their maximum in-memory size, in terms of the number of elements, at configuration time.

When an element is added to a cache and it goes beyond its maximum memory size, an existing element is
either deleted, if overflowToDisk is false, or evaluated for spooling to disk, if overflowToDisk is true.

In the latter case, a check for expiry is carried out. If it is expired it is deleted; if not it is spooled. The eviction
of an item from the memory store is based on the 'MemoryStoreEvictionPolicy' setting specified in the

configuration file.

memoryStoreEvictionPolicy is an optional attribute in ehcache.xml introduced since 1.2. Legal
values are LRU (default), LFU and FIFO.

LRU, LFU and FIFO eviction policies are supported. LRU is the default, consistent with all earlier releases of
ehcache.

Storage Options 26/284

http://java.sun.com/j2se/1.4.2/docs/api/

Memory Use, Spooling, and Expiry Strategy

¢ Least Recently Used (LRU) *Default**—The eldest element, is the Least Recently Used (LRU).
The last used timestamp is updated when an element is put into the cache or an element is retrieved
from the cache with a get call.

¢ Least Frequently Used (LFU)—For each get call on the element the number of hits is updated.
When a put call is made for a new element (and assuming that the max limit is reached for the
memory store) the element with least number of hits, the Less Frequently Used element, is evicted.

¢ First In First Out (FIFO)—Elements are evicted in the same order as they come in. When a put call
is made for a new element (and assuming that the max limit is reached for the memory store) the
element that was placed first (First-In) in the store is the candidate for eviction (First-Out).

For all the eviction policies there are also putQuiet and getQuiet methods which do not update the last
used timestamp.

When there is a get or a getQuiet on an element, it is checked for expiry. If expired, it is removed and
null is returned.

Note that at any point in time there will usually be some expired elements in the cache. Memory sizing of an
application must always take into account the maximum size of each cache.

There is a convenient method which can provide an estimate of the size in bytes of the MemoryStore,
calculateInMemorySize(). It returns the serialized size of the cache. However, do not use this method in
production, as it is very slow. It is only meant to provide a rough estimate.

An alternative would be to have an expiry thread. This is a trade-off between lower memory use and short
locking periods and CPU utilization. The design is in favour of the latter. For those concerned with memory
use, simply reduce the cache's size in memory (see How to Size Caches for more information).

BigMemory (Off-Heap Store)

BigMemory is a pure Java product from Terracotta that permits caches to use an additional type of memory
store outside the object heap. It is packaged for use in Enterprise Ehcache as a snap-in job store called the
"off-heap store."

This off-heap store, which is not subject to Java GC, is 100 times faster than the DiskStore and allows very
large caches to be created (we have tested this up to 350GB). Because off-heap data is stored in bytes, there
are two implications:

® Only Serializable cache keys and values can be placed in the store, similar to DiskStore.

e Serialization and deserialization take place on putting and getting from the store. This means that the
off-heap store is slower in an absolute sense (around 10 times slower than the MemoryStore), but this
theoretical difference disappears due to two effects:

¢ the MemoryStore holds the hottest subset of data from the off-heap store, already in
deserialized form

¢ when the GC involved with larger heaps is taken into account, the off-heap store is faster on
average

Storage Options 27/284

http://ehcache.org/apidocs/net/sf/ehcache/Cache.html#calculateInMemorySize%28%29
http://www.terracotta.org/bigmemory?src=ehcache_off_heap_store

Suitable Element Types

Suitable Element Types
Only Elements which are Serializable can be placed in the Of fHeapMemoryStore. Any non
serializable Elements which attempt to overflow to the Of fHeapMemoryStore will be removed instead,

and a WARNING level log message emitted.

See the BigMemory chapter for more details.

DiskStore

The DiskStore provides a disk spooling facility.

DiskStores are Optional

The diskStore element in ehcache.xml is now optional (as of 1.5). If all caches use only MemoryStores,
then there is no need to configure a diskStore. This simplifies configuration, and uses less threads. It is also
good when multiple CacheManagers are being used, and multiple disk store paths would need to be

configured.

If one or more caches requires a DiskStore, and none is configured, java.io.tmpdir will be used and a warning
message will be logged to encourage explicity configuration of the diskStore path.

Turning off Disk Stores
To turn off disk store path creation, comment out the diskStore element in ehcache.xml.
The ehcache—-failsafe.xml configuration uses a disk store. This will remain the case so as to not affect

existing Ehcache deployments. So, if you do not wish to use a disk store make sure you specify your own
ehcache.xml and comment out the diskStore element.

Suitable Element Types
Only Elements which are Serializable can be placed in the DiskStore. Any non serializable

Elements which attempt to overflow to the DiskStore will be removed instead, and a WARNING level
log message emitted.

Enterprise DiskStore

The commercial version of Ehcache 2.4 introduced an upgraded disk store. Improvements include:
e Upgraded fragmentation control/management to be the same as offheap
e No Heap used for fragmentation management or keys
® Much more predictable write latency up to caches over half a terabyte.

® SSD aware and optimised.

Throughput is approximately 110,000 operations/s which translates to around 60MB/sec on a 10k rpm hard
drive with even higher rates on SSD drives, for which the Disk

Storage Options 28/284

Storage
Storage
Files
The disk store creates a data file for each cache on startup called ".data". If the DiskStore is configured to
be persistent, an index file called "cache name.index" is created on flushing of the DiskStore either
explicitly using Cache . flush or on CacheManager shutdown.
Storage Location
Files are created in the directory specified by the diskStore configuration element. The diskStore
configuration for the ehcache-failsafe.xml and bundled sample configuration file ehcache.xml is
"java.io.tmpdir", which causes files to be created in the system's temporary directory.
<diskStore> Configuration Element
The diskStore element is has one attribute called path.
<diskStore path="java.io.tmpdir"/>
Legal values for the path attibute are legal file system paths. E.g., for Unix:
/home/application/cache
The following system properties are also legal, in which case they are translated:
e user.home - User's home directory
e user.dir - User's current working directory
® java.io.tmpdir - Default temp file path
e chcache.disk.store.dir - A system property you would normally specify on the command line—for
example, java -Dehcache.disk.store.dir=/u01/myapp/diskdir ...
Subdirectories can be specified below the system property, for example:
java.io.tmpdir/one

becomes, on a Unix system:

/tmp/one

Expiry

One thread per cache is used to remove expired elements. The optional attribute
diskExpiryThreadIntervalSeconds sets the interval between runs of the expiry thread. Warning:

setting this to a low value is not recommended. It can cause excessive DiskStore locking and high cpu
utilization. The default value is 120 seconds.

Eviction

If a cache's disk store has a limited size, Elements will be evicted from the DiskStore when it exceeds this
limit. The LFU algorithm is used for these evictions. It is not configurable or changeable.

Storage Options 29/284

Serializable Objects

Serializable Objects

Only Serializable objects can be stored in a DiskStore. A NotSerializableException will be thrown if the
object is not serializable.

Safety

DiskStores are thread safe.

Persistence

DiskStore persistence is controlled by the diskPersistent configuration element. If false or omitted,
DiskStores will not persist between CacheManager restarts. The data file for each cache will be deleted,
if it exists, both on shutdown and startup. No data from a previous instance CacheManager is available.

If diskPersistent is true, the data file and an index file are saved. Cache Elements are available to a new
CacheManager. This CacheManager may be in the same VM instance, or in a new one.

The data file is updated continuously during operation of the Disk Store if overflowToDisk is true.
Otherwise it is not updated until either cache. flush () is called, or the cache is disposed.

In all cases, the index file is only written when dispose is called on the DiskStore. This happens when the
CacheManager is shut down, a Cache is disposed, or the VM is being shut down. It is recommended that the
CacheManager shutdown() method be used. See Virtual Machine Shutdown Considerations for guidance on
how to safely shut the Virtual Machine down.

When a DiskStore is persisted, the following steps take place:

® Any non-expired Elements of the MemoryStore are flushed to the DiskStore
¢ Elements awaiting spooling are spooled to the data file
¢ The free list and element list are serialized to the index file

On startup, the following steps take place:

¢ An attempt is made to read the index file. If it does not exist or cannot be read successfully, due to
disk corruption, upgrade of ehcache, change in JDK version etc, then the data file is deleted and the
DiskStore starts with no Elements in it.

o If the index file is read successfully, the free list and element list are loaded into memory. Once this is
done, the index file contents are removed. This way, if there had been a dirty shutdown, Ehcache will
delete the dirty index and data files upon restart.

e The DiskStore starts. All data is available.

® The expiry thread starts. It will delete Elements which have expired. These actions favour safety over
persistence. Ehcache is a cache, not a database. If a file gets dirty, all data is deleted. Once started
there is further checking for corruption. When a get is done, if the Element cannot be successfully
deserialized, it is deleted, and null is returned. These measures prevent corrupt and inconsistent data
from being returned.

Storage Options 30/284

http://java.sun.com/j2se/1.4.2/docs/api/java/io/NotSerializableException.html
http://ehcache.org/apidocs/net/sf/ehcache/CacheManager.html#shutdown%28%29

Persistence

Operation of a Cache where overflowToDisk is false and diskPersistent is true
In this configuration case, the disk will be written on £1ush or shutdown.

The next time the cache is started, the disk store will initialise but will not permit overflow from the
MemoryStore. In all other respects it acts like a normal disk store.

In practice this means that persistent in-memory cache will start up with all of its elements on disk. As gets
cause cache hits, they will be loaded up into the MemoryStore. The other thing that may happen is that the
elements will expire, in which case the DiskStore expiry thread will reap them, (or they will get removed
on a get if they are expired).

So, the Ehcache design does not load them all into memory on start up, but lazily loads them as required.

Fragmentation

Expiring an element frees its space on the file. This space is available for reuse by new elements. The element
is also removed from the in-memory index of elements.

Serialization

Writes to and from the disk use ObjectlnputStream and the Java serialization mechanism. This is not required
for the MemoryStore. As a result the DiskStore can never be as fast as the MemoryStore.

Serialization speed is affected by the size of the objects being serialized and their type. It has been found in
the ElementTest that: * The serialization time for a Java object consisting of a large Map of String arrays was
126ms, where the serialized size was 349,225 bytes. * The serialization time for a byte[] was 7ms, where the
serialized size was 310,232 bytes.

Byte arrays are 20 times faster to serialize. Make use of byte arrays to increase DiskStore performance.

RAMFS

One option to speed up disk stores is to use a RAM file system. On some operating systems there are a
plethora of file systems to choose from. For example, the Disk Cache has been successfully used with Linux'
RAMES file system. This file system simply consists of memory. Linux presents it as a file system. The Disk
Cache treats it like a normal disk - it is just way faster. With this type of file system, object serialization
becomes the limiting factor to performance.

Some Configuration Examples

These examples show how to allocate 8GB of machine memory to different stores. It assumes a data set of
7GB - say for a cache of 7M items (each 1kb in size).

Those who want minimal application response-time variance (or minimizing GC pause times), will likely

want all the cache to be off-heap. Assuming that 1GB of heap is needed for the rest of the app, they will set
their Java config as follows:

java -XmslG -Xmx1lG -XX:maxDirectMemorySize=7G

Storage Options 31/284

http://java.sun.com/j2se/1.4.2/docs/api/java/io/ObjectOutputStream.html

Some Configuration Examples

And their Ehcache config as:

<cache

maxEntriesLocalHeap=100

overflowToOffHeap="true"

maxBytesLocalOffHeap="6G"

/>

NOTE: Direct Memory and Off-heap Memory Allocations To accommodate server communications layer
requirements, the value of maxDirectMemorySize must be greater than the value of maxBytesLocalOffHeap.
The exact amount greater depends upon the size of maxBytesLocalOffHeap. The minimum is 256MB, but if
you allocate 1GB more to the maxDirectMemorySize, it will certainly be sufficient. The server will only use
what it needs and the rest will remain available.

Those who want best possible performance for a hot set of data, while still reducing overall application
repsonse time variance, will likely want a combination of on-heap and off-heap. The heap will be used for the
hot set, the offheap for the rest. So, for example if the hot set is 1M items (or 1GB) of the 7GB data. They will
set their Java config as follows

java —-Xms2G -Xmx2G -XX:maxDirectMemorySize=6G

And their Ehcache config as:

<cache
maxEntriesLocalHeap=1M
overflowToOffHeap="true"
maxBytesLocalOffHeap="5G"
.. >

This configuration will compare VERY favorably against the alternative of keeping the less-hot set in a
database (100x slower) or caching on local disk (20x slower).

Where the data set is small and pauses are not a problem, the whole data set can be kept on heap:

<cache
maxEntriesLocalHeap=1M
overflowToOffHeap="false"
.. >

Where latency isn't an issue overflow to disk can be used:

<cache
maxEntriesLocalHeap=1M
overflowToOffDisk="true"
. o>

Performance Considerations

Relative Speeds

Ehcache comes with a MemoryStore and aDiskStore. The MemoryStore is approximately an order
of magnitude faster than the DiskStore. The reason is that the DiskStore incurs the following extra
overhead:

Storage Options 32/284

Relative Speeds

e Serialization of the key and value
¢ Eviction from the MemoryStore using an eviction algorithm
® Reading from disk

Note that writing to disk is not a synchronous performance overhead because it is handled by a separate
thread.

Always use some amount of Heap
For performance reasons, Ehcache should always use as much heap memory as possible without triggering

GC pauses. Use BigMemory (the off-heap store) to hold the data that cannot fit in heap without causing GC
pauses.

Storage Options 33/284

Using Ehcache

Introduction

Ehcache can be used directly. It can also be used with the popular Hibernate Object/Relational tool and Java
EE Servlet Caching. This page is a quick guide to get you started. The rest of the documentation can be
explored for a deeper understanding.

General-Purpose Caching

e Download Ehcache »

Beginning with Ehcache 1.7.1, Ehcache depends on SLF4J (http://www.slf4j.org) for logging. SLF4J
is a logging framework with a choice of concrete logging implementations. See the chapter on
Logging for configuration details.

e Use Java 1.5 or 1.6.

¢ Place the Ehcache jar into your classpath.

¢ Configure ehcache.xml and place it in your classpath.

¢ Optionally, configure an appropriate logging level. See the Code Samples chapter for more
information on direct interaction with ehcache.

Cache Usage Patterns

There are several common access patterns when using a cache. Ehcache supports the following patterns:

e cache-aside (or direct manipulation)

e cache-as-sor (a combination of read-through and write-through or write-behind patterns)
e read-through

e write-through

e write-behind (or write-back)

cache-aside
Here, application code uses the cache directly.

This means that application code which accesses the system-of-record (SOR) should consult the cache first,
and if the cache contains the data, then return the data directly from the cache, bypassing the SOR.

Otherwise, the application code must fetch the data from the system-of-record, store the data in the cache, and
then return it.

When data is written, the cache must be updated with the system-of-record. This results in code that often
looks like the following pseudo-code:

public class MyDataAccessClass
{

private final Ehcache cache;
public MyDataAccessClass (Ehcache cache)

{

Using Ehcache 34/284

http://ehcache.org/downloads
http://www.slf4j.org

cache-aside

this.cache = cache;

}

/* read some data, check cache first, otherwise read from sor */
public V readSomeData (K key)
{

Element element;
if ((element = cache.get (key)) != null) {
return element.getValue();

}

// note here you should decide whether your cache

// will cache 'nulls' or not

if (value = readDataFromDataStore (key)) != null) {
cache.put (new Element (key, value));

}

return value;

}

/* write some data, write to sor, then update cache */
public void writeSomeData (K key, V value)
{

writeDataToDataStore (key, value);
cache.put (new Element (key, value);

cache-as-sor

The cache-as-sor pattern implies using the cache as though it were the primary system-of-record (SOR). The
pattern delegates SOR reading and writing activies to the cache, so that application code is absolved of this
responsibility.

To implement the cache-as-sor pattern, use a combination of the following read and write patterns:

e read-through
e write-through or write-behind

Advantages of using the cache-as-sor pattern are:

¢ less cluttered application code (improved maintainability)

e casily choose between write-through or write-behind strategies on a per-cache basis (use only
configuration)

e allow the cache to solve the "thundering-herd" problem

A disadvantage of using the cache-as-sor pattern is:

e less directly visible code-path

read-through

The read-through pattern mimics the structure of the cache-aside pattern when reading data. The difference is
that you must implement the CacheEnt ryFactory interface to instruct the cache how to read objects on a
cache miss, and you must wrap the Ehcache instance with an instance of SelfPopulatingCache.
Compare the appearance of the read-through pattern code to the code provided in the cache-aside pattern.
(The full example is provided at the end of this document that includes a read-through and write-through
implementation).

Using Ehcache 35/284

write-through

write-through

The write-through pattern mimics the structure of the cache-aside pattern when writing data. The difference is
that you must implement the CacheWriter interface and configure the cache for write-through or
write-behind. A write-through cache writes data to the system-of-record in the same thread of execution,
therefore in the common scenario of using a database transaction in context of the thread, the write to the
database is covered by the transaction in scope. More details (including configuration settings) can be found
in the User Guide chapter on Write-through and Write-behind Caching.

write-behind

The write-behind pattern changes the timing of the write to the system-of-record. Rather than writing to the
System of Record in the same thread of execution, write-behind queues the data for write at a later time.

The consequences of the change from write-through to write-behind are that the data write using write-behind
will occur outside of the scope of the transaction.

This often-times means that a new transaction must be created to commit the data to the system-of-record that
is separate from the main transaction. More details (including configuration settings) can be found in the User
Guide chapter on Write-through and Write-behind Caching.

cache-as-sor example

public class MyDataAccessClass
{
private final Ehcache cache;
public MyDataAccessClass (Ehcache cache)
{
cache.registerCacheWriter (new MyCacheWriter());
this.cache = new SelfPopulatingCache (cache);
}
/* read some data — notice the cache is treated as an SOR.
* the application code simply assumes the key will always be available
*/
public V readSomeData (K key)
{
return cache.get (key);
}
/* write some data - notice the cache is treated as an SOR, it is
* the cache's responsibility to write the data to the SOR.
*/
public void writeSomeData (K key, V value)
{
cache.put (new Element (key, value);
}
/**
* Implement the CacheEntryFactory that allows the cache to provide
* the read-through strategy
*/
private class MyCacheEntryFactory implements CacheEntryFactory
{
public Object createEntry (Object key) throws Exception
{

return readDataFromDataStore (key);

Using Ehcache 36/284

cache-as-sor example

/**
* Implement the CacheWriter interface which allows the cache to provide
* the write-through or write-behind strategy.
*/
private class MyCacheWriter implements CacheWriter
public CacheWriter clone (Ehcache cache) throws CloneNotSupportedException;

{

throw new CloneNotSupportedException();

}

public void init () { }

void dispose () throws CacheException { }

void write (Element element) throws CacheException;

{
writeDataToDataStore (element.getKey (), element.getValue());

}

void writeAll (Collection elements) throws CacheException
{
for (Element element : elements) {
write (element);
}

}
void delete (CacheEntry entry) throws CacheException

{
deleteDataFromDataStore (element.getKey ());

}

void deleteAll (Collection entries) throws CacheException

{
for (Element element : elements) {
delete (element);

Copy Cache

A Copy Cache can have two behaviors: it can copy Element instances it returns, when copyOnRead is true
and copy elements it stores, when copyOnWrite to true.

A copy on read cache can be useful when you can't let multiple threads access the same Element instance (and
the value it holds) concurrently. For example, where the programming model doesn't allow it, or you want to
isolate changes done concurrently from each other.

Copy on write also lets you determine exactly what goes in the cache and when. i.e. when the value that will
be in the cache will be in state it was when it actually was put in cache. All mutations to the value, or the
element, after the put operation will not be reflected in the cache.

A concrete example of a copy cache is a Cache configured for XA. It will always be configured copyOnRead
and copyOnWrite to provide proper transaction isolation and clear transaction boundaries (the state the
objects are in at commit time is the state making it into the cache). By default, the copy operation will be
performed using standard Java object serialization. We do recognize though that for some applications this
might not be good (or fast) enough. You can configure your own CopyStrategy which will be used to
perform these copy operations. For example, you could easily implement use cloning rather than Serialization.

More information on configuration can be found here: copyOnRead and copyOnWrite cache configuration.

Using Ehcache 37/284

Specific Technologies

Specific Technologies

Distributed Caching

Distributed Ehcache combines the power of the Terracotta platform with the ease of Ehcache application-data
caching. Ehcache supports distributed caching with two lines of configuration.

By integrating Enterprise Ehcache with the Terracotta platform, you can take advantage of BigMemory and
expanded Terracotta Server Arrays to greatly scale your application and cluster.

The distributed-cache documentation covers how to configure Ehcache in a Terracotta cluster and how to use
its API in your application.

Hibernate

¢ Perform the same steps as for general-purpose caching (above).
¢ Create caches in ehcache.xml.

See the Hibernate Caching chapter for more information.

Java EE Servlet Caching

® Perform the same steps as for general-purpose caching above.

¢ Configure a cache for your web page in ehcache.xml.

® To cache an entire web page, either use SimplePageCachingFilter or create your own subclass of
CachingFilter

® To cache a jsp:Include or anything callable from a RequestDispatcher, either use
SimplePageFragmentCachingFilter or create a subclass of PageFragmentCachingFilter.

¢ Configure the web.xml. Declare the filters created above and create filter mapping associating the
filter with a URL.

See the Web Caching chapter for more information.

RESTful and SOAP Caching with the Cache Server

® Download the ehcache-standalone-server from
https://sourceforge.net/projects/ehcache/files/ehcache-server.

e cd to the bin directory

® Type startup. sh to start the server with the log in the foreground. By default it will listen on port
8080, will have both RESTful and SOAP web services enabled, and will use a sample Ehcache
configuration from the WAR module.

¢ See the code samples on the Cache Server page. You can use Java or any other programming
language with the Cache Server.

See the Cache Server page for more information.

Using Ehcache 38/284

http://terracotta.org/documentation/enterprise-ehcache/get-started
https://sourceforge.net/projects/ehcache/files/ehcache-server

JCache style caching

JCache style caching

Ehcache contains an early draft implementation of JCache contained in the net.sf.ehcache.jcache package. See
the JSR107 chapter for usage.

Spring, Cocoon, Acegi and other frameworks

Usually, with these, you are using Ehcache without even realising it. The first steps in getting more control
over what is happening are:

e discover the cache names used by the framework
e create your own ehcache.xml with settings for the caches and place it in the application classpath.

Using Ehcache 39/284

Building and Testing Ehcache

Introduction

This page is intended for those who want to create their own Ehcache or distributed Ehcache build rather than
use the packed kit.

Building from Source

These instructions work for each of the modules, except for JMS Replication, which requires installation of a
message queue. See that module for details.

Building an Ehcache distribution from source
To build Ehcache from source:

1. Check the source out from the subversion repository.
2. Ensure you have a valid JDK and Maven 2 installation.
3. From within the ehcache/core directory, type mvn —-Dmaven.test.skip=true install

Running Tests for Ehcache
To run the test suite for Ehcache:

1. Check the source out from the subversion repository.

2. Ensure you have a valid JDK and Maven 2 installation.

3. From within the ehcache/core directory, type mvn test

4. If some performance tests fail, add a -D net.sf.ehcache.speedAdjustmentFactor=x
System property to your command line, where x is how many times your machine is slower than the
reference machine. Try setting it to 5 for a start.

Java Requirements and Dependencies

Java Requirements

¢ Current Ehcache releases require Java 1.5 and 1.6 at runtime.

e Ehcache 1.5 requires Java 1.4. Java 1.4 is not supported with Terracotta distributed Ehcache.

® The ehcache-monitor module, which provides management and monitoring, will work with Ehcache
1.2.3 but only for Java 1.5 or higher.

Mandatory Dependencies

¢ Ehcache core 1.6 through to 1.7.0 has no dependencies.

® Ehcache core 1.7.1 depends on SLF4J (http://www.slf4].org), an increasingly commonly used logging
framework which provides a choice of concrete logging implementation. See the page on Logging for
configuration details.

Building and Testing Ehcache 40/284

http://svn.terracotta.org/svn/ehcache/
http://www.slf4j.org

Mandatory Dependencies

Other modules have dependencies as specified in their maven POMs.

Maven Snippet

To include Ehcache in your project, use:

<dependency>
<groupId>net.sf.ehcache</groupId>
<artifactId>ehcache</artifactId>
<version>2.3.1</version>
<type>pom</type>

</dependency>

Note: Be sure to substitute the version number above with the version number of Ehcache that you want to
use.

If using Terracotta Distributed Ehcache, also add:

<dependency>
<groupId>org.terracotta</groupId>
<artifactId>terracotta-toolkit-1.4-runtime</artifactId>
<version>4.0.0</version>

</dependency>

<repositories>
<repository>
<id>terracotta-repository</id>
<url>http://www.terracotta.org/download/reflector/releases</url>
<releases>
<enabled>true</enabled>
</releases>
</repository>
</repositories>

Be sure to check the dependency versions for compatibility. Versions released in a single kit are guaranteed
compatible.

Distributed Cache Development with Maven and Ant

With a Distributed Ehcache, there is a Terracotta Server Array. At development time, this necessitates running
a server locally for integration and/or interactive testing. There are plugins for Maven and Ant to simplify and
automate this process.

For Maven, Terracotta has a plugin available which makes this very simple.

Setting up for Integration Testing

<pluginRepositories>
<pluginRepository>
<id>terracotta-snapshots</id>
<url>http://www.terracotta.org/download/reflector/maven2</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>

Building and Testing Ehcache 41/284

Setting up for Integration Testing

<enabled>true</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>
<plugin>
<groupId>org.terracotta.maven.plugins</groupId>
<artifactId>tc-maven-plugin</artifactId>
<version>1.5.1</version>
<executions>
<execution>
<id>run-integration</id>
<phase>pre—-integration-test</phase>
<goals>
<goal>run-integration</goal>
</goals>
</execution>
<execution>
<id>terminate-—integration</id>
<phase>post-integration-test</phase>
<goals>
<goal>terminate-integration</goal>
</goals>
</execution>
</executions>
</plugin>

Note: Be sure to substitute the version number above with the current version number.

Interactive Testing

To start Terracotta:

mvn tc:start

To stop Terracotta:
mvn tc:stop

See the Terracotta Forge for a complete reference.

Building and Testing Ehcache

42/284

http://forge.terracotta.org/releases/projects/tc-maven-plugin/

Configuration Overview

The following sections provide a documentation Table of Contents and additional information sources about
Ehcache configuration.

Configuration Table of Contents

Topic Description
The basics of cache configuration with Ehcache, including dynamically changing
Introduction cache configuration, cache warming, and copyOnRead/copyOnWrite cache
configuration.
. Introduction to BigMemory, how to configure Ehcache with BigMemory,
BigMemory .
performance comparisons, an FAQ, and more.
Tuning Ehcache often involves sizing cached data appropriately. Ehcache provides a
.. number of ways to size the different data tiers using simple cache-configuration
Sizing Caches

sizing attributes. This page explains simplified tuning of cache size by configuring
dynamic allocation of memory and automatic load balancing.

The architecture of an Ehcache node can include a number of tiers that store data.
One of the most important aspects of managing cached data involves managing the
life of the data in each tier. This page covers managing data life in Ehcache and the
Terracotta Server Array, including the pinning features of Automatic Resource
Control (ARC).

A nonstop (non-blocking) cache allows certain cache operations to proceed on
clients that have become disconnected from the cluster, or to proceed when cache
operations cannot complete by the nonstop timeout value. This can be useful in
meeting SLA requirements, responding to node failures, building a more robust High
Availability cluster, and more. This page covers configuring nonstop cache, nonstop
timeouts and behaviors, and nonstop exceptions.

Expiration, Pinning,
and Eviction

Nonstop Cache

With this API, you can have both the unlocked view and a strongly consistent cache
at the same time. UnlocksReadView provides an eventually consistent view of a
UnlockedReadsView strongly consistent cache. Views of data are taken without regard to that data's
consistency, and writes are not affected by UnlockedReadsView. This page covers
creating an UnlockedReadsView and provides a download link and an FAQ.

The basic configuration guide for Distributed Ehcache (Ehcache with Terracotta
clustering), this page also includes CacheManager configuration and Terracotta
clustering configuration elements.

Distributed-Cache
Configuration

A number of properties control the way the Terracotta Server Array and Ehcache
clients perform in a Terracotta cluster. Some of these properties are set in the
Terracotta configuration file, others are set in the Ehcache configuration file, and a
few must be set programmatically. This page details the most important of these
properties and shows their default values.

Hit the Ground Running

Distributed-Cache
Default Configuration

Popular topics in Configuration:

¢ Cache Warming
¢ Handling JVM startup and shutdown with BigMemory

Configuration Overview 43/284

Hit the Ground Running

¢ Sizing Distributed Caches
¢ Terracotta Clustering Configuration Elements

Additional Information about Configuration

The following pages provide additional information about Ehcache configuration:

e Discussion of Data Freshness and Expiration

¢ Enabling Terracotta Support Programmatically

® Adding and Removing Caches Programmatically
¢ Creating Caches Programmatically

Configuration Overview

44/284

Cache Configuration

Introduction

Caches can be configured in Ehcache either declaratively, in XML, or by creating them programmatically and
specifying their parameters in the constructor.

While both approaches are fully supported it is generally a good idea to separate the cache configuration from
runtime use. There are also these benefits:

e |t is easy if you have all of your configuration in one place.

Caches consume memory, and disk space. They need to be carefully tuned. You can see the total
effect in a configuration file. You could do this all in code, but it would not as visible.

® Cache configuration can be changed at deployment time.

¢ Configuration errors can be checked for at start-up, rather than causing a runtime error.

® A defaultCache configuration exists and will always be loaded.

While a defaultCache configuration is not required, an error is generated if caches are created by
name (programmatically) with no defaultCache loaded.

The Ehcache documentation focuses on XML declarative configuration. Programmatic configuration is
explored in certain examples and is documented in Javadocs.

Ehcache is redistributed by lots of projects, some of which may not provide a sample Ehcache XML
configuration file (or they provide an outdated one). If one is not provided, download Ehcache. The latest
ehcache.xml and ehcache.xsd are provided in the distribution.

Dynamically Changing Cache Configuration

After a Cache has been started, its configuration is not generally changeable. However, since Ehcache 2.0,
certain cache configuration parameters can be modified dynamically at runtime. In the current version of
Ehcache, this includes the following:

e timeToLive

The maximum number of seconds an element can exist in the cache regardless of use. The element
expires at this limit and will no longer be returned from the cache. The default value is 0, which
means no TTL eviction takes place (infinite lifetime).

e timeToldle

The maximum number of seconds an element can exist in the cache without being accessed. The
element expires at this limit and will no longer be returned from the cache. The default value is O,
which means no TTI eviction takes place (infinite lifetime).

® ocal sizing attributes maxEntriesLocalHeap, maxBytesLocalHeap, maxBytesLocalOffHeap,
maxEntriesLocalDisk, maxBytesLocalDisk.

® memory-store eviction policy

¢ CacheEventListeners can be added and removed dynamically

Cache Configuration 45/284

http://ehcache.org/apidocs/
http://ehcache.org/downloads

Dynamically Changing Cache Configuration

Note that the eternal attribute, when set to "true", overrides t imeToLive and timeToIdle so that no
expiration can take place. This example shows how to dynamically modify the cache configuration of running
cache:

Cache cache = manager.getCache ("sampleCache");
CacheConfiguration config = cache.getCacheConfiguration();
config.setTimeToIdleSeconds (60);
config.setTimeToLiveSeconds (120);
config.setmaxEntriesLocalHeap (10000);
config.setmaxEntriesLocalDisk (1000000) ;

Dynamic cache configurations can also be frozen to prevent future changes:

Cache cache = manager.getCache ("sampleCache");
cache.disableDynamicFeatures () ;

In ehcache.xml, you can disable dynamic configuration by setting the <ehcache> element's
dynamicConfig attribute to "false".

Dynamic Configuration Changes for Distributed Cache

Just as for a standalone cache, mutating the configuration of a distributed cache requires access to the set
methods of cache.getCacheConfiguration ().

The following table provides information dynamically changing common cache configuration options in a
Terracotta cluster. The table's Scope column, which specifies where the configuration is in effect, can have
one of the following values:

¢ Client =— The Terracotta client where the CacheManager runs.
® TSA a— The Terracotta Server Array for the cluster.
¢ BOTH &— Both the client and the TSA.

Note that configuration options whose scope covers "BOTH" are distributed and therefore affect a cache on
all clients.

Configuration OptionDynamicScopeNotesCache nameNOTS ANonstopNOClientEnable High
AvailabilityTimeoutYESClientFor nonstop.Timeout Behavior YESClientFor nonstop.Immediate Timeout
When Disconnected YESClientFor nonstop.Time to IdleYESBOTHMaximum Entries or Bytes in Local
StoresYESClientThis and certain other sizing attributes that are part of ARC may be pooled by the
CacheManager, creating limitations on how they can be changed.Time to LiveYESBOTHMaximum Elements
on DiskYESTSAOverflow to DiskN/AN/APersist to DiskN/AN/ADisk Expiry Thread IntervalN/AN/ADisk
Spool Buffer SizeN/AN/AOverflow to Off-HeapN/AN/AMaximum Off-heapN/AN/AMaximum off-heap
memory allotted to the TSA.Eternal YESBOTHClIear on FlushNOClientCopy on ReadNOClientCopy on
WriteNOClientMemory Store Eviction PolicyNOClientStatisticsY ESClientCache statistics. Change
dynamically with cache.setStatistics (boolean) method.LoggingNOClientEhcache and Terracotta
logging is specified in configuration. However, cluster events can be set dynamically.ConsistencyNOClientlt
is possible to switch to and from bulk mode.Synchronous WritesNOClient

To apply non-dynamic L1 changes, remove the existing cache and then add (to the same CacheManager) a
new cache with the same name as the removed cache, and which has the new configuration. Restarting the
CacheManager with an updated configuration, where all cache names are the same as in the previous
configuration, will also apply non-dynamic L1 changes.

Cache Configuration 46/284

Memory-Based Cache Sizing (Ehcache 2.5 and higher)
Memory-Based Cache Sizing (Ehcache 2.5 and higher)

Historically Ehcache has only permitted sizing of caches in the Java heap (the OnHeap store) and the disk
(DiskStore). BigMemory introduced the OffHeap store, where sizing of caches is also allowed.

To learn more about sizing caches, see How to Size Caches.

Pinning of Caches and Elements in Memory (2.5 and higher)

Pinning of caches or specific elements is discussed in Pinning, Expiration, and Eviction.

Cache Warming for multi-tier Caches

(Ehcache 2.5 and higher)

When a cache starts up, the On-Heap and Off-Heap stores are always empty. Ehcache provides a
BootstrapCacheLoader mechanism to overcome this. The BootstrapCacheLoader is run before the cache is set
to alive. If synchronous, loading completes before the CacheManager starts, or if asynchronous, the
CacheManager starts but loading continues agressively rather than waiting for elements to be requested,

which is a lazy loading approach.

Replicated caches provide a boot strap mechanism which populates them. For example following is the
JGroups bootstrap cache loader:

<bootstrapCachelLoaderFactory class="net.sf.ehcache.distribution. jgroups.JGroupsBootstrapCachelLoad

There are two new bootstrapCacheLoaderFactory implementations: one for standalone caches with
DiskStores, and one for Terracotta Distributed caches.

DiskStoreBootstrapCachelLoaderFactory

The DiskStoreBootstrapCacheLoaderFactory loads elements from the DiskStore to the On-Heap Store and the
Off-Heap store until either:

¢ the memory stores are full
e the DiskStore has been completely loaded

Configuration

The DiskStoreBootstrapCachelLoaderFactory is configured as follows:

<bootstrapCachelLoaderFactory class="net.sf.ehcache.store.DiskStoreBootstrapCachelLoaderFactory" pr

TerracottaBootstrapCachelLoaderFactory

The TerracottaBootstrapCacheLoaderFactory loads elements from the Terracotta L2 to the L1 based on what
it was using the last time it ran. If this is the first time it has been run it has no effect.

It works by periodically writing the keys used by the L1 to disk.

Cache Configuration 47/284

TerracottaBootstrapCachelLoaderFactory

Configuration

The TerracottaStoreBootstrapCacheLoaderFactory is configured as follows:

<bootstrapCachelLoaderFactory class="net.sf.ehcache.terracotta.TerracottaBootstrapCachelLoaderFacto
properties="bootstrapAsynchronously=true,

directory=dumps,

interval=5,

immediateShutdown=false,

snapshotOnShutDown=true,

doKeySnapshot=false,

useDedicatedThread=false"/>

The configuration properties are:

® bootstrapAsynchronously: Whether to bootstrap asynchronously or not. Asynchronous bootstrap will
allow the cache to start up for use while loading continues.

e directory: the directory that snapshots are created in. By default this will use the CacheManager's
DiskStore path.

e interval: interval in seconds between each key snapshot. Default is every 10 minutes (600 seconds).
Cache performance overhead increases with more frequent snapshots and is dependent on such factors
as cache size and disk speed. Thorough testing with various values is highly recommended.

¢ immediateShutdown: whether, when shutting down the Cache, it should let the keysnapshotting (if in
progress) finish or terminate right away. Defaults to true.

¢ snapshotOnShutDown: Whether to take the local key-set snapshot when the Cache is disposed.
Defaults to false.

¢ doKeySnapshot : Set to false to disable keysnapshotting. Default is true. Enables loading from an
existing snapshot without taking new snapshots after the existing one been loaded (stable snapshot).
Or to only snapshot at cache disposal (see snapshotOnShutdown).

¢ useDedicatedThread : By default, each CacheManager uses a thread pool of 10 threads to do the
snapshotting. If you want the cache to use a dedicated thread for the snapshotting, set this to true

Key snapshots will be in the diskstore directory configured at the cachemanager level.

One file is created for each cache with the name <cacheName>.keySet.

In case of a abrupt termination, while new snapshots are being written they are written using the extension
. temp and then after the write is complete the existing file is renamed to . o01d, the . temp is renamed to
.keyset and finally the . o1d file is removed. If an abrupt termination occurs you will see some of these
files in the directory which will be cleaned up on the next startup.

Like other DiskStore files, keyset snapshot files can be migrated to other nodes for warmup.

If between restarts, the cache can't hold the entire hot set locally, the Loader will stop loading as soon as the
on-heap (or off-heap) store has been filled.

copyOnRead and copyOnWrite cache configuration

A cache can be configured to copy the data, rather than return reference to it on get or put. This is configured
using the copyOnRead and copyOnWrite attributes of cache and defaultCache elements in your
configuration or programmatically as follows:

Cache Configuration 48/284

copyOnRead and copyOnWrite cache configuration

CacheConfiguration config = new CacheConfiguration ("copyCache", 1000) .copyOnRead (true) .copyOnWrit
Cache copyCache = new Cache (confiqg);

The default configuration will be false for both options.

In order to copy elements on put()-like and/or get()-like operations, a CopyStrategy is being used. The default
implementation uses serialization to copy elements. You can provide your own implementation of
net.sf.ehcache.store.compound.CopyStrateqgy like this:

<cache name="copyCache"

maxEntriesLocalHeap="10"

eternal="false"

timeToIdleSeconds="5"

timeToLiveSeconds="10"

overflowToDisk="false"

copyOnRead="true"

copyOnWrite="true">

<copyStrategy class="com.company.ehcache.MyCopyStrategy"/>

</cache>

Per cache, a single instance of your CopyStrategqgy is used. Therefore, in your implementation of
CopyStrategy.copy (T), T has to be thread-safe.

A copy strategy can be added programmatically in the following:

CacheConfiguration cacheConfiguration = new CacheConfiguration ("copyCache", 10);

CopyStrategyConfiguration copyStrategyConfiguration = new CopyStrategyConfiguration();
copyStrategyConfiguration.setClass ("com.company.ehcache.MyCopyStrategy");

cacheConfiguration.addCopyStrategy (copyStrategyConfiguration);

Special System Properties

net.sf.ehcache.disabled

Setting this system property to t rue (using java -Dnet.sf.ehcache.disabled=true in the Java
command line) disables caching in ehcache. If disabled, no elements can be added to a cache (puts are silently
discarded).

net.sf.ehcache.use.classic.lru

When LRU is selected as the eviction policy, set this system property to t rue (using java
-Dnet.sf.ehcache.use.classic.lru=true inthe Java command line) to use the older
LruMemoryStore implementation. This is provided for ease of migration.

ehcache.xsd

Ehcache configuration files must be comply with the Ehcache XML schema, ehcache . xsd. It can be
downloaded from http://ehcache.org/ehcache.xsd.

Cache Configuration 49/284

http://ehcache.org/ehcache.xsd

ehcache-failsafe.xml
ehcache-failsafe.xml

If the CacheManager default constructor or factory method is called, Ehcache looks for a file called
ehcache.xml in the top level of the classpath. Failing that it looks for ehcache-failsafe.xml in the
classpath. ehcache—-failsafe.xml is packaged in the Ehcache JAR and should always be found.

ehcache-failsafe.xml provides an extremely simple default configuration to enable users to get
started before they create their own ehcache . xml.

If it used Ehcache will emit a warning, reminding the user to set up a proper configuration. The meaning of
the elements and attributes are explained in the section on ehcache . xml.

<ehcache>

<diskStore path="java.io.tmpdir"/>

<defaultCache
maxEntriesLocalHeap="10000"
eternal="false"
timeToIdleSeconds="120"
timeToLiveSeconds="120"
overflowToDisk="true"
maxEntriesLocalDisk="10000000"
diskPersistent="false"
diskExpiryThreadIntervalSeconds="120"
memoryStoreEvictionPolicy="LRU"

/>

</ehcache>

Update Checker

The update checker is used to see if you have the latest version of Ehcache. It is also used to get
non-identifying feedback on the OS architectures using Ehcache. To disable the check, do one of the
following:

By System Property

-Dnet.sf.ehcache.skipUpdateCheck=true

By Configuration

The outer ehcache element takes an updateCheck attribute, which is set to false as in the following
example.

<ehcache xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="ehcache.xsd"
updateCheck="false" monitoring="autodetect"
dynamicConfig="true">

ehcache.xml and Other Configuration Files

Prior to ehcache-1.6, Ehcache only supported ASCII ehcache.xml configuration files. Since ehcache-1.6,
UTEFS is supported, so that configuration can use Unicode. As UTFS is backwardly compatible with ASCII,
no conversion is necessary.

Cache Configuration 50/284

ehcache.xml and Other Configuration Files

If the CacheManager default constructor or factory method is called, Ehcache looks for a file called
ehcache.xml in the top level of the classpath.

The non-default creation methods allow a configuration file to be specified which can be called anything.

One XML configuration is required for each CacheManager that is created. It is an error to use the same
configuration, because things like directory paths and listener ports will conflict. Ehcache will attempt to
resolve conflicts and will emit a warning reminding the user to configure a separate configuration for multiple

CacheManagers with conflicting settings.

The sample ehcache . xml is included in the Ehcache distribution. It contains full commentary required to
configure each element. Further information can be found in specific chapters in the Guide.

It can also be downloaded from http://ehcache.org/ehcache.xml.

Ehcache Configuration With Terracotta Clustering

See the distributed-cache configuration guidelines for more information on configuration with distributed
caches in a Terracotta cluster.

Cache Configuration 51/284

http://ehcache.org/ehcache.xml

BigMemory

Introduction

BigMemory is a pure Java product from Terracotta that permits caches to use an additional type of memory
store outside the object heap. It is packaged for use in Enterprise Ehcache as a snap-in job store called the
"off-heap store." If Enterprise Ehcache is distributed in a Terracotta cluster, you can configure BigMemory in
both Ehcache (the Terracotta client or L1) and in the Terracotta Server Array (the L2).

This off-heap store, which is not subject to Java GC, is 100 times faster than the DiskStore and allows very
large caches to be created (we have tested this with over 350GB).

Because off-heap data is stored in bytes, there are two implications:

¢ Only Serializable cache keys and values can be placed in the store, similar to DiskStore.

e Serialization and deserialization take place on putting and getting from the store. This means that the
off-heap store is slower in an absolute sense (around 10 times slower than the MemoryStore), but this
theoretical difference disappears due to two effects:

¢ the MemoryStore holds the hottest subset of data from the off-heap store, already in
deserialized form

¢ when the GC involved with larger heaps is taken into account, the off-heap store is faster on
average.

For a tutorial on Ehcache BigMemory, see BigMemory for Enterprise Ehcache Tutorial.

Configuration

Configuring Caches to Overflow to Off-heap
Configuring a cache to use an off-heap store can be done either through XML or programmatically.

If using distributed cache with strong consistency, a large number of locks may need to be stored in client and
server heaps. In this case, be sure to test the cluster with the expected data set to detect situations where
OutOfMemory errors are likely to occur. In addition, the overhead from managing the locks is likely to reduce
performance.

Declarative Configuration

The following XML configuration creates an off-heap cache with an in-heap store (maxEntriesLocalHeap) of
10,000 elements which overflow to a 1-gigabyte off-heap area.

<ehcache updateCheck="false" monitoring="off" dynamicConfig="false">
<defaultCache maxEntriesLocalHeap="10000"
eternal="true"
memoryStoreEvictionPolicy="LRU"
statistics="false" />

<cache name="sample-offheap-cache"

maxEntriesLocalHeap="10000"
eternal="true"

BigMemory 52/284

http://www.terracotta.org/bigmemory?src=ehcache_off_heap_store
http://terracotta.org/documentation/bigmemory/terracotta-server-array
http://terracotta.org/documentation/bigmemory/get-started

Configuring Caches to Overflow to Off-heap

memoryStoreEvictionPolicy="LRU"

overflowToOffHeap="true"

maxBytesLocalOffHeap="1G"/>
</ehcache>

The configuration options are:
overflowToOffHeap

Values may be true or false. When set to true, enables the cache to utilize off-heap memory storage to
improve performance. Off-heap memory is not subject to Java GC cycles and has a size limit set by the Java
property MaxDirectMemorySize. The default value is false.

maxBytesLocalOffHeap

Sets the amount of off-heap memory available to the cache and is in effect only if overflowToOffHeap is
true. The minimum amount that can be allocated is 128MB. There is no maximum.

For more information about sizing caches, refer to How To Size Caches.

NOTE: Heap Configuration When Using an Off-heap Store You should set maxEntriesLocalHeap to at least
100 elements when using an off-heap store to avoid performance degradation. Lower values for
maxEntriesLocalHeap trigger a warning to be logged.

Programmatic Configuration

The equivalent cache can be created using the following programmatic configuration:

public Cache createOffHeapCache ()
{
CacheConfiguration config = new CacheConfiguration ("sample-offheap-cache", 10000)
.overflowToOffHeap (true) .maxBytesLocalOffHeap ("1G");
Cache cache = new Cache(configqg);
manager .addCache (cache) ;
return cache;

Adding The License

Enterprise Ehcache trial download comes with a license key good for 30 days. Use this key to activate the
off-heap store. It can be added to the classpath or via a system property.

Configuring the License in the Classpath

Add the terracotta—-license.key to the root of your classpath, which is also where you add
ehcache.xml. It will be automatically found.

Configuring the License as a Java System Property
Add a com.tc.productkey.path=/path/to/key system property which points to the key location.

For example,

java -Dcom.tc.productkey.path=/path/to/key

BigMemory 53/284

http://terracotta.org/bigmemory

Allocating Direct Memory in the JVM
Allocating Direct Memory in the JVM

In order to use these configurations, you must then use the ehcache-core-ee jar on your classpath and modify
your JVM command-line to increase the amount of direct memory allowed by the JVM. You must allocate at
least 256MB more to direct memory than the total off-heap memory allocated to caches.

For example, to allocate 2GB of memory in the JVM:

java —-XX:MaxDirectMemorySize=2G ..."

NOTE: Direct Memory and Off-heap Memory Allocations To accommodate server communications layer
requirements, the value of maxDirectMemorySize must be greater than the value of maxBytesLocalOffHeap.
The exact amount greater depends upon the size of maxBytesLocalOffHeap. The minimum is 256MB, but if

you allocate 1GB more to the maxDirectMemorySize, it will certainly be sufficient. The server will only use
what it needs and the rest will remain available.

Advanced Configuration Options

There are some additional configuration options which can be used for fine grained control.

-XX:+UselLargePages

This is a JVM flag which is meant to improve performance of memory-hungry applications. In testing, this
option gives a 5% speed improvement with a 1GB off-heap cache.

See http://andrigoss.blogspot.com/2008/02/jvm-performance-tuning.html for a discussion.

Increasing the Maximum Serialized Size of an Element that can be Stored
in the OffHeapStore

While the MemoryStore and the DiskStore do not have any limits, by default the OffHeapStore has a 4MB
limit for classes with high quality hashcodes, and 256KB for those with pathologically bad hashcodes. The
built-in classes such as the java.lang.Number subclasses such as Long, Integer etc and and St ring
have high quality hashcodes.

You can increase the size by setting a system property
net.sf.ehcache.offheap.cache_name.config.idealMaxSegmentSize to the size you
require.

For example,
net.sf.ehcache.offheap.com.company.domain.State.config.idealMaxSegmentSize=30M
Avoiding OS Swapping

Operating systems use swap partitions for virtual memory and are free to move less frequently used pages of
memory to the swap partition. This is generally not what you want when using the OffHeapStore, as the time

it takes to swap a page back in when demanded will add to cache latency.

It is recommended that you minimize swap use for maximum performance.

BigMemory 54/284

http://andrigoss.blogspot.com/2008/02/jvm-performance-tuning.html

Avoiding OS Swapping

On Linux, you can set /proc/sys/vm/swappiness to reduce the risk of memory pages being swapped
out. See http://lwn.net/Articles/83588/ for details of tuning this parameter. Note that there are bugs in this
which were fixed in kernel 2.6.30 and higher.

Another option is to configure HugePages. See http://unixfoo.blogspot.com/2007/10/hugepages.html
Although there's a swappiness kernel parameter that can be set to zero in Linux, it is usually not enough to
avoid swapping altogether. The only surefire way to avoid any kind of swapping is either (a) disabling the

swap partition, with the undesirable consequences which that may bring, or (b) using HugePages, which are
always mapped to physical memory and cannot be swapped out to disk.

Compressed References
The following setting applies to Java 6 or higher. Its use should be considered to make the most efficient use
of memory in 64 bit mode. For the Oracle HotSpot, compressed references are enabled using the option

—-XX:+UseCompressedOops. For IBM JVMs, use —Xcompressedrefs. See
https://wikis.oracle.com/display/HotSpotInternals/CompressedOops for details.

Controlling Over-allocation of Memory to the OffHeapStore

It is possible to over-allocate memory to the off-heap store and overrun the physical and even virtual memory
available on the OS. See Slow Off-Heap Allocation for how to handle this situation.

Sample Application

The easiest way to get started is to play with a simple, sample app. Download from here a simple
Maven-based application that uses the ehcache off-heap functionality.

Note: You will need to get a license key and install it as discussed above to run this.

Performance Comparisons

Checkout http://svn.terracotta.org/svn/forge/offHeap-test/ for a Maven-based performance comparison test
between different store configurations.

Note: To run the test, you will need to get a demo license key and install it as discussed above.
Here are some charts from tests we have run on BigMemory.

The test machine was a Cisco UCS box running with Intel(R) Xeon(R) Processors. It had 6 2.93Ghz Xeon(R)
CPUs for a total of 24 cores, with 128GB of RAM, running RHELS5.1 with Sun JDK 1.6.0_21 in 64 bit mode.

We used 50 threads doing an even mix of reads and writes with 1KB elements. We used the default garbage
collection settings.

The tests all go through a load/warmup phase and then start a performance run. You can use the tests in your

own environments and extend them to cover different read/write ratios, data sizes, -Xmx settings and hot sets.
The full suite, which is done with run. sh takes 4-5 hours to complete.

BigMemory 55/284

http://lwn.net/Articles/83588/
http://unixfoo.blogspot.com/2007/10/hugepages.html
https://wikis.oracle.com/display/HotSpotInternals/CompressedOops
http://d2zwv9pap9ylyd.cloudfront.net/ehcache-offheap-sample.zip
http://www.terracotta.org/bigmemory?src=ehcache.org
http://svn.terracotta.org/svn/forge/offHeap-test/
http://www.terracotta.org/bigmemory?src=ehcache.org

Performance Comparisons

The following charts show the most common caching use case. The read/write ratio is 90% reads and 10%
writes. The hot set is that 90% of the time cache . get () will access 10% of the key set. This is
representative of the the familiar Pareto distribution that is very commonly observed.

There are of course many other caching use cases. Further performance results are covered on the Further
Performance Analysis page.

Largest Full GC

Largest Full GC

350
300
E 250
o
q@ 200 : :
- Without BigMemary
£ 1s0
&
2 100
T SD '.‘-"'_._' I | Ij '| -.1 emor
0 4 % & 4 % & & <

512M 1G 2G 4G BG BG 10G 206G 330G 406G BOG B0G 100G
Data Size (GB)

This chart shows the largest observed full GC duration which occurred during the performance run. Most
non-batch applications have maximum response time SLAs. As can be seen in the chart, as data sizes grow the
full GC gets worse and worse for cache held on heap, whereas off-heap remains a low constant.

The off-heap store will therefore enable applications with maximum response time SLAs to reliably meet
those SLAs.

Latency
Maximum Latency
350
300
x 250
; 200 Without BigMemory
§ 150
]
3 100
B 5o —
2 With BigMemory
0 % < & @ & & < & 4
s12M 16 26 4G 66 8G 106G 206 306G 40G 60G 80G 100G
Data Size (GB)

BigMemory 56/284

http://ehcache.org/documentation/configuration/bigmemory-further-performance-analysis
http://ehcache.org/documentation/configuration/bigmemory-further-performance-analysis

Latency

This chart shows the maximum observed latency while performing either a cache .put () ora
cache.get (). Itis very similar to the Full GC chart because the full GCs are causing the on-heap latencies

to rise dramatically, as all threads in the test app get frozen.

Once again the off-heap store can be observed to have a flat, low maximum latency, because any full GCs are
tiny, and the cache has excellent concurrency properties.

Off-Heap Mean Latency
250
200 o o &8 o
150
100

50

(degn) Aouaye] ueapy

512M 16 26 4G GG BG 106 206 306G 40G G0G B0G 100G
Data Size [GB)

This chart shows the off-heap mean latency in microseconds. It can be observed to be flat from 2GB up to
40GB. Further in-house testing shows that it continues to remain flat to the limits that we have tested.

Lower latencies are observed at smaller data set sizes because we use a maxEntriesLocalHeap setting
which approximates to 200MB of on-heap store. On-heap, excluding GC effects, is faster than off-heap
because there is no deserialization on gets. At lower data sizes, there is a higher probability that the small
on-heap store will be hit, which is reflected in the lower average latencies.

Throughput
Off-Heap Throughput
700,000
600,000 &
=l O
3 500,000
& 400,000
a) =
S 300,000 =
=3] | O [m| O |
3 200,000 = = =
£ 100,000
0
512M 16 26 4G 6G 8G 10G 20G 30G 40G 60G B80G 100G
Data Size (GB)

This chart shows the cache operations per second achieved with off-heap. It is the inverse of average latency
and shows much the same thing. Once the effect of the on-heap store becomes marginal, throughput remains
constant, regardless of cache size.

BigMemory 57/284

Throughput

Note that much larger throughputs than those shown in this chart are achievable. Throughput is affected by:

e the number of threads (more threads -> more throughput)

o the read/write ratio (reads are slightly faster)

e data payload per operation (more data implies a lower throughput in TPS but similar in bytes)

® CPU cores available and their speed (our testing shows that the CPU is always the limiting factor with
enough threads. In other words, cache throughput can be increased by adding threads until all cores
are utilised and then adding CPU cores - an ideal situation where the software can use as much
hardware as you can throw at it.)

Storage

Storage Hierarchy
With the OffHeapStore, Enterprise Ehcache has three stores:

® MemoryStore - very fast storage of Objects on heap. Limited by the size of heap you can comfortably
garbage collect.

e OffHeapStore - fast (one order of magnitude slower than MemoryStore) storage of Serialized objects
off-heap. Limited only by the amount of RAM on your hardware and address space. You need a 64 bit
OS to address higher than 2-4GB.

¢ DiskStore - speedy storage on disk. It is two orders of magnitude slower than the OffHeapStore but
still much faster than a database or a distributed cache.

The relationship between speed and size for each store is illustrated below:

4 ticrea Storage
Speed (TPS) 9 Size (GB)
2 moom .
sonoo0 |- -z
40000 = M 50

A 4

Memory Use in Each Store

As a performance optimization, and because storage gets much cheaper as you drop down through the
hierarchy, we write each put to as many stores as are configured. So, if all three are configured, the Element
may be present in MemoryStore, OffHeapStore and DiskStore.

The result is that each store consumes storage for itself and the other stores higher up the hierarchy. So, if the

MemoryStore has 1,000,000 Elements which consume 2GB, and the OffHeapStore is configured for 8GB,
then 2GB of that will be duplicate of what is in the MemoryStore. And the 8 GB will also be duplicated on the

BigMemory 58/284

Memory Use in Each Store

DiskStore plus the DiskStore will have what cannot fit in any of the other stores.
This needs to be taken into account when configuring the OffHeap and Disk stores.

It has the great benefit, which pays for the duplication, of not requiring copy on eviction. On eviction from a
store, an Element can simply be removed. It is already in the next store down.

One further note: the MemoryStore is only populated on a read. Puts go to the OffHeapStore and then when
read, are held in the MemoryStore. The MemoryStore thus holds hot items of the OffHeapStore. This will
result in a difference in what can be expected to be in the MemoryStore between this implementation and the
Open Source one. A "usage" for the purposes of the eviction algorithms is either a put or a get. As only gets
are counted in this implementation, some differences will be observed.

Handling JVM Startup and Shutdown

So you can have a huge in-process cache. But this is not a distributed cache, so when you shut down you will
lose what is in the cache. And when you start up, how long will it take to load the cache?

In caches up to a GB or two, these issues are not hugely problematic. You can often pre-load the cache on
start-up before you bring the application online. Provided this only takes a few minutes, there is minimal
operations impact.

But when we go to tens of GBs, these startup times are O(n), and what took 2 minutes now takes 20 minutes.

To solve this problem, we provide a new implementation of Ehcache's DiskStore, available in the Enterprise
version.

You simply mark the cache diskPersistent=true as you normally would for a disk persistent cache.
It works as follows:

e on startup, which is immediate, the cache will get elements from disk and gradually fill the
MemoryStore and the OffHeapStore.

e when running elements are written to the OffHeapStore, they are already serialized. We write these to
the DiskStore asynchronously in a write-behind pattern. Tests show they can be written at a rate of
20MB/s on server-class machines with fast disks. If writes get behind, they will back up and once
they reach the diskSpoolBufferSizeMB cache puts will be slowed while the DiskStore writer
catches up. By default this buffer is 30MB but can be increased through configuration.

e When the Cache is disposed, only a final sync is required to shut the DiskStore down.

Using OffHeapStore with 32-bit JVMs

On a 32-bit operating system, Java will always start with a 32-bit data model. On 64-bit OSs, it will default to
64-bit, but can be forced into 32-bit mode with the Java command-line option —~d32. The problem is that this
limits the size of the process to 4GB. Because garbage collection problems are generally manageable up to
this size, there is not much point in using the OffHeapStore, as it will simply be slower.

If you are suffering GC issues with a 32-bit JVM, then OffHeapStore can help. There are a few points to keep
in mind.

BigMemory 59/284

Using OffHeapStore with 32-bit JVMs

¢ Everything has to fit in 4GB of addressable space. If you allocate 2GB of heap (with —Xmx2g) then
you have at most 2GB left for your off-heap caches.

® Don't expect to be able to use all of the 4GB of addressable space for yourself. The JVM process
requires some of it for its code and shared libraries plus any extra Operating System overhead.

¢ If you allocate a 3GB heap with -Xmx as well as 2047MB of off-heap memory, the virtual machine
certainly won't complain at startup, but when it's time to grow the heap you will get an
OutOfMemoryError.

e If you use both -Xms3G and -Xmx3G with 2047MB of off-heap memory, the virtual machine will
start but then complain as soon as the OffHeapStore tries to allocate the off-heap buffers.

e Some APIs, such as java.util.zip.ZipFile on Sun 1.5 JVMs, may <mmap> files in memory. This will
also use up process space and may trigger an OutOfMemoryError.

For these reasons we issue a warning to the log when OffHeapStore is used with 32-bit JVMs.

Slow Off-Heap Allocation

Based on its configuration and memory requirements, each cache may attempt to allocate off-heap memory
multiple times. If off-heap memory comes under pressure due to over-allocation, the system may begin paging
to disk, thus slowing down allocation operations. As the situation worsens, an off-heap buffer too large to fit
in memory can quickly deplete critical system resources such as RAM and swap space and crash the host
operating system.

To stop this situation from degrading, off-heap allocation time is measured to avoid allocating buffers too
large to fit in memory. If it takes more than 1.5s to allocate a buffer, a warning is issued. If it takes more than
15s, then the JVM is halted with System.exit () (or a different method if the Security Manager prevents
this).

To prevent a JVM shutdown after a 15s delay has occurred, set the

net.sf.ehcache.offheap.DoNotHaltOnCriticalAllocationDelay system property to true.
In this case, an error is logged instead.

Reducing Cache Misses

While the MemoryStore holds a hotset (a subset) of the entire data set, the off-heap store should be large
enough to hold the entire data set. The frequency of cache misses begins to rise when the data is too large to
fit into off-heap memory, forcing gets to fetch data from the DiskStore. More misses in turn raise latency and
lower performance.

For example, tests with a 4GB data set and a 5GB off-heap store recorded no misses. With the off-heap store

reduced to 4GB, 1.7 percent of cache operations resulted in misses. With the off-heap store at 3GB, misses
reached 15 percent.

FAQ

What Eviction Algorithms are supported?

The pluggable MemoryStore eviction algorithms work as normal. The OffHeapStore and DiskStore use a
Clock Cache, a standard paging algorithm which is an approximation of LRU.

BigMemory 60/284

Why do | see performance slow down and speed up in a cyclical pattern when | am filling a cache?

Why do | see performance slow down and speed up in a cyclical pattern
when | am filling a cache?

This is due to repartitioning in the OffHeapStore which is normal. Once the cache is fully filled the
performance slow-downs cease.

What is the maximum serialized size of an object when using
OffHeapStore?

Refer to "Increasing the maximum serialized size of an Element that can be stored in the OffHeapStore" in the
Advanced Configuration Options section above.

Why is my application startup slower?

On startup the CacheManager will calculate the amount of off-heap storage required for all caches using
off-heap stores. The memory will be allocated from the OS and zeroed out by Java. The time taken will

depend on the OS. A server-class machine running Linux will take approximately half a second per GB.

We print out log messages for each 10% allocated, and also report the total time taken.

This time is incurred only once at startup. The pre-allocation of memory from the OS is one of the reasons
that runtime performance is so fast.

How can | do Maven testing with BigMemory?
Maven starts java for you. You cannot add the required —XX switch in as a mvn argument.
Maven provides you with a MAVEN_OPTS environment variable you can use for this on Unix systems.

For example, to specify 1GB of MaxDirectMemorySize and then to run jetty:

export MAVEN_OPTS=-XX:MaxDirectMemorySize=1G
mvn Jjetty:run-war

BigMemory 61/284

How to Size Caches

Introduction

Tuning Ehcache often involves sizing cached data appropriately. Ehcache provides a number of ways to size
the different data tiers using simple cache-configuration sizing attributes. These sizing attributes affect local
memory and disk resources, allowing them to be set differently on each node.

Cache Configuration Sizing Attributes

The following table summarizes cache-sizing attributes for standalone Ehcache.

TierAttributePooling available at CacheManager Level?DescriptionHeapmaxEntriesLocalHeap
maxBytesLocalHeapmaxBytesLocalHeap onlyThe maximum number of cache entries or bytes a
cache can use in local heap memory, or, when set at the CacheManager level (maxBytesLocalHeap only), a
local pool available to all caches under that CacheManager. This setting is required for every cache or at the
CacheManager level.Off-heapmaxBytesLocalOf fHeapYesThe maximum number of bytes a cache can
use in off-heap memory, or, when set at the CacheManager level, as a pool available to all caches under that
CacheManager. This setting requires BigMemory.Local diskmaxEntriesLocalDisk
maxBytesLocalDiskmaxBytesLocalDisk onlyThe maximum number of cache entries or bytes a
standalone cache can use on the local disk, or, when set at the CacheManager level (maxBytesLocalDisk
only), a local pool available to all caches under that CacheManager. Distributed caches cannot use the local
disk. Note that this setting is separate from disk settings for overflow and persistence.

The following table summarizes cache-sizing attributes for Terracotta distributed Ehcache.
TierAttributePooling available at CacheManager Level?DescriptionHeapmaxEntriesLocalHeap
maxBytesLocalHeapmaxBytesLocalHeap onlyThe maximum number of cache entries or bytes a
cache can use in local heap memory, or, when set at the CacheManager level (maxBytesLocalHeap only), a
local pool available to all caches under that CacheManager. This setting is required for every cache or at the
CacheManager level.Off-heapmaxBytesLocalOf fHeapYesThe maximum number of bytes a cache can
use in off-heap memory, or, when set at the CacheManager level, as a pool available to all caches under that
CacheManager. This setting requires BigMemory.Local diskN/AN/ADistributed caches cannot use the local
disk.Terracotta Server Array diskmaxElement sOnDiskNoThe number of cache elements that the
Terracotta Server Array will store for a distributed cache. This value can be exceeded under certain
circumstances (see below). Set on individual distributed caches only, this setting is unlimited by default.

Attributes that set a number of entries or elements take an integer. Attributes that set a memory size (bytes)
use the Java -Xmx syntax (for example: "S00k", "200m", "2g") or percentage (for example: "20%").
Percentages, however, can be used only in the case where a CacheManager-level pool has been configured

(see below).

The following diagram illustrates the tiers and their effective sizing attributes.

How to Size Caches 62/284

Cache Configuration Sizing Attributes

maxByteslocaldffHeap

e

L1 Heap—" L1 Heap L1 Heap
Heap ——
_—t L1 BigMemory Y1 BigMemaory L1 BigMemory
-— " (Off-Heap) {DOff-Heap) (Off-Heap)
Heap

BigMemory {Off-Heap)

BigMemory (Off-Heap) *

Local Disk L2 Disk \

-
Standalone Ehcache Distributed Ehcache Clients (L1) Zet in
With Terracotta Server Array (L2) to-config.xml

Pooling Resources Versus Sizing Individual Caches

You can constrain the size of any cache on a specific tier in that cache's configuration. You can also constrain
the size of all of a CacheManager's caches in a specific tier by configuring an overall size at the
CacheManager level.

If there is no CacheManager-level pool specified for a tier, an individual cache claims the amount of that tier
specified in its configuration. If there is a CacheManager-level pool specified for a tier, an individual cache

claims that amount from the pool. In this case, caches with no size configuration for that tier receive an equal
share of the remainder of the pool (after caches with explicit sizing configuration have claimed their portion).

For example, if CacheManager with eight caches pools one gigabyte of heap, and two caches each explicitly
specify 200MB of heap while the remaining caches do not specify a size, the remaining caches will share
600MB of heap equally. Note that caches must use bytes-based attributes to claim a portion of a pool;
entries-based attributes such as maxEntriesLocal cannot be used with a pool.

On startup, the sizes specified by caches are checked to ensure that any CacheManager-level pools are not
over-allocated. If over-allocation occurs for any pool, an InvalidConfigurationException is thrown. Note that
percentages should not add up to more than 100% of a single pool.

If the sizes specified by caches for any tier take exactly the entire CacheManager-level pool specified for that
tier, a warning is logged. In this case, caches that do not specify a size for that tier cannot use the tier as
nothing is left over.

Local Heap

A size must be provided for local heap, either in the CacheManager (maxBytesLocalHeap only) or in
each individual cache (maxBytesLocalHeap or maxEntriesLocalHeap). Not doing so causes an
InvalidConfigurationException.

If pool is configured, it can be combined with a local-heap setting in an individual cache. This allows the
cache to claim a specified portion of the heap setting configured in the pool. However, in this case the cache

setting must use maxBytesLocalHeap (same as the CacheManager).

In any case, every cache must have a local-heap setting, either configured explicitly or taken from the pool
configured in the CacheManager.

How to Size Caches 63/284

BigMemory (Local Off-Heap)
BigMemory (Local Off-Heap)

If you are using BigMemory, off-heap sizing is available. Off-heap sizing can be configured in bytes only,
never by entries.

If a CacheManager has a pool configured for off-heap, your application cannot add caches dynamically that
have off-heap configuration — doing so generates an error. In addition, if any caches that used the pool are
removed programmatically or through the Developer Console, other caches in the pool cannot claim the
unused portion. To allot the entire off-heap pool to the remaining caches, remove the unwanted cache from
the Ehcache configuration and then reload the configuration.

To use local off-heap as a data tier, a cache must have overflowToOffHeap setto "true". If a
CacheManager has a pool configured for using off-heap, the overflowToOf fHeap attribute is
automatically set to "true" for all caches. In this case, you can prevent a specific cache from overflowing to
off-heap by explicitly setting its overflowToOf fHeap attribute to "false".

Local Disk

The local disk can be used as a data tier. Note the following:
¢ Distributed caches cannot use the local disk.

e To use the local disk as a data tier, a cache must have overflowToDisk set to "true".
e The local disk is the slowest local tier.

Cache Sizing Examples

The following examples illustrate both pooled and individual cache-sizing configurations.

Pooled Resources

The following configuration sets pools for all of this CacheManager's caches:

<ehcache xmlns...
Name="CM1"
maxBytesLocalHeap="100M"
maxBytesLocalOffHeap="10G"
maxBytesLocalDisk="50G">

<cache name="Cachel" ... </cache>
<cache name="Cache2" ... </cache>
<cache name="Cache3" ... </cache>
</ehcache>

CacheManager CM1 automatically allocates these pools equally among its three caches. Each cache gets one
third of the allocated heap, off-heap, and local disk. Note that at the CacheManager level, resources can be
allocated in bytes only.

How to Size Caches 64/284

Explicitly Sizing Caches
Explicitly Sizing Caches

You can explicitly allocate resources to specific caches:

<ehcache xmlns...
Name="CM1"
maxBytesLocalHeap="100M"
maxBytesLocalOffHeap="10G"
maxBytesLocalDisk="60G">

<cache name="Cachel"
maxBytesLocalHeap="50M"
</cache>

<cache name="Cache2"
maxBytesLocalOffHeap="5G"

</cache>
<cache name="Cache3" ... </cache>

</ehcache>

In the example above, Cachel reserves 50Mb of the 100Mb local-heap pool; the other caches divide the
remaining portion of the pool equally. Cache?2 takes half of the local off-heap pool; the other caches divide the
remaining portion of the pool equally. Cache3 receives 25Mb of local heap, 2.5Gb of off-heap, and 20Gb of

the local disk.

Caches that reserve a portion of a pool are not required to use that portion. Cachel, for example, has a fixed

portion of the local heap but may have any amount of data in heap up to the configured value of S0Mb.

Note that caches must use the same sizing attributes used to create the pool. Cachel, for example, cannot use

maxEntriesLocalHeap to reserve a portion of the pool.

Mixed Sizing Configurations

If a CacheManager does not pool a particular resource, that resource can still be allocated in cache

configuration, as shown in the following example.

<ehcache xmlns...
Name="CM2"
maxBytesLocalHeap="100M">

<cache name="Cache4d"
maxBytesLocalHeap="50M"
maxEntriesLocalDisk="100000"

</cache>

<cache name="Cacheb5"
maxBytesLocalOffHeap="10G"

</cache>
<cache name="Cache6" ... </cache>

How to Size Caches

65/284

Mixed Sizing Configurations

</ehcache>

CacheManager CM2 creates one pool (local heap). Its caches all use the local heap and are constrained by the
pool setting, as expected. However, cache configuration can allocate other resources as desired. In this
example, Cache4 allocates disk space for its data, and Cache5 allocates off-heap space for its data. Cache6

gets 25Mb of local heap only.

Using Percents

The following configuration sets pools for each tier:

<ehcache xmlns...
Name="CM1"
maxBytesLocalHeap="1G"

maxBytesLocalOffHeap="10G"

maxBytesLocalDisk="50G">

<!-— Cachel gets 400Mb of heap,
<cache name="Cachel"
maxBytesLocalHeap="40%">
</cache>

<!-— Cache2 gets 300Mb of heap,
<cache name="Cache2"
maxBytesLocalOffHeap="50%">
</cache>

<!-— Cache2 gets 300Mb of heap,
<cache name="Cache3"
maxBytesLocalDisk="80%">
</cache>

</ehcache>

2.5Gb of off-heap, and 5Gb of disk. —-—>
5Gb of off-heap, and 5Gb of disk. —-—>
2.5Gb of off-heap, and 40Gb of disk. —-—>

NOTE: Configuring Cache Sizes with Percentages You can use a percentage of the total JVM heap for the
CacheManager maxBytesLocalHeap. The CacheManager percentage, then, is a portion of the total JVM heap,
and in turn, the Cache percentage is the portion of the CacheManager pool for that tier.

Sizing Caches Without a Pool

The CacheManager in this example does not pool any resources.

<ehcache xmlns...
Name="CM3"
>

<cache name="Cache?7"
maxBytesLocalHeap="50M"

maxEntriesLocalDisk="100000"

</cache>

<cache name="Cache8"

maxEntriesLocalHeap="1000"
maxBytesLocalOffHeap="10G"

</cache>
<cache name="Cache9"

How to Size Caches

66/284

Sizing Caches Without a Pool

maxBytesLocalHeap="50M"
</cache>
</ehcache>

Caches can be configured to use resources as necessary. Note that every cache in this example must declare a
value for local heap. This is because no pool exists for the local heap; implicit (CacheManager configuration)
or explicit (cache configuration) local-heap allocation is required.

Overflows

Caches that do not specify overflow will overflow if a pool is set for off-heap and disk.

<ehcache maxBytesLocalHeap="1g" maxBytesLocalOffHeap="4g"
maxBytesLocalDisk="100g" >

<cache name="explicitlyAllocatedCachel"
maxBytesLocalHeap="50m"
maxBytesLocalOffHeap="200m"
timeToLiveSeconds="100">

</cache>
<!-- Does not overflow to disk because overflow has been explicitly
disabled. —-->

<cache name="explicitlyAllocatedCache2"
maxLocalHeap="10%"
maxBytesLocalOffHeap="200m"
timeToLiveSeconds="100"
overflowToDisk="false">

</cache>

<!-— Overflows automatically to off-heap and disk because no specific override and resources are
<cache name="automaticallyAllocatedCachel"
timeToLiveSeconds="100">

</cache>
<!-- Does not use off-heap because overflow has been explicitly
disabled. —-->

<cache name="automaticallyAllocatedCache2"
timeToLiveSeconds="100"
overflowToOffHeap="false">

</cache>

</ehcache>

Sizing Distributed Caches

Terracotta distributed caches can be sized as noted above, except that they do not use the local disk and
therefore cannot be configured with *LocalDisk sizing attributes. Distributed caches use the storage resources
(BigMemory and disk) available on the Terracotta Server Array.

Cache-configuration sizing attributes behave as local configuration, which means that every node can load its
own sizing attributes for the same caches. That is, while some elements and attributes are fixed by the first
Ehcache configuration loaded in the cluster, cache-configuration sizing attributes can vary across nodes for
the same cache.

How to Size Caches 67/284

Sizing Distributed Caches

For example, a cache may have the following configuration on one node:

<cache name="myCache"
maxEntriesOnHeap="10000"
maxBytesLocalOffHeap="8g"
eternal="false"
timeToIdleSeconds="3600"
timeToLiveSeconds="1800"
overflowToDisk="false">
<terracotta/>

</cache>

The same cache may have the following size configuration on another node:

<cache name="myCache"
maxEntriesOnHeap="10000"
maxBytesLocalOffHeap="10g"
eternal="false"
timeToIdleSeconds="3600"
timeToLiveSeconds="1800"
overflowToDisk="false">
<terracotta/>

</cache>

If the cache exceeds its size constraints on a node, then with this configuration the Terracotta Server Array
provides myCache with an unlimited amount of disk space for spillover and backup. To impose a limit, you
must set maxElement sOnDisk to a positive non-zero value:

<cache name="myCache"
maxEntriesOnHeap="10000"
maxBytesLocalOffHeap="10g"
eternal="false"
timeToIdleSeconds="3600"
timeToLiveSeconds="1800"
overflowToDisk="false"
maxElementsOnDisk="1000000">
<terracotta/>

</cache>

The Terracotta Server Array will now evict myCache entries to stay within the limit set by

maxElement sOnDisk. However, for any particular cache, eviction on the Terracotta Server Array is based
on the largest size configured for that cache. In addition, the Terracotta Server Array will not evict any cache
entries that exist on at least one client node, regardless of the limit imposed by maxElement sOnDisk.

Sizing the Terracotta Server Array

Since maxElementsOnDisk is based on entries, you must size the Terracotta Server Array based on the
expected average size of an entry. One way to discover this value is by using the average cache-entry size
reported by the Terracotta Developer Console.

To find the average cache-entry size in the Terracotta Developer Console:

1. Set up a test cluster with the expected data set.

2. Connect the console to the cluster

3. Go to the Ehcache Sizing panel.

4. Choose Remote from the CacheManager Relative Cache Sizes subpanel's Tier drop-down menu.

How to Size Caches 68/284

Sizing the Terracotta Server Array

Select View: | ClientID[4] 10.2.0.33:64199 ;l

CacheManager Relative Cache Sizes

-

Tier: |] Remote v| 2 Terracotta-clustered

Cache Size in Bytes (... % of Used Entries Mean Entry Size

gll® coos | 777kel _100% 11| 7238

B remote — P Entries: 11

Note that the average cache-entry size reported for the Terracotta Server Array (the remote) is an estimate.

Overriding Size Limitations

Pinned caches can override the limits set by cache-configuration sizing attributes, potentially causing
OutOfMemory errors. This is because pinning prevents flushing of cache entries to lower tiers. For more
information on pinning, see Pinning, Eviction, and Expiration.

Built-In Sizing Computation and Enforcement

Internal Ehcache mechanisms track data-element sizes and enforce the limits set by CacheManager sizing
pools.

Sizing of cached entries

Elements put in a memory-limited cache will have their memory sizes measured. The entire Element instance
added to the cache is measured, including key and value, as well as the memory footprint of adding that
instance to internal data structures. Key and value are measured as object graphs — each reference is followed
and the object reference also measured. This goes on recursively.

Shared references will be measured by each class that references it. This will result in an overstatement.
Shared references should therefore be ignored.

Ignoring for Size Calculations

For the purposes of measurement, references can be ignored using the @ TgnoreSizeOf annotation. The
annotation may be declared at the class level, on a field, or on a package. You can also specify a file
containing the fully qualified names of classes, fields, and packages to be ignored.

This annotation is not inherited, and must be added to any subclasses that should also be excluded from
sizing.

The following example shows how to ignore the Dog class.

@IgnoreSizeOf

public class Dog {
private Gender gender;
private String name;

How to Size Caches 69/284

Sizing of cached entries

}
The following example shows how to ignore the sharedInstance field.

public class MyCacheEntry {
@IgnoreSizeOf
private final SharedClass sharedInstance;

Packages may be also ignored if you add the @IgnoreSizeOf annotation to appropriate package-info.java of
the desired package. Here is a sample package-info.java for and in the com.pany.ignore package:

@IgnoreSizeOf
package com.pany.ignore;
import net.sf.ehcache.pool.sizeof.filter.IgnoreSizeOf;

Alternatively, you may declare ignored classes and fields in a file and specify a
net.sf.ehcache.sizeof.filter system property to point to that file.

That field references a common graph between all cached entries
com.pany.domain.cache.MyCacheEntry.sharedInstance

This will ignore all instances of that type
com.pany.domain.SharedState

This ignores a package
com.pany.example

Note that these measurements and configurations apply only to on-heap storage. Once Elements are moved to

off-heap memory, disk, or the Terracotta Server Array, they are serialized as byte arrays. The serialized size is
then used as the basis for measurement.

Configuration for Limiting the Traversed Object Graph

As noted above, sizing caches involves traversing object graphs, a process that can be limited with
annotations. This process can also be controlled at both the CacheManager and cache levels.

Note that the following configuration has no effect on distributed caches.
Size-Of Limitation at the CacheManager Level

Control how deep the size-of engine can go when sizing on-heap elements by adding the following element at
the CacheManager level:

<sizeOfPolicy maxDepth="100" maxDepthExceededBehavior="abort"/>
This element has the following attributes
® maxDepth — Controls how many linked objects can be visited before the size-of engine takes any
action. This attribute is required.

® maxDepthExceededBehavior — Specifies what happens when the max depth is exceeded while
sizing an object graph:

How to Size Caches 70/284

Sizing of cached entries

¢ "continue" — DEFAULT Forces the size-of engine to log a warning and continue the sizing
operation. If this attribute is not specified, "continue" is the behavior used.

¢ "abort" — Forces the SizeOf engine to abort the sizing, log a warning, and mark the cache as
not correctly tracking memory usage. With this setting,
Ehcache.hasAbortedSizeOf () returns true.

The SizeOf policy can be configured at the cache manager level (directly under <ehcache>) and at the
cache level (under <cache> or <defaultCache>). The cache policy always overrides the cache manager
one if both are set. This element has no effect on distributed caches.

Size-Of Limitation at the Cache level

Use the <sizeOfPolicy> as a subelement in any <cache> block to control how deep the size-of engine
can go when sizing on-heap elements belonging to the target cache. This cache-level setting overrides the
CacheManager size-of setting.

Debugging of Size-Of Related Errors

If warnings or errors appear that seem related to size-of measurement (usually caused by the size-of engine
walking the graph), generate more log information on sizing activities:

e Set the net . sf.ehcache.sizeof.verboseDebugLogging system property to true.
¢ Enable debug logs on net . sf.ehcache.pool.sizeof in your chosen implementation of
SLF4].

Eviction When Using CacheManager-Level Storage

When a CacheManager-level storage pool is exhausted, a cache is selected on which to perform eviction to
recover pool space. The eviction from the selected cache is performed using the cache's configured eviction
algorithm (LRU, LFU, etc...). The cache from which eviction is performed is selected using the "minimal
eviction cost" algorithm described below:

eviction-cost = mean-entry-size * drop-in-hit-rate

Eviction cost is defined as the increase in bytes requested from the underlying SOR (the database for
example) per unit time used by evicting the requested number of bytes from the cache.

If we model the hit distribution as a simple power-law then:
P (hit n'th element) ~ 1/n”{alpha}

In the continuous limit this means the total hit rate is proportional to the integral of this distribution function
over the elements in the cache. The change in hit rate due to an eviction is then the integral of this distribution
function between the initial size and the final size. Assuming that the eviction size is small compared to the
overall cache size we can model this as:

drop ~ access * 1/x”{alpha} * Delta(x)

Where 'access' is the overall access rate (hits + misses) and x is a unit-less measure of the 'fill level' of the
cache. Approximating the fill level as the ratio of hit rate to access rate, and substituting in to the eviction-cost
expression we get:

How to Size Caches 71/284

Eviction When Using CacheManager-Level Storage

eviction-cost = mean-entry-size * access * 1/ (hits/access)~{alpha} * (eviction / (byteSize / (hi

Simplifying:
eviction-cost = (byteSize / countSize) * access * 1/(h/A)"{alpha} * (eviction * hits)/ (access *
eviction-cost = (eviction * hits) / (countSize * (hits/access)"~{alpha})

Removing the common factor of 'eviction' which is the same in all caches lead us to evicting from the cache
with the minimum value of:

eviction-cost = (hits / countSize) / (hits/access)~{alpha}

When a cache has a zero hit-rate (it is in a pure loading phase) we deviate from this algorithm and allow the
cache to occupy 1/n'th of the pool space where 'n' is the number of caches using the pool. Once the cache
starts to be accessed we re-adjust to match the actual usage pattern of that cache.

How to Size Caches 72/284

Pinning, Expiration, and Eviction

Introduction

The architecture of an Ehcache node can include a number of tiers that store data. One of the most important
aspects of managing cached data involves managing the life of that data in those tiers.

---i:'" ed
g
L1 Heap
L1 BigMemaory
E2 L2 Heap
E1l
L2 BigMemaory
evicted —pF——=
L2 Disk
S —

Distributed Ehcache Client {L1}
With Terracotta Server Array (L2)

Use the figure at right with the definitions below to understand the life of data in the tier of Ehcache nodes
backed by the Terracotta Cluster Array.

¢ Flush — To move a cache entry to a lower tier. Flushing is used to free up resources while still keeping
data in the cluster. Entry E1 is shown to be flushed from the L1 off-heap store to the Terracotta Server
Array.

¢ Fault — To copy a cache entry from a lower tier to a higher tier. Faulting occurs when data is required
at a higher tier but is not resident there. The entry is not deleted from the lower tiers after being
faulted. Entry E2 is shown to be faulted from the Terracotta Server Array to L1 heap.

¢ Eviction — To remove a cache entry from the cluster. The entry is deleted; it can only be reloaded
from a source outside the cluster. Entries are evicted to free up resources. Entry E3, which exists only
on the L2 disk, is shown to be evicted from the cluster.

Pinning, Expiration, and Eviction 73/284

Introduction

e Expiration — A status based on Time To Live and Time To Idle settings. To maintain cache
performance, expired entries may not be immediately flushed or evicted. Entry E4 is shown to be
expired but still in the L1 heap.

¢ Pinning — To force data to remain in certain tiers. Pinning can be set on individual entries or an entire
cache, and must be used with caution to avoid exhausting a resource such as heap. E5 is shown pinned
to L1 heap.

These definitions apply similarly in standalone Ehcache.

The sections below explore in more detail the aspects of managing data life in Ehcache and the Terracotta
Server Array, including the pinning features of Automatic Resource Control (ARC).

Setting Expiration

Cache entries expire based on parameters with configurable values. When eviction occurs, expired elements
are the first to be removed. Having an effective expiration configuration is critical to optimizing use of
resources such as heap and maintaining cache performance.

To add expiration, edit the values of the following <cache> attributes and tune these values based on results
of performance tests:

e timeToIdleSeconds — The maximum number of seconds an element can exist in the cache
without being accessed. The element expires at this limit and will no longer be returned from the
cache. The default value is 0, which means no TTI eviction takes place (infinite lifetime).

e timeToLiveSeconds — The maximum number of seconds an element can exist in the cache
regardless of use. The element expires at this limit and will no longer be returned from the cache. The
default value is 0, which means no TTL eviction takes place (infinite lifetime).

® maxElement sOnDisk — The maximum sum total number of elements (cache entries) allowed for a
distributed cache in all Terracotta clients. If this target is exceeded, eviction occurs to bring the count
within the allowed target. The default value is 0, which means no eviction takes place (infinite size is
allowed). Note that this value reflects storage allocated on the Terracotta Server Array. A setting of 0
means that no eviction of the cache's entries takes place on Terracotta Server Array, and
consequently can cause the servers to run out of disk space.

e cternal — If the cached— s eternal flag is set, it overrides any finite TTI/TTL values that have
been set.

See How Configuration Affects Element Eviction for more information on how configuration can impact
eviction. See Distributed Cache Configuration for definitions of other available configuration properties.

Pinning Data

Data that should remain in the cache regardless of resource constraints can be pinned. You can pin individual
entries, or an entire cache.

Pinning Individual Cache Entries

Some APIs like OpenJPA and Hibernate require pinning of specific Elements. Specific entries can be
programmatically pinned to the containing cache:

cache.setPinned (key, true);

Pinning, Expiration, and Eviction 74/284

Pinning Individual Cache Entries

The entry can be unpinned by the same method:

cache.setPinned (key, false);

To unpin all of a cache's pinned entries:

cache.unpinAll () ;

To check if an entry is pinned:

cache.isPinned(key); // Returns a boolean: true if the key is pinned.
Pinning a cache entry guarantees its storage in local memory (heap or off-heap).

Note that pinning is a status applied to a cache entry's key. The entry's value may be null and any operations
on value have no effect on the pinning status.

Pinning a Cache

Entire caches can be pinned using the pinning element in cache configuration. This element has a required
attribute (store) to specify which data tiers the cache should be pinned to:

<pinning store="localMemory" />
The store attribute can have one of the following values:

e JocalHeap — Cache data is pinned to the local heap. Unexpired entries can never be flushed to a lower
tier or be evicted.

¢ JocalMemory — Cache data is pinned to the local heap or local off-heap. Unexpired entries can never
be flushed to a lower tier or be evicted.

¢ inCache — Cache data is pinned in the cache, which can be in any tier cache data is stored. The tier is
chosen based on performance-enhancing efficiency algorithms. This option cannot be used with
distributed caches that have a nonzero maxElement sOnD1isk setting.

For example, the following cache is configured to pin its entries:

<cache name="Cachel" ... >
<pinning store="inCache" />
</cache>

The following distributed cache is configured to pin its entries to heap or off-heap only:

<cache name="Cache2" ... >
<pinning store="localMemory" />
<terracotta/>

</cache>

If only a limited set of a cache's entries should be pinned, it may be more efficient to pin those individual
elements rather than the entire cache.

Pinning, Expiration, and Eviction 75/284

Scope of Pinning

Scope of Pinning

Pinning setting is in the local Ehcache client (L.1) memory. It is never distributed in the cluster.

Pinning achieved programmatically will not be persisted — after a restart the pinned entries are no longer

pinned. Pinning is also lost when an L1 rejoins a cluster. Cache pinning in configuration is reinstated with the
configuration file.

How Configuration Affects Element Flushing and Eviction

The following example shows a cache with certain expiration settings:

<cache name="myCache"
maxElementsOnDisk="10000" eternal="false" timeToIdleSeconds="3600"
timeToLiveSeconds="0" memoryStoreEvictionPolicy="LFU">

<!-— Adding the element <terracotta /> turns on Terracotta clustering for the cache myCache.

<terracotta />
</cache>

Note the following about the myCache configuration:

e If a client accesses an entry in myCache that has been idle for more than an hour
(timeToIdleSeconds), that element is evicted. The entry is also evicted from the Terracotta
Server Array.

e If an entry expires but is not accessed, and no resource constraints force eviction, then the expired
entry remains in place.

¢ Entries in myCache can live forever if accessed at least once per 60 minutes
(timeToLiveSeconds). However, unexpired entries may still be flushed based on other
limitations (see How to Size Caches).

¢ Cluster-wide, myCache can store a maximum of 10000 entries (maxElement sOnD1isk). This is the
effective maximum number of entries myCache is allowed on the Terracotta Server Array. Note,
however, that this value may be exceeded as it is overridden by pinning and other client-side
cache-size settings.

Pinning Overrides Cache Sizing

Pinning takes priority over configured cache sizes. For example, in the following distributed cache the pinning
configuration overrides the maxEnt riesOnHeap setting:

<cache name="myCache"
maxEntriesOnHeap="10000"
maxBytesLocalOffHeap="8g"
.>
<pinning store="localHeap" />
<terracotta/>
</cache>

While expired cache entries (even ones that have been pinned) can always be flushed and eventually evicted
from the cluster, most non-expired elements can as well if resource limitations are reached. However, pinned
elements, whether pinned individually or resident in a pinned cache, cannot be evicted if they haven't expired.
In addition, if a distributed cache is pinned to a specific data tier, its unexpired elements cannot be flushed
from that tier.

Pinning, Expiration, and Eviction 76/284

——>

http://terracotta.org/documentation/enterprise-ehcache/reference-guide#71266

Pinning Overrides Cache Sizing

Unexpired pinned entries also cannot be evicted from the Terracotta Server Array. While the
maxElementsOnDisk setting is intended to limit a cache's size in the cluster, it is overridden by pinning
because the Terracotta Server Array cannot evict data that is still resident on any client. Persistence takes
priority over enforcing resource limits.

CAUTION: Pinning Could Cause Failures Potentially, pinned caches could grow to an unlimited size. Caches
should never be pinned unless they are designed to hold a limited amount of data (such as reference data) or
their usage and expiration characteristics are understood well enough to conclude that they cannot cause
errors.

Pinning, Expiration, and Eviction 77/284

Nonstop (Non-Blocking) Cache

Introduction

A nonstop cache allows certain cache operations to proceed on clients that have become disconnected from
the cluster or if a cache operation cannot complete by the nonstop timeout value. This is useful in meeting
SLA requirements, responding to node failures, building a more robust High Availability cluster, and more.

One way clients go into nonstop mode is when they receive a "cluster offline" event. Note that a nonstop
cache can go into nonstop mode even if the node is not disconnected, such as when a cache operation is
unable to complete within the timeout allotted by the nonstop configuration.

Nonstop can be used in conjunction with rejoin.
Use cases include:
e Setting timeouts on cache operations.

For example, say you use the cache rather than a mainframe. The SLA calls for 3 seconds. There is a
temporary network interruption which delays the response to a cache request. With the timeout you
can return after 3 seconds. The lookup is then done against the mainframe. This could also be useful
for write-through, writes to disk, or synchronous writes.

¢ Automatically responding to cluster topology events to take a pre-configured action.

¢ Allowing Availability over Consistency within the CAP theorem when a network partition occurs.

¢ Providing graceful degradation to user applications when Distributed Cache becomes unavailable.

Configuring Nonstop Cache

Nonstop is configured in a <cache> block under the <terracotta> subelement. In the following
example, myCache has nonstop configuration:

<cache name="myCache" maxEntriesLocalHeap="10000" eternal="false"
overflowToDisk="false">
<terracotta>
<nonstop immediateTimeout="false" timeoutMillis="30000">
<timeoutBehavior type="noop" />
</nonstop>
</terracotta>
</cache>

Nonstop is enabled by default or if <nonstop> appears in a cached— s <terracotta> block.

Nonstop Timeouts and Behaviors

Nonstop caches can be configured with the following attributes:

® cnabled — Enables ("true" DEFAULT) or disables ("false") the ability of a cache to execute certain
actions after a Terracotta client disconnects. This attribute is optional for enabling nonstop.

e immediateTimeout — Enables ("true") or disables ("false" DEFAULT) an immediate timeout
response if the Terracotta client detects a network interruption (the node is disconnected from the

Nonstop (Non-Blocking) Cache 78/284

http://terracotta.org/documentation/enterprise-ehcache/reference-guide#71266

Nonstop Timeouts and Behaviors

cluster). If enabled, this parameter overrides t imeoutMillis, so that the option set in
timeoutBehavior is in effect immediately.

e timeoutMillis — Specifies the number of milliseconds an application waits for any cache
operation to return before timing out. The default value is 30000 (thirty seconds). The behavior after
the timeout occurs is determined by t imeoutBehavior.

<nonstop> has one self-closing subelement, <timeoutBehavior>. This subelement determines the response
after a timeout occurs (t imeoutMillis expires or an immediate timeout occurs). The response can be set
by the <timeoutBehavior> attribute t ype. This attribute can have one of the values listed in the following
table:

ValueBehavior exception (DEFAULT) Throw NonStopCacheException. See When is
NonStopCacheException Thrown? for more information on this exception. noop Return null for gets. Ignore
all other cache operations. Hibernate users may want to use this option to allow their application to continue
with an alternative data source. 1localReads For caches with Terracotta clustering, allow inconsistent reads
of cache data. Ignore all other cache operations. For caches without Terracotta clustering, throw an exception.

Tuning Nonstop Timeouts and Behaviors
You can tune the default timeout values and behaviors of nonstop caches to fit your environment.
Network Interruptions

For example, in an environment with regular network interruptions, consider disabling
immediateTimeout and increasing timeoutMillis to prevent timeouts for most of the interruptions.

For a cluster that experiences regular but short network interruptions, and in which caches clustered with
Terracotta carry read-mostly data or there is tolerance of potentially stale data, you may want to set
timeoutBehavior to localReads.

Slow Cache Operations

In an environment where cache operations can be slow to return and data is required to always be in sync,
increase t imeoutMillis to prevent frequent timeouts. Set t imeoutBehavior to noop to force the
application to get data from another source or exception if the application should stop.

For example, a cache.acquireWriteLockOnKey (key) operation may exceed the nonstop timeout
while waiting for a lock. This would trigger nonstop mode only because the lock couldn't be acquired in time.
Using cache.tryWriteLockOnKey (key, timeout), with the method's timeout set to less than the
nonstop timeout, avoids this problem.

Bulk Loading

If a nonstop cache is bulk-loaded using the Bulk-Load API, a multiplier is applied to the configured nonstop
timeout whenever the method

net.sf.ehcache.Ehcache.setNodeBulkLoadEnabled (boolean) is used. The default value of
the multiplier is 10. You can tune the multiplier using the bulkOpsTimeoutMultiplyFactor system

property:

—-DbulkOpsTimeoutMultiplyFactor=10

Nonstop (Non-Blocking) Cache 79/284

http://terracotta.org/documentation/enterprise-ehcache/api-guide#75664

Tuning Nonstop Timeouts and Behaviors

This multiplier also affects the methods net . sf.ehcache.Ehcache.removeaAll (),
net.sf.ehcache.Ehcache.removeaAll (boolean), and
net.sf.ehcache.Ehcache.setNodeCoherent (boolean) (DEPRECATED).

Nonstop Exceptions

Typically, application code may access the cache frequently and at various points. Therefore, with a nonstop
cache, where your application could encounter NonStopCacheExceptions is difficult to predict. The following
sections provide guidance on when to expect NonStopCacheExceptions and how to handle them.

When is NonStopCacheException Thrown?

NonStopCacheException is usually thrown when it is the configured behavior for a nonstop cache in a client
that disconnects from the cluster. In the following example, the exception would be thrown 30 seconds after
the disconnection (or the "cluster offline" event is received):

<nonstop immediateTimeout="false" timeoutMillis="30000">
<timeoutBehavior type="exception" />
</nonstop>

However, under certain circumstances the NonStopCache exception can be thrown even if a nonstop
cached— s timeout behavior is not set to throw the exception. This can happen when the cache goes into
nonstop mode during an attempt to acquire or release a lock. These lock operations are associated with certain
lock APIs and special cache types such as Explicit Locking, BlockingCache, SelfPopulatingCache, and
UpdatingSelfPopulatingCache.

A NonStopCacheException can also be thrown if the cache must fault in an element to satisfy a get ()
operation. If the Terracotta Server Array cannot respond within the configured nonstop timeout, the exception
is thrown.

A related exception, InvalidLockAfterRejoinException, can be thrown during or after client rejoin (see Using
Rejoin to Automatically Reconnect Terracotta Clients). This exception occurs when an unlock operation takes
place on a lock obtained before the rejoin attempt completed.

TIP: Use try-finally Blocks To ensure that locks are released properly, application code using Ehcache lock
APIs should encapsulate lock-unlock operations with try-finally blocks:

myLock.acquireLock () ;
try {
// Do some work.
} finally {
myLock.unlock () ;
}

Handling Nonstop Exceptions
Your application can handle nonstop exceptions in the same way it handles other exceptions. For nonstop
caches, an unhandled-exceptions handler could, for example, refer to a separate thread any cleanup needed to

manage the problem effectively.

Another way to handle nonstop exceptions is by using a dedicated Ehcache decorator that manages the
exception outside of the application framework. The following is an example of how the decorator might

Nonstop (Non-Blocking) Cache 80/284

http://terracotta.org/documentation/enterprise-ehcache/api-guide#31478
http://terracotta.org/documentation/enterprise-ehcache/reference-guide#71266
http://terracotta.org/documentation/enterprise-ehcache/reference-guide#71266

Handling Nonstop Exceptions
operate:

try { cache.put (element); }
catch (NonStopCacheException e) {

handler.handleException (cache, element, e);

}

Nonstop (Non-Blocking) Cache 81/284

UnlockedReadsView

Introduction

UnlockedReadsView is a decorated cache which provides an eventually consistent view of a strongly
consistent cache. Views of data are taken without regard to that data's consistency. Writes are not affected by
UnlockedReadsView. You can have both the unlocked view and a strongly consistent cache at the same
time.

The UnlockedReadsView is placed in the CacheManager under its own name so that it can be separately
referenced. The purpose of this is to allow business logic faster access to data. It is akin to the
READ_UNCOMMITTED database isolation level. Normally, a read lock must first be obtained to read data
backed with Terracotta. If there is an outstanding write lock, the read lock queues up. This is done so that the
happens before guarantee can be made. However, if the business logic is happy to read stale data even if a
write lock has been acquired in preparation for changing it, then much higher speeds can be obtained.

Creating an UnlockedReadsView

Programmatically

Cache cache = cacheManager.getCache ("existingUndecoratedCache");
UnlockedReadsView unlockedReadsView = new UnlockedReadsView (cache, newName) ;
cacheManager.addDecoratedCache (unlockedReadsView) ; //adds a decorated Ehcache

If the UnlockedReadsView has the same name as the cache it is decorating,
CacheManager.replaceCacheWithDecoratedCache (Ehcache ehcache, Ehcache
decoratedCache) should be used, instead of using
CacheManager.addDecoratedCache (Ehcache decoratedCache) as shown above.

If added to the CacheManager, it can be accessed like following:

Ehcache unlockedReadsView = cacheManager.getEhcache (newName) ;

NOTE: Right now, UnlockedReadsView only accepts net . sf.ehcache.Cache instances in the
constructor, meaning it can be used to decorate only net . sf.ehcache.Cache instances. One
disadvantage is that it cannot be used to decorate other already decorated net . sf.ehcache.Ehcache
instances like NonStopCache.

By Configuration

It can be configured in ehcache.xml using the "cacheDecoratorFactory" element. You can specify a factory to
create decorated caches and
net.sf.ehcache.constructs.unlockedreadsview.UnlockedReadsViewDecoratorFactory
is available in the unlockedreadsview module itself.

<cache name="sample/DistributedCache3"
maxEntriesLocalHeap="10"
eternal="false"
timeToIdleSeconds="100"
timeToLiveSeconds="100"

UnlockedReadsView 82/284

By Configuration

overflowToDisk="true">
<cacheDecoratorFactory
class="net.sf.ehcache.constructs.unlockedreadsview.UnlockedReadsViewDecoratorFactory"
properties="name=unlockedReadsViewOne" />
</cache>

It is mandatory to specify the properties for the UnlockedReadsViewDecoratorFactory with "name" property.
That property is used as the name of the UnlockedReadsView that will be created.

Download
File
The file is available for download here.

Maven

The UnlockedReadsView is in the ehcache-unlockedreadsview module in the Maven central repo. Add this
snippet to your dependencies:

<dependency>
<groupId>net.sf.ehcache</groupId>
<artifactId>ehcache-unlockedreadsview</artifactId>
</dependency>

FAQ

Why is this a CacheDecorator?

This API is emerging. It is production quality and supported, but it is a new API and may evolve over time.
As a decorator in its own module, it can evolve separately from ehcache-core.

Why do | see stale values in certain Ehcache nodes for up to 5 minutes?

UnlockedReadsView uses unlocked reads of the Terracotta Server Array combined with a local TTL which, in
versions up to Ehcache 2.4, are hardcoded to 300 seconds (5 minutes). If you are already holding a copy in a
local node, you will not see an updated value for 5 minutes. As of Ehcache 2.4.1, you also have the option of
simply configuring the whole cache as consitency="eventual", which sends changed data to the node
as soon as possible. However the whole cache is eventually consistent - you cannot use that with a strongly
consistent cache. We plan to make this TTL configurable in a future release.

UnlockedReadsView 83/284

http://sourceforge.net/projects/ehcache/files/ehcache-unlockedreadsview

Distributed Ehcache Configuration Guide

Introduction

The Ehcache configuration file (ehcache . xm1 by default) contains the configuration for one instance of a
CacheManager (the Ehcache class managing a set of defined caches). This configuration file must be in your
application's classpath to be found. When using a WAR file, ehcache . xm1 should be copied to
WEB-INF/classes.

Note the following about ehcache . xml in a Terracotta cluster:

® The copy on disk is loaded into memory from the first Terracotta client (also called application server
or node) to join the cluster.

® Once loaded, the configuration is persisted in memory by the Terracotta servers in the cluster and
survives client restarts.

¢ In-memory configuration can be edited in the Terracotta Developer Console. Changes take effect
immediately but are nor written to the original on-disk copy of ehcache . xml.

® The in-memory cache configuration is removed with server restarts if the servers are in non-persistent
mode, which is the default. The original (on-disk) ehcache . xml is loaded.

¢ The in-memory cache configuration survives server restarts if the servers are in persistent mode
(default is non-persistent). If you are using the Terracotta servers with persistence of shared data, and
you want the cluster to load the original (on-disk) ehcache . xml, the servers' database must be
wiped by removing the data files from the servers' server—data directory. This directory is
specified in the Terracotta configuration file in effect (tc—config.xml by default). Wiping the
database causes all persisted shared data to be lost.

A minimal distributed-cache configuration should have the following configured:

e A CacheManager
¢ A Clustering element in individual cache configurations
¢ A source for Terracotta client configuration

CacheManager Configuration

CacheManager configuration elements and attributes are fully described in the ehcache . xm1 reference file
available in the kit.

Via ehcache.xml
The attributes of <ehcache> are:

® name — an optional name for the CacheManager. The name is optional and primarily used for
documentation or to distinguish Terracotta clustered cache state. With Terracotta clustered caches, a
combination of CacheManager name and cache name uniquely identify a particular cache store in the
Terracotta clustered memory. The name will show up in the Developer Console.
TIP: Naming the CacheManager If you employ multiple Ehcache configuration files, use the name attribute
in the <ehcache> element to identify specific CacheManagers in the cluster. The Terracotta Developer
Console provides a menu listing these names, allowing you to choose the CacheManager you want to view.

Distributed Ehcache Configuration Guide 84/284

http://terracotta.org/documentation/terracotta-server-array/config-reference
http://terracotta.org/documentation/terracotta-server-array/config-reference
http://terracotta.org/documentation/terracotta-server-array/config-reference

Via ehcache.xml

¢ updateCheck — an optional boolean flag specifying whether this CacheManager should check for new
versions of Ehcache over the Internet. If not specified, updateCheck="true".

® monitoring — an optional setting that determines whether the CacheManager should automatically
register the SampledCacheMBean with the system MBean server. Currently, this monitoring is only
useful when using Terracotta clustering. The "autodetect" value detects the presence of Terracotta
clustering and registers the MBean. Other allowed values are "on" and "off". The default is
"autodetect".

<Ehcache xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="ehcache.xsd"
updateCheck="true" monitoring="autodetect">

Programmatic Configuration

CacheManagers can be configured programmatically with a fluent API. The example below creates a
CacheManager with a Terracotta configuration specified in an URL, and creates a defaultCache and a cache
named "example".

Configuration configuration = new Configuration()

.terracotta (new TerracottaClientConfiguration().url ("localhost:9510"))
.defaultCache (new CacheConfiguration ("defaultCache", 100))

.cache (new CacheConfiguration ("example", 100)

.timeToIdleSeconds (5)

.timeToLiveSeconds (120)

.terracotta (new TerracottaConfiguration()));

CacheManager manager = new CacheManager (configuration);

Terracotta Clustering Configuration Elements

Certain elements in the Ehcache configuration control the clustering of caches with Terracotta.

terracotta

The <terracotta> element is an optional sub-element of <cache>. It can be set differently for each
<cache> defined in ehcache . xml.

<terracotta> has one subelement, <nonstop> (see Non-Blocking Disconnected (Nonstop) Cache for
more information).

The following <terracotta> attribute allows you to control the type of data consistency for the distributed
cache:

e consistency — Uses no cache-level locks for better performance ("eventual" DEFAULT) or uses
cache-level locks for immediate cache consistency ("strong"). When set to "eventual", allows reads
without locks, which means the cache may temporarily return stale data in exchange for substantially
improved performance. When set to "strong", guarantees that after any update is completed no local
read can return a stale value, but at a potentially high cost to performance. If using strong consistency
with BigMemory, a large number of locks may need to be stored in client and server heaps. In this
case, be sure to test the cluster with the expected data set to detect situations where OutOfMemory
errors are likely to occur.

Distributed Ehcache Configuration Guide 85/284

http://ehcache.org/documentation/configuration/non-stop-cache

terracotta

Once set, this consistency mode cannot be changed except by reconfiguring the cache using a
configuration file and reloading the file. This setting cannot be changed programmatically. See
Understanding Performance and Cache Consistency for more information.

Except for special cases, the following <terracotta> attributes should operate with their default values:

o clustered — Enables ("true” DEFAULT) or disables ("false") Terracotta clustering of a specific cache.
Clustering is enabled if this attribute is not specified. Disabling clustering also disables the effects of
all of the other attributes.

localCacheEnabled — Enables ("true" DEFAULT) or disables ("false") local caching of distributed
cache data, forcing all of that cached data to reside on the Terracotta Server Array. Disabling local
caching may improve performance for distributed caches in write-heavy use cases.
synchronousWrites — Enables ("true") or disables ("false" DEFAULT) synchronous writes from
Terracotta clients (application servers) to Terracotta servers. Asynchronous writes
(synchronousWrites="false") maximize performance by allowing clients to proceed without waiting
for a "transaction received" acknowledgement from the server. This acknowledgement is unnecessary
in most use cases. Synchronous writes (synchronousWrites="true") provide extreme data safety at a
very high performance cost by requiring that a client receive server acknowledgement of a transaction
before that client can proceed. Enabling synchronous writes has a significant detrimental effect on
cluster performance. If the cached— s consistency mode is eventual (consistency="eventual"), or
while it is set to bulk load using the bulk-load API, only asynchronous writes can occur
(synchronousWrites="true" is ignored).

storageStrategy — Sets the strategy for storing the cached— s key set. Use "DCV2" (DEFAULT) to
store the cached— s key set on the Terracotta server array. DCV2 can be used only with serializable
caches (the valueMode attribute must be set to "serialization"), whether using the standard installation
or DSO. DCV?2 takes advantage of performance optimization built into the Terracotta libraries. Use
"classic" to store all keys on every Terracotta client, but note that the performance optimization
techniques built into the Terracotta libraries will not be in effect. Identity caches
(valueMode="identity") must use the classic mode. For more information on using storageStrategy,
see Offloading Large Caches.

e concurrency — Sets the number of segments for the map backing the underlying server store managed
by the Terracotta Server Array. If concurrency is not explicitly set (or set to "0"), the system selects
an optimized value. See Tuning Concurrency for more information on how to tune this value for
DCV2.

valueMode — Sets the type of cache to serialization (DEFAULT, the standard Ehcache "copy"
cache) or ident ity (Terracotta object identity). Identity mode is not available with the standard
(express) installation. Identity mode can be used only with a Terracotta DSO (custom)
installation (see Standard Versus DSO Installations).

TIP: Comparing Serialization and Identity Modes In serialization mode, getting an element from the cache
gets a copy of that element. Changes made to that copy do not affect any other copies of the same element or
the value in the cache. Putting the element in the cache overwrites the existing value. This type of cache
provides high performance with small, read-only data sets. Large data sets with high traffic, or caches with
very large elements, can suffer performance degradation because this type of cache serializes clustered
objects. This type of cache cannot guarantee a consistent view of object values in read-write data sets if the
consistency attribute is disabled. Objects clustered in this mode must be serializable. Note that getKeys ()
methods return serialized versions of the keys.

In identity mode, getting an element from the cache gets a reference to that element. Changes made to the
referenced element updates the element on every node on which it exists (or a reference to it exists) as well as
updating the value in the cache. Putting the element in the cache does not overwrite the existing value. This
mode guarantees data consistency. It can be used only with a custom Terracotta Distributed Cache

Distributed Ehcache Configuration Guide 86/284

http://terracotta.org/documentation/enterprise-ehcache/reference-guide#30971
http://terracotta.org/documentation/enterprise-ehcache/reference-guide#24750
http://terracotta.org/documentation/enterprise-ehcache/reference-guide#86549
http://terracotta.org/documentation/terracotta-dso/overview#installations

terracotta

installation. Objects clustered in this mode must be portable and must be locked when accessed. If you require
identity mode, you must use DSO (see Terracotta DSO Installation).

¢ copyOnRead — DEPRECATED. Use the copyOnRead <cache> attribute. Enables ("true") or
disables ("false" DEFAULT) "copy cache" mode. If disabled, cache values are not deserialized on
every read. For example, repeated get() calls return a reference to the same object (references are ==).
When enabled, cache values are deserialized (copied) on every read and the materialized values are
not re-used between get() calls; each get() call returns a unique reference. When enabled, allows
Ehcache to behave as a component of OSGI, allows a cache to be shared by callers with different
classloaders, and prevents local drift if keys/values are mutated locally without being put back into the
cache. Enabling copyOnRead is relevant only for caches with valueMode set to serialization.

e coherentReads — DEPRECATED. This attribute is superseded by the attribute consistency.
Disallows ("true" DEFAULT) or allows ("false") "dirty" reads in the cluster. If set to "true", reads
must be consistent on any node and returned data is guaranteed to be consistent. If set to false, local
unlocked reads are allowed and returned data may be stale. Allowing dirty reads may boost the
clusterdi— s performance by reducing the overhead associated with locking. Read-only applications,
applications where stale data is acceptable, and certain read-mostly applications may be suited to
allowing dirty reads.

The following attributes are used with Enterprise Ehcache for Hibernate:

¢ JocalKeyCache — Enables ("true") or disables ("false" DEFAULT) a local key cache. Enterprise
Ehcache for Hibernate can cache a "hotset" of keys on clients to add locality-of-reference, a feature
suitable for read-only cases. Note that the set of keys must be small enough for available memory.

¢ JocalKeyCacheSize — Defines the size of the local key cache in number (positive integer) of elements.
In effect if localKeyCache is enabled. The default value, 300000, should be tuned to meet application
requirements and environmental limitations.

¢ orphanEviction — Enables ("true" DEFAULT) or disables ("false") orphan eviction. Orphans are
cache elements that are not resident in any Hibernate second-level cache but still present on the
cluster's Terracotta server instances.

¢ orphanEvictionPeriod — The number of local eviction cycles (that occur on Hibernate) that must be
completed before an orphan eviction can take place. The default number of cycles is 4. Raise this
value for less aggressive orphan eviction that can reduce faulting on the Terracotta server, or raise it if
garbage on the Terracotta server is a concern.

Default Behavior

By default, adding <terracotta/> to a <cache> block is equivalent to adding the following:

<cache name="sampleTerracottaCache"

maxEntriesLocalHeap="1000"

eternal="false"

timeToIdleSeconds="3600"

timeToLiveSeconds="1800"

overflowToDisk="false">

<terracotta clustered="true" valueMode="serialization" consistency="eventual" storageStrategy="

</cache>

terracottaConfig

The <terracottaConfig> element enables the distributed-cache client to identify a source of Terracotta
configuration. It also allows a client to rejoin a cluster after disconnecting from that cluster and being timed

Distributed Ehcache Configuration Guide 87/284

http://terracotta.org/confluence/display/docs/Non-Portable%20Classes
http://terracotta.org/documentation/terracotta-dso/overview#58720
http://terracotta.org/documentation/enterprise-ehcache/get-started-hibernate
http://terracotta.org/documentation/enterprise-ehcache/get-started-hibernate
http://terracotta.org/documentation/enterprise-ehcache/get-started-hibernate

terracottaConfig

out by a Terracotta server. For more information on the rejoin feature, see Using Rejoin to Automatically
Reconnect Terracotta Clients.

Note that the <terracottaConfig> element can not be used with a DSO installation (refer to Standard
Versus DSO Installations).

The client must load the configuration from a file or a Terracotta server. The value of the ur1 attribute should
contain a path to the file, a system property, or the address and DSO port (9510 by default) of a server.
TIP: Terracotta Clients and Servers In a Terracotta cluster, the application server is also known as the client.

For more information on client configuration, see the Clients Configuration Section in the Terracotta
Configuration Reference.

Adding an URL Attribute

Add the url attribute to the <terracottaConfig> element as follows:

<terracottaConfig url="<source>" />
where <source> must be one of the following:

® A path (for example, url="/path/to/tc-config.xml")

e An URL (for example, url="http://www.mydomain.com/path/to/tc-config.xml)

¢ A system property (for example, url="${terracotta.config.location}"), where the
system property is defined like this:

System.setProperty ("terracotta.config.location”,"10.x.x.x:9510"");

¢ A Terracotta host address in the form <host>:<dso-port> (for example,
url="host1:9510"). Note the following about using server addresses in the form
<host>:<dso-port>:
¢ The default DSO port is 9510.
¢ In a multi-server cluster, you can specify a comma-delimited list (for example,
url="host1:9510,host2:9510,host3:9510").
¢ If the Terracotta configuration source changes at a later time, it must be updated in
configuration.

Embedding Terracotta Configuration

You can embed the contents of a Terracotta configuration file in ehcache . xml as follows:

<terracottaConfig>
<tc-config>
<servers>
<server host="serverl" name="sl1"/>
<server host="server2" name="s2"/>
</servers>
<clients>
<logs>app/logs-%i</logs>
</clients>
</tc-config>
</terracottaConfig>

Distributed Ehcache Configuration Guide 88/284

http://terracotta.org/documentation/enterprise-ehcache/reference-guide#71266
http://terracotta.org/documentation/enterprise-ehcache/reference-guide#71266
http://terracotta.org/documentation/terracotta-dso/overview#installations
http://terracotta.org/documentation/terracotta-dso/overview#installations
http://terracotta.org/documentation/terracotta-server-array/config-reference
http://terracotta.org/documentation/terracotta-server-array/config-reference

Controlling Cache Size

Note that not all elements are supported. For example, the <dso> section of a Terracotta configuration file is
ignored in an Ehcache configuration file.

Controlling Cache Size

Certain Ehcache cache configuration attributes affect caches clustered with Terracotta.
See How Configuration Affects Element Eviction for more information on how configuration affects eviction.

To learn about eviction and controlling the size of the cache, see the Ehcache documentation on data life and
sizing caches.

Setting Cache Eviction

Cache eviction removes elements from the cache based on parameters with configurable values. Having an
optimal eviction configuration is critical to maintaining cache performance.

To learn about eviction and controlling the size of the cache, see the Ehcache documentation on data life and
sizing caches.

Ensure that the edited ehcache . xml is in your application's classpath. If you are using a WAR file,
ehcache.xml should be in WEB-INF/classes.

See How Configuration Affects Element Eviction for more information on how configuration can impact
eviction. See Terracotta Clustering Configuration Elements for definitions of other available configuration
properties.

Cache-Configuration File Properties

See Terracotta Clustering Configuration Elements for more information.

Cache Events Configuration

The <cache> subelement <cacheEventListenerFactory>, which registers listeners for cache events such as
puts and updates, has a notification scope controlled by the attribute 1istenFor. This attribute can have one
of the following values:

e Jocal — Listen for events on the local node. No remote events are detected.
e remote — Listen for events on other nodes. No local events are detected.
¢ all - (DEFAULT) Listen for events on both the local node and on remote nodes.

In order for cache events to be detected by remote nodes in a Terracotta cluster, event listeners must have a
scope that includes remote events. For example, the following configuration allows listeners of type
MyCacheListener to detect both local and remote events:

<cache name="myCache" ... >

<!-—- Not defining the listenFor attribute for <cacheEventListenerFactory> is by default equivale
<cacheEventListenerFactory class="net.sf.ehcache.event.TerracottaCacheEventReplicationFactory" /
<terracotta />

</cache>

Distributed Ehcache Configuration Guide 89/284

http://terracotta.org/documentation/enterprise-ehcache/reference-guide#30343
http://ehcache.org/documentation/configuration/data-life
http://ehcache.org/documentation/configuration/cache-size
http://ehcache.org/documentation/configuration/data-life
http://ehcache.org/documentation/configuration/cache-size
http://terracotta.org/documentation/enterprise-ehcache/reference-guide#30343

Cache Events Configuration

You must use net .sf.ehcache.event.TerracottaCacheEventReplicationFactory as the
factory class to enable cluster-wide cache-event broadcasts in a Terracotta cluster.

See Cache Events in a Terracotta Cluster for more information on cache events in a Terracotta cluster.

Copy On Read

The copyOnRead setting is most easily explained by first examining what it does when not enabled and
exploring the potential problems that can arise. For a cache in which copyOnRead is NOT enabled, the
following reference comparison will always be true:

Object objl = c.get ("key") .getValue();

// Assume no other thread changes the cache mapping between these get () operations
Object obj2 = c.get ("key") .getValue();
if (objl == obj2) {

System.err.println ("Same value objects!");

}

The fact that the same object reference is returned across multiple get () operations implies that the cache is
storing a direct reference to cache value. This default behavior (copyOnRead=false) is usually desired,
although there are at least two scenarios in which it is problematic:

(1) Caches shared between classloaders
and
(2) Mutable value objects

Imagine two web applications that both have access to the same Cache instance (this implies that the core
ehcache classes are in a common classloader). Imagine further that the classes for value types in the cache are
duplicated in the web application (so they are not present in the common loader). In this scenario you would
get ClassCastExceptions when one web application accessed a value previously read by the other application.

One obvious solution to this problem is to move the value types to the common loader, but another is to
enable copyOnRead. When copyOnRead is in effect, the object references are unique with every get ().
Having unique object references means that the thread context loader of the caller will be used to materialize
the cache values on each get (). This feature has utility in OSGi environments as well where a common
cache service might be shared between bundles.

Another subtle issue concerns mutable value objects in a distributed cache. Consider this simple code with a
Cache containing a mutable value type (Foo):

class Foo {

int field;

}
Foo foo = (Foo) c.get ("key").getValue();
foo.field++;

// foo instance is never re-put () to the cache
//

If the Foo instance is never put back into the Cache your local cache is no longer consistent with the cluster (it
is locally modified only). Enabling copyOnRead eliminates this possibility since the only way to affect
cache values is to call mutator methods on the Cache.

Distributed Ehcache Configuration Guide 90/284

http://terracotta.org/documentation/enterprise-ehcache/reference-guide#82378

Copy On Read

It is worth noting that there is a performance penalty to copyOnRead since values are deserialized on every
get ().

Configuring Robust Distributed Caches

Making caches robust is typically a combination of Ehcache configuration and Terracotta configuration and
architecture. For more information, see the following documentation:

e Nonstop caches — Configure caches to take a specified action after an Ehcache node appears to be

disconnected from the cluster.
® Rejoin the cluster — Allow Ehcache nodes to rejoin the cluster as new clients after being disconnected

from the cluster.

e High Availability in a Terracotta cluster — Configure nodes to ride out network interruptions and long
Java GC cycles, connect to a backup Terracotta server, and more.

e Architecture — Design a cluster that provides failover.

Incompatible Configuration

For any clustered cache, you must delete, disable, or edit configuration elements in ehcache . xm1 that are
incompatible when clustering with Terracotta. Clustered caches have a “<terracotta/>' or <terracotta
clustered="true"> element.

The following Ehcache configuration attributes or elements should be deleted or disabled:
¢ DiskStore-related attributes overflowToDisk and diskPersistent. The Terracotta server
automatically provides a disk store.
¢ Replication-related attributes such as replicateAsynchronously and replicatePuts.

® The attribute MemoryStoreEvictionPolicy must be set to either LFU or LRU. Setting
MemoryStoreEvictionPolicy to FIFO causes the error I11legalArgumentException.

Exporting Configuration from the Developer Console

To create or edit a cache configuration in a live cluster, see Editing Cache Configuration.
To persist custom cache configuration values, create a cache configuration file by exporting customized

configuration from the Terracotta Developer Console or create a file that conforms to the required format.
This file must take the place of any configuration file used when the cluster was last started.

Distributed Ehcache Configuration Guide 91/284

http://ehcache.org/documentation/configuration/non-stop-cache
http://terracotta.org/documentation/enterprise-ehcache/reference-guide#71266
http://terracotta.org/documentation/terracotta-server-array/high-availability
http://terracotta.org/documentation/terracotta-server-array/server-arrays
http://terracotta.org/documentation/terracotta-tools/dev-console#42656

Default Settings for Terracotta Distributed Ehcache

Introduction

A number of properties control the way the Terracotta Server Array and Ehcache clients perform in a
Terracotta cluster. Some of these settings are found in the Terracotta configuration file (tc-config.xml),
while others are found in the Ehcache configuration file (ehcache . xml). A few must be set
programmatically.

The following sections detail the most important of these properties and shows their default values. To

confirm the latest default values for your version of Terracotta software, see the XSD included with your
Terracotta kit.

Terracotta Server Array

A Terracotta cluster is composed of clients and servers. Terracotta properties often use a shorthand notation
where a client is referred to as "l11" and a server as "12".

These properties are set at the top of tc—config.xml using a configuration block similar to the following:

<tc-properties>

<property name="12.nha.tcgroupcomm.reconnect.enabled" value="true" />
<!-— More properties here. -->
</tc-properties>

See the Terracotta Server Arrays documentation for more information on the Terracotta Server Array.
Reconnection and Logging Properties
The following reconnection properties are shown with default values. These properties can be set to custom
values using Terracotta configuration properties (<tc—properties>/<property> elements in
tc-config.xml).
PropertyDefault ValueNotes 12.nha.tcgroupcomm.reconnect.enabledtrue
Enables server-to-server reconnections.
12.nha.tcgroupcomm.reconnect.timeout5000ms
12-12 reconnection timeout.
12.11reconnect.enabledtrue
Enables an 11 to reconnect to servers.
12.11reconnect.timeout.millisS000ms

The reconnection time out, after which an 11 disconnects.

11.max.connect.retries-1

Default Settings for Terracotta Distributed Ehcache 92/284

http://terracotta.org/documentation/terracotta-server-array/introduction

Reconnection and Logging Properties

The number of allowed reconnection tries from an 11 to an 12. Affects both initial and subsequent reconnection
attempts. -1 allows infinite attempts.

tc.config.getFromSource.timeout30000ms

Timeout for getting configuration from a source. For example, this controls how long a client can try to access
configuration from a server. If the client fails to do so, it will fail to connect to the cluster.

logging.maxBackups20
Upper limit for number of backups of Terracotta log files.
logging.maxLogFileSize512MB

Maximum size of Terracotta log files before rolling logging starts.

HealthChecker Tolerances

The following properties control disconnection tolerances between Terracotta servers (12 12), Terracotta
servers and Terracotta clients (12 ->11), and Terracotta clients and Terracotta servers (11 ->12).

1212 GC tolerance : 40 secs, cable pull/network down tolerance : 10secs

12.healthcheck.12.ping.enabled = true
12.healthcheck.12.ping.idletime = 5000

12.healthcheck.12.ping.interval = 1000
12.healthcheck.12.ping.probes = 3
12.healthcheck.12.socketConnect = true

12 .healthcheck.12.socketConnectTimeout = 5
12 .healthcheck.12.socketConnectCount = 10

12->11 GC tolerance : 40 secs, cable pull/network down tolerance : 10secs

12.healthcheck.1ll.ping.enabled = true
12.healthcheck.1ll.ping.idletime = 5000

12.healthcheck.1ll.ping.interval = 1000
12.healthcheck.1ll.ping.probes = 3
12.healthcheck.1l1l.socketConnect = true

12.healthcheck.1l1l.socketConnectTimeout = 5
12 .healthcheck.1l1l.socketConnectCount = 10

I1->11 GC tolerance : 50 secs, cable pull/network down tolerance : 10secs

11l.healthcheck.12.ping.enabled = true
11l.healthcheck.12.ping.idletime = 5000

11.healthcheck.1l2.ping.interval = 1000
11l.healthcheck.12.ping.probes = 3
11l.healthcheck.12.socketConnect = true

11l.healthcheck.1l2.socketConnectTimeout = 5
11l.healthcheck.1l2.socketConnectCount = 13

Default Settings for Terracotta Distributed Ehcache 93/284

Ehcache
Ehcache

Ehcache configuration properties typically address the behavior, size, and functionality of caches. Others
affect certain types of cache-related bulk operations.

Properties are set in ehcache . xm1 except as noted.

General Cache Settings

The following default cache settings affect cached data. For more information on these settings, see the
Ehcache documentation.
PropertyDefault ValueNotesvalue modeSERIALIZATIONconsistencyEVENTUALXAfalseorphan
evictiontruelocal key cachefalsesynchronous writefalsememory store eviction policyLRUttlI00 means never
expire.tti0O0 means never expire.transactional modeoffdisk persistentfalsemaxElementsOnDisk00 means
infinite; this is the cache size on the Terracotta Server
Array.maxBytesLocalHeapOmaxBytesLocalOffHeapOmaxEntriesLocalHeapOO means infinite.

NonStop Cache

The following default settings affect the behavior of the cache when while the client is disconnected from the
cluster. For more information on these settings, see the nonstop-cache documentation.

PropertyDefault ValueNotesenablefalsetimeout
behaviorexceptiontimeout30000msnet.sf.ehcache.nonstop.bulkOpsTimeoutMultiplyFactor10 This value is a
timeout multiplication factor affecting bulk operations such as removeAl1l () and getAll (). Since the
default nonstop timeout is 30 seconds, it sets a timeout of 300 seconds for those operations. The default can be
changed programmatically:

cache.getTerracottaConfiguration () .getNonstopConfiguration ()
.setBulkOpsTimeoutMultiplyFactor (10)

Bulk Operations

The following properties are shown with default values. These properties can be set to custom values using
Terracotta configuration properties.

Increasing batch sizes may improve throughput, but could raise latency due to the load on resources from

processing larger blocks of data.

PropertyDefault ValueNotesehcache.bulkOps.maxKBSizel MBBatch size for bulk operations such as putAll
and removeAll.

ehcache.getAll.batchSize1000The number of elements per batch in a getAll operation.
ehcache.incoherent.putsBatchByteSizeSMBFor bulk-loading mode. The minimum size of a batch in a
bulk-load operation. Increasing batch sizes may improve throughput, but could raise latency due to the load on

resources from processing larger blocks of data.

ehcache.incoherent.putsBatchTimeInMillis600 ms For bulk-loading mode. The maximum time the bulk-load
operation takes to batch puts before flushing to the Terracotta Server Array.

Default Settings for Terracotta Distributed Ehcache 94/284

http://ehcache.org/documentation
http://ehcache.org/documentation/configuration/non-stop-cache

BigMemory Overview

BigMemory gives Java applications instant, effortless access to a large memory footprint with in-memory
data management that lets you store large amounts of data closer to your application, improving memory
utilization and application performance with both standalone and distributed caching. BigMemory's
in-process, off-heap cache is not subject to Java garbage collection, is 100x faster than DiskStore, and allows
you to create very large caches. In fact, the size of the off-heap cache is limited only by address space and the
amount of RAM on your hardware. In performance tests, wea— ve achieved fast, predictable response times
with terabyte caches on a single machine.

Rather than stack lots of 1-4 GB JVMs on a single machine in an effort to minimize the GC problem, with
BigMemory you can increase application density, running a smaller number of larger-memory JVMs. This
simpler deployment model eases application scale out and provides a more sustainable, efficient solution as
your dataset inevitably grows.

The following sections provide a documentation Table of Contents and additional information sources for
BigMemory.

BigMemory Table of Contents

Topic Description

Introduction to BigMemory, how to configure Ehcache with

BigMemory Configuration BigMemory, performance comparisons, FAQs, and more.
Further Performance Analysis Further performance results for off-heap store for a range of scenarios.

Pooling Resources Versus Sizing Additional information for configuring Ehcache to use local off-heap
Individual Caches memory.

Storage Options Discussion of BigMemory in the context of storage options for Ehcache.
Egﬁ;ﬁga Clustering Configuration The role of BigMemory in data consistency for the distributed cache.

BigMemory Resources

Additional information and downloads:
¢ About BigMemory

¢ Tutorial of Ehcache with BigMemory
¢ Using BigMemory in a Terracotta Server Array

BigMemory Overview 95/284

http://ehcache.org/documentation/configuration/bigmemory-further-performance-analysis
http://terracotta.org/documentation/bigmemory/overview
http://terracotta.org/documentation/bigmemory/get-started
http://terracotta.org/documentation/bigmemory/terracotta-server-array

Automatic Resource Control Overview

Automatic Resource Control (ARC) is an intelligent approach to caching with fine-grained controls for tuning
cache performance. ARC offers a wealth of benefits, including:

¢ Sizing limitations on in-memory caches to avoid OutOfMemory errors

® Pooled (CacheManager-level) sizing &—— no requirement to size caches individually
e Differentiated tier-based sizing for flexibility

¢ Sizing by bytes, entries, or percentages for more flexibility

¢ Keeping hot or eternal data where it can substantially boost performance

The following sections provide a documentation Table of Contents and additional information sources for
ARC.

ARC Table of Contents

Topic Description

Tuning Ehcache often involves sizing cached data appropriately. Ehcache provides a number

Dynamic)
y of ways to size the different data tiers using simple cache-configuration sizing attributes. This

Sizing of page explains simplified tuning of cache size by configuring dynamic allocation of memory
Memory . .

and automatic load balancing.

. The architecture of an Ehcache node can include a number of tiers that store data. One of the

Pinning

most important aspects of managing cached data involves managing the life of the data in each
Caches and . . . r . .
Entries tier. This page covers managing data life in Ehcache and the Terracotta Server Array, including

the pinning features of Automatic Resource Control (ARC).

Additional Information about ARC

The following page provides background information:

e About Automatic Resource Control

Automatic Resource Control Overview 96/284

http://terracotta.org/products/enterprise-ehcache/automatic-resource-control

APIs Overview

The following sections provide a documentation Table of Contents and additional information sources for the

Ehcache APIs.

APIs Table of Contents

Topic

Cache Search

Bulk Loading

Description

The Ehcache Search API allows you to execute arbitrarily complex queries against either
a standalone cache or a Terracotta clustered cache with pre-built indexes. Searchable
attributes may be extracted from both keys and values. Keys, values, or summary values
(Aggregators) can all be returned.

Ehcache has a bulk loading mode that dramatically speeds up bulk loading into caches
using the Terracotta Server Array. The bulk-load API should be used for temporarily
suspending the Terracotta's normal consistency guarantees to allow for special bulk-load
operations, such as cache warming and periodic batch loading.

Transactional modes are a powerful extension of Ehcache allowing you to perform
atomic operations on your caches and potentially other data stores, to keep your cache in

Transactions (JTA) sync with your database. This page covers all of the background and configuration

Explicit Locking

CacheWriter

Blocking and
Self-populating
Caches

Terracotta Cluster
Events

Unlocked Reads
View

Cache Decorators

APIs Overview

information for the transactional modes. Additional information about JTA can be found
in the Using Caches section of the Code Samples page.

With explicit locking (using Read and Write locks), it is possible to get more control over
Ehcache's locking behaviour to allow business logic to apply an atomic change with
guaranteed ordering across one or more keys in one or more caches. This API can be
used as a custom alternative to XA Transactions or Local transactions.

Write-through and write-behind are available with the Ehcache CacheWriter API for
handling how writes to the cache are subsequently propagated to the SOR. This page
covers all of the background and configuration information for the CacheWriter API. An
additional discussion about Ehcache Write-Behind may be found in Recipes.

With BlockingCache, which can scale up to very busy systems, all threads requesting the
same key wait for the first thread to complete. Once the first thread has completed, the
other threads simply obtain the cache entry and return. With SelfPopulatingCache, or
pull-through cache, you can specify keys to populate entries. This page introduces these
APIs. Additional information may be found in Cache Decorators and in Recipes.

The Terracotta Distributed Ehcache cluster events API provides access to Terracotta
cluster events and cluster topology. This event-notification mechanism reports events
related to the nodes in the Terracotta cluster, not cache events.

With this API, you can have both the unlocked view and a strongly consistent cache at
the same time. UnlocksReadView provides an eventually consistent view of a strongly
consistent cache. Views of data are taken without regard to that data's consistency, and
writes are not affected by UnlockedReadsView. This page covers creating an
UnlockedReadsView and provides a download link and an FAQ.

A cache decorator allows extended functionality to be added to an existing cache
dynamically, and can be combined with other decorators on a per-use basis. It is
generally required that a decorated cache, once constructed, is made available to other
execution threads. The simplest way of doing this is to substitute the original cache for
the decorated one.

97/284

APIls Table of Contents

CacheManager
Event Listeners

Cache Event
Listeners

Cache Exception
Handlers

Cache Extensions

Cache Eviction
Algorithms

Class Loading

CacheManager event listeners allow implementers to register callback methods that will
be executed when a CacheManager event occurs. The events include adding a cache and
removing a cache.

Cache listeners allow implementers to register callback methods that will be executed
when a cache event occurs. The events include Element puts, updates, removes, and
expires. Elements can also be put or removed from a cache without notifying listeners. In
clustered environments, event propagation can be configured to be propagated only
locally, only remotely, or both.

A CacheExceptionHandler can be configured to intercept Exceptions and not Errors.
Ehcache can be configured with ExceptionHandling so that CacheManager.getEhcache()
does not simply return the underlying undecorated cache.

CacheExtensions are a general purpose mechanism, tied into the cache lifecycle, which
allow generic extensions to a cache. The CacheExtension perform operations such as
registering a CacheEventListener or even a CacheManagerEventListener, all from within
a CacheExtension, creating more opportunities for customisation.

A cache eviction algorithm is a way of deciding which element to evict when the cache is
full. LRU, LFU, and FIFO are provided, or you can plug in your own algorithm.
Ehcache allows plugins for events and distribution. This page demonstrates how to load
and create plug-ins, and it covers loading ehcache.xml resources and classloading with
Terracotta clustering.

Additional Information about APIs

The following pages provide additional information about Search, Cluster Events, Bulk-load, and other APIs:

¢ Enterprise Ehcache API Guide
® CacheManager Code Examples

APIs Overview

98/284

http://terracotta.org/documentation/enterprise-ehcache/api-guide

Ehcache Search API

Introduction

The Ehcache Search API allows you to execute arbitrarily complex queries against either a standalone cache
or a Terracotta clustered cache with pre-built indexes. This allows development of alternative indexes on
values so that data can be looked up based on multiple criteria instead of just keys.

Searchable attributes may be extracted from both keys and values. Keys, values, or summary values
(Aggregators) can all be returned. Here is a simple example: Search for 32-year-old males and return the
cache values.

Results results = cache.createQuery () .includeValues ()
.addCriteria(age.eq(32) .and(gender.eqg("male"))) .execute();

What is Searchable?

Searches can be performed against Element keys and values.

Element keys and values are made searchable by extracting attributes with supported search types out of the
keys and values. It is the attributes themselves which are searchable.

How to Make a Cache Searchable

By Configuration

Caches are made searchable by adding a <searchable/> tag to the ehcache.xml.

<cache name="cache2" maxEntriesLocalHeap="10000" eternal="true" overflowToDisk="false">
<searchable/>
</cache>

This configuration will scan keys and vales and if they are of supported search types, add them as attributes
called "key" and "value" respectively. If you do not want automatic indexing of keys and values you can
disable it with:

<cache name="cache3" ...>
<searchable keys="false" values="false">

</searchable>
</cache>

You might want to do this if you have a mix of types for your keys or values. The automatic indexing will
throw an exception if types are mixed. Often keys or values will not be directly searchable and instead you
will need to extract searchable attributes out of them. The following example shows this more typical case.
Attribute Extractors are explained in more detail in the following section.

<cache name="cache3" maxEntriesLocalHeap="10000" eternal="true" overflowToDisk="false">
<searchable>
<searchAttribute name="age" class="net.sf.ehcache.search.TestAttributeExtractor"/>
<searchAttribute name="gender" expression="value.getGender ()"/>

Ehcache Search API 99/284

By Configuration

</searchable>
</cache>

Programmatically

The following example shows how to programmatically create the cache configuration, with search attributes.

Configuration cacheManagerConfig = new Configuration();
CacheConfiguration cacheConfig = new CacheConfiguration ("myCache", 0).eternal (true);
Searchable searchable = new Searchable();
cacheConfig.addSearchable (searchable);
// Create attributes to use in queries.
searchable.addSearchAttribute (new SearchAttribute () .name ("age"));
// Use an expression for accessing values.
searchable.addSearchAttribute (new SearchAttribute ()
.name ("first_name")
.expression("value.getFirstName () ")) ;
searchable.addSearchAttribute (new SearchAttribute () .name ("last_name") .expression ("value.getLastNa
searchable.addSearchAttribute (new SearchAttribute () .name ("zip_code") .expression ("value.getZzi
cacheManager = new CacheManager (cacheManagerConfigqg);
cacheManager.addCache (new Cache (cacheConfiqg));
Ehcache myCache = cacheManager.getEhcache ("myCache");
// Now create the attributes and queries, then execute.

To learn more about the Ehcache Search API, see the net . sf.ehcache. search* packages in this
Javadoc.

Attribute Extractors

Attributes are extracted from keys or values. This is done during search or, if using Distributed Ehcache, on
put () into the cache using AttributeExtractors. Extracted attributes must be one of the following
supported types:

® Boolean

* Byte

® Character

® Double

® Float

¢ Integer

* L ong

¢ Short

e String

e java.util.Date
e java.sql.Date
¢ Enum

If an attribute cannot be extracted due to not being found or being the wrong type, an
AttributeExtractorException is thrown on search execution or, if using Distributed Ehcache, on put ().

Ehcache Search API 100/284

http://ehcache.org/apidocs/index.html

Well-known Attributes

Well-known Attributes

The parts of an Element that are well-known attributes can be referenced by some predefined, well-known
names. If a keys and/or value is of a supported search type, they are added automatically as attributes with the
names "key" amd "value". These well-known attributes have convenience constant attributes made available
on the Query class. So, for example, the attribute for "key" may be referenced in a query by Query .KEY.
For even greater readability it is recommended to statically import so that in this example you would just use
KEY.

Well-known Attribute Name Attribute Constant
key Query.KEY

value Query.VALUE
ReflectionAttributeExtractor

The ReflectionAttributeExtractor is a built-in search attribute extractor which uses JavaBean conventions and
also understands a simple form of expression. Where a JavaBean property is available and it is of a searchable
type, it can be simply declared using:

<cache>
<searchable>
<searchAttribute name="age"/>
</searchable>
</cache>

Finally, when things get more complicated, we have an expression language using method/value dotted

nn

expression chains. The expression chain must start with one of either "key", "value", or "element". From the
starting object a chain of either method calls or field names follows. Method calls and field names can be
freely mixed in the chain. Some more examples:

<cache>
<searchable>
<searchAttribute name="age" expression="value.person.getAge()"/>
</searchable>
</cache>
<cache>
<searchable>
<searchAttribute name="name" expression="element.toString()"/>
</searchable>
</cache>

The method and field name portions of the expression are case sensitive.

Custom AttributeExtractor

In more complex situations you can create your own attribute extractor by implementing the
AttributeExtractor interface. Providing your extractor class is shown in the following example:

<cache name="cache2" maxEntriesLocalHeap="0" eternal="true" overflowToDisk="false">
<searchable>
<searchAttribute name="age" class="net.sf.ehcache.search.TestAttributeExtractor"/>
</searchable>
</cache>

Ehcache Search API 101/284

Custom AttributeExtractor

If you need to pass state to your custom extractor you may do so with properties as shown in the following
example:

<cache>
<searchable>
<searchAttribute name="age"
class="net.sf.ehcache.search.TestAttributeExtractor"
properties="foo=this,bar=that,etc=12" />
</searchable>
</cache>

If properties are provided, then the attribute extractor implementation must have a public constructor that
accepts a single java.util.Properties instance.

Query API

Ehcache Search introduces a fluent Object Oriented query API, following DSL principles, which should feel
familiar and natural to Java programmers. Here is a simple example:

Query query = cache.createQuery () .addCriteria(age.eq(35)).includeKeys () .end();
Results results = query.execute();

Using Attributes in Queries

If declared and available, the well-known attributes are referenced by their names or the convenience
attributes are used directly as shown in this example:

Results results = cache.createQuery().addCriteria (Query.KEY.eq(35)) .execute();
Results results = cache.createQuery().addCriteria (Query.VALUE.1t (10)) .execute();

Other attributes are referenced by the names given them in the configuration. For example:

Attribute<Integer> age = cache.getSearchAttribute ("age");
Attribute<String> gender = cache.getSearchAttribute ("gender");
Attribute<String> name = cache.getSearchAttribute ("name");

Expressions

The Query to be searched for is built up using Expressions. Expressions include logical operators such as
<and> and <or>. It also includes comparison operators such as <ge> (>=), <between>, and <like>.

addCriteria(...) isused to add a clause to a query. Adding a further clause automatically <and>s the
clauses.
query = cache.createQuery().includeKeys () .addCriteria(age.le(65)) .add(gender.eq("male")) .end();

Both logical and comparison operators implement the Criteria interface. To add a criteria with a different
logical operator, explicitly nest it within a new logical operator Criteria Object. For example, to check for age
= 35 or gender = female, do the following:

query.addCriteria(new Or (age.eq(35),
gender.eq(Gender.FEMALE))
)

Ehcache Search API 102/284

Expressions

More complex compound expressions can be further created with extra nesting. See the Expression JavaDoc
for a complete list.

List of Operators

Operators are available as methods on attributes, so they are used by adding a ".". For example, "It" means
"less than" and is used as age . 1t (10), which is a shorthand way of saying new LessThan (10). The
full listing of operator shorthand is shown below.

Shorthand Criteria Class Description

and And The Boolean AND logical operator

between Between A comparison operator meaning between two values

eq EqualTo A comparison operator meaning Java "equals to" condition

gt GreaterThan A comparison operator meaning greater than.

ge GreaterThanOrEqual A comparison operator meaning greater than or equal to.

in InCollection A comparison operator meaning in the collection given as an argument
It LessThan A comparison operator meaning less than.

le LessThanOrEqual A comparison operator meaning less than or equal to

A regular expression matcher. '?" and "*" may be used. Note that placing a
ilike ILike wildcard in front of the expression will cause a table scan. ILike is always
case insensitive.

not Not The Boolean NOT logical operator
ne NotEqualTo A comparison operator meaning not the Java "equals to" condition
or Or The Boolean OR logical operator

Making Queries Immutable

By default, a query can be executed and then modified and re-executed. If end is called, the query is made
immutable.

Search Results

Queries return a Results object which contains a list of objects of class Result. Each Element in the
cache found with a query will be represented as a Result object. So if a query finds 350 elements there will
be 350 Result objects. An exception to this would be if no keys or attributes are included but aggregators
are -- in this case, there will be exactly one Result present.

A Result object can contain:

¢ the Flement key - when includeKeys () is added to the query,
¢ the Element value - when includeValues () is added to the query,

e predefined attribute(s) extracted from an Element value - when includeAttribute (...) is
added to the query. To access an attribute from Result, use getAttribute (Attribute<T>
attribute.

® aggregator results

Aggregator results are summaries computed for the search. They are available through
Result.getAggregatorResults which returns a list of Aggregators in the same order in

Ehcache Search API 103/284

http://ehcache.org/xref/net/sf/ehcache/search/expression/package-frame.html

Search Results

which they were used in the Query.

Aggregators

Aggregators are added with query.includeAggregator (\<attribute\>.\<aggregator\>)
For example, to find the sum of the age attribute:

query.includeAggregator (age.sum()) ;

See the Aggregators JavaDoc for a complete list.

Ordering Results

Query results may be ordered in ascending or descending order by adding an addOrderBy clause to the
query, which takes as parameters the attribute to order by and the ordering direction. For example, to order the
results by ages in ascending order

query.addOrderBy (age, Direction.ASCENDING) ;

Limiting the Size of Results

Either all results can be returned using results.all () to get them all in one chunk, or page results can be
returned with ranges using results.range (int start, int count).

By default a query will return an unlimited number of results. For example the following query will return all
keys in the cache.

Query query = cache.createQuery();
query.includeKeys () ;
query.execute () ;

If too many results are returned, it could cause an OutOfMemoryError The maxResults clause is used to
limit the size of the results. For example, to limit the above query to the first 100 elements found:

Query query = cache.createQuery();
query.includeKeys () ;
query.maxResults (100);
query.execute () ;

When you are done with the results, call discard () to free up resources. In the distributed implementation
with Terracotta, resources may be used to hold results for paging or return.

Interrogating Results

To determine what was returned by a query, use one of the interrogation methods on Results:
® hasKeys ()
® hasValues ()

® hasAttributes ()
® hasAggregators ()

Ehcache Search API 104/284

http://ehcache.org/xref/net/sf/ehcache/search/aggregator/package-frame.html

Sample Application
Sample Application

We have created a simple standalone sample application with few dependencies for you to easily get started
with Ehcache Search. You can also check out the source:

git clone git://github.com/sharrissf/Ehcache-Search-Sample.git

The Ehcache Test Sources page has further examples on how to use each Ehcache Search feature.

Scripting Environments

Ehcache Search is readily amenable to scripting. The following example shows how to use it with BeanShell:

Interpreter i = new Interpreter();

//Auto discover the search attributes and add them to the interpreter's context

Map<String, SearchAttribute> attributes = cache.getCacheConfiguration () .getSearchAttributes();
for (Map.Entry<String, SearchAttribute> entry : attributes.entrySet()) {

i.set (entry.getKey (), cache.getSearchAttribute (entry.getKey()));

LOG.info ("Setting attribute " + entry.getKey());

}

//Define the query and results. Add things which would be set in the GUI i.e.

//includeKeys and add to context

Query query = cache.createQuery () .includeKeys();

Results results = null;

i.set ("query", query);

i.set ("results", results);

//This comes from the freeform text field
String userDefinedQuery = "age.eq(35)";
//Add the stuff on that we need

String fullQueryString = "results = query.addCriteria (" + userDefinedQuery + ").execute()";
i.eval (fullQueryString);

results = (Results) i.get ("results");
assertTrue (2 == results.size());

for (Result result : results.all()) {
LOG.info("" + result.getKey());

}

Concurrency Considerations

Unlike cache operations which has selectable concurrency control and/or transactions, the Search API does
not. This may change in a future release, however our survey of prospective users showed that concurrency
control in search indexes was not sought after. The indexes are eventually consistent with the caches.

Index Updating

Indexes will be updated asynchronously, so their state will lag slightly behind the state of the cache. The only
exception is when the updating thread then performs a search.

For caches with concurrency control, an index will not reflect the new state of the cache until:

® The change has been applied to the cluster.
e For a cache with transactions, when commit has been called.

Ehcache Search API 105/284

http://github.com/sharrissf/Ehcache-Search-Sample/downloads/
http://ehcache.org/xref-test/net/sf/ehcache/search/package-summary.html

Query Results

Query Results
There are several ways unexpected results could present:

e A search returns an Element reference which no longer exists.

e Search criteria select an Element, but the Element has been updated and a new Search would no
longer match the Element.

e Aggregators, such as sum(), might disagree with the same calculation done by redoing the calculation
yourself by re-accessing the cache for each key and repeating the calculation.

® includeValues returns values. Under the covers the index contains a server value reference. The
reference gets returned with the search and Terracotta supplies the matching value. Because the cache
is always updated before the search index it is possible that a value reference may refer to a value that
has been removed from the cache. If this happens the value will be null but the key and attributes
which were supplied by the now stale cache index will be non-null. Because values in Ehcache are
also allowed to be null, you cannot tell whether your value is null because it has been removed from
the cache since the index was last updated or because it is a null value.

Recommendations

Because the state of the cache can change between search executions it is recommended to add all of the
Aggregators you want for a query at once so that the returned aggregators are consistent. Use null guards
when accessing a cache with a key returned from a search.

Implementations

Standalone Ehcache

The standalone Ehcache implementation does not use indexes. It uses fast iteration of the cache instead,
relying on the very fast access to do the equivalent of a table scan for each query. Each element in the cache is
only visited once. Attributes are not extracted ahead of time. They are done during query execution.

Performance

Search operations perform in O(n) time. Checkout this Maven-based performance test showing standalone
cache performance. This test shows search performance of an average of representative queries at 10ms per
10,000 entries. So, a typical query would take 1 second for a 1,000,000 entry cache. Accordingly, standalone
implementation is suitable for development and testing.

For production it is recommended to only standalone search for caches that are less than 1 million elements.
Performance of different Criteria vary. For example, here are some queries and their execute times on a
200,000 element cache. (Note that these results are all faster than the times given above because they execute
a single Criteria).

final Query intQuery = cache.createQuery();
intQuery.includeKeys () ;
intQuery.addCriteria(age.eq(35));
intQuery.end();

Execute Time: 62ms

final Query stringQuery = cache.createQuery();
stringQuery.includeKeys () ;
stringQuery.addCriteria(state.eqg("CA"));

Ehcache Search API 106/284

http://svn.terracotta.org/svn/forge/offHeap-test/

Standalone Ehcache

stringQuery.end();
Execute Time: 125ms

final Query iLikeQuery = cache.createQuery();
iLikeQuery.includeKeys () ;
iLikeQuery.addCriteria(name.ilike ("H*"));

iLikeQuery.end();
Execute Time: 180ms

Ehcache Backed by the Terracotta Server Array

This implementation uses indexes which are maintained on each Terracotta server. In Ehcache EX the index is
on a single active server. In Ehcache FX the cache is sharded across the number of active nodes in the cluster.
The index for each shard is maintained on that shard's server. Searches are performed using the Scatter-Gather
pattern. The query executes on each node and the results are then aggregated back in the Ehcache that initiated
the search.

Performance

Search operations perform in O(log n / number of shards) time. Performance is excellent and can be improved
simply by adding more servers to the FX array.

Network Effects

Search results are returned over the network. The data returned could potentially be very large, so techniques
to limit return size are recommended such as:

¢ Limiting the results with maxResults or using the paging APl Results.range (int start,
int length).

¢ Only including the data you need. Specifically only use includeKeys () and/or
includeAttribute () if those values are actually required for your application logic.

e Using a built-in Aggregator function when you only need a summary statistic. includeValues
rates a special mention. Once a query requiring values is executed we push the values from the server
to the Ehcache CacheManager which requested it in batches for network efficiency. This is done
ahead as soon as possible reducing the risk that Result .getValue () might have to wait for data
over the network.

® Turning off key and value indexing if you are not going to search against them as they will just chew
up space on the server.

You do this as follows:

<cache name="cache3" ...>
<searchable keys="false" values="false">

</searchable>
</cache>

Ehcache Search API 107/284

Bulk Loading in Ehcache

Introduction

Ehcache has a bulk loading mode that dramatically speeds up bulk loading into caches using the Terracotta
Server Array. Bulk loading is designed to be used for:

e cache warming - where caches need to be filled before bringing an application online
e periodic batch loading - say an overnight batch process that uploads data

API

With bulk loading, the API for putting data into the cache stays the same. Just use cache.put (.. .)

cache.load(...) orcache.loadAll (...).Whatchanges is that there is a special mode that
suspends Terracotta's normal consistency guarantees and provides optimised flushing to the Terracotta Server
Array (the L2 cache).

NOTE: The Bulk-Load API and the Configured Consistency Mode The initial consistency mode of a cache is
set by configuration and cannot be changed programmatically (see the <terracotta> element's
consistency attribute). The bulk-load API should be used for temporarily suspending the configured
consistency mode to allow for bulk-load operations.

The following are the bulk-load API methods that are available in
org.terracotta.modules.ehcache.Cache

®*public boolean isClusterBulkLoadEnabled()

Returns true if a cache is in bulk-load mode (is not consistent) throughout the cluster. Returns false if
the cache is not in bulk-load mode (is consistent) anywhere in the cluster.
e public boolean isNodeBulkLoadEnabled()

Returns true if a cache is in bulk-load mode (is not consistent) on the current node. Returns false if the
cache is not in bulk-load mode (is consistent) on the current node.
*public void setNodeBulkLoadEnabled (boolean)

Sets a cachea— s consistency mode to the configured mode (false) or to bulk load (true) on the local
node. There is no operation if the cache is already in the mode specified by
setNodeBulkLoadEnabled (). When using this method on a nonstop cache , a multiple of the
nonstop cachea— s timeout value applies. The bulk-load operation must complete within that
timeout multiple to prevent the configured nonstop behavior from taking effect. For more information
on tuning nonstop timeouts, see Tuning Nonstop Timeouts and Behaviors.

epublic void waitUntilBulkLoadComplete ()

Waits until a cache is consistent before returning. Changes are automatically batched and the cache is
updated throughout the cluster. Returns immediately if a cache is consistent throughout the cluster.

Note the following about using bulk-load mode:

¢ Consistency cannot be guaranteed because 1 sClusterBulkLoadEnabled () can return false in
one node just before another node calls setNodeBulkLoadEnabled (true) on the same cache.

Bulk Loading in Ehcache 108/284

API

Understanding exactly how your application uses the bulk-load API is crucial to effectively managing
the integrity of cached data.

e If a cache is not consistent, any ObjectNotFound exceptions that may occur are logged.

® get () methods that fail with ObjectNotFound return null.

¢ Eviction is independent of consistency mode. Any configured or manually executed eviction proceeds
unaffected by a cached— s consistency mode.

The following example code shows how a clustered application with Enterprise Ehcache can use the bulk-load
API to optimize a bulk-load operation:

import net.sf.ehcache.Cache;
public class MyBulkLoader {
CacheManager cacheManager = new CacheManager(); // Assumes local ehcache.xml.
Cache cache = cacheManager.getEhcache (\"myCache\"); // myCache defined in ehcache.xml.
cache.setNodeBulkLoadEnabled (true); // myCache is now in bulk mode.
// Load data into myCache.
cache.setNodeBulkLoadEnabled (false); // Done, now set myCache back to its configured consistency
}
NOTE: Potentional Error With Non-Singleton CacheManagerEhcache 2.5 and higher does not allow multiple
CacheManagers with the same name to exist in the same JVM. CacheManager () constructors creating
non-Singleton CacheManagers can violate this rule, causing an error. If your code may create multiple
CacheManagers of the same name in the same JVM, avoid this error by using the static
CacheManager.create () methods, which always return the named (or default unnamed) CacheManager
if it already exists in that JVM. If the named (or default unnamed) CacheManager does not exist, the
CacheManager.create () methods create it.

On another node, application code that intends to touch myCache can run or wait, based on whether myCache
is consistent or not:

if (!cache.isClusterBulkLoadEnabled()) {
// Do some work.
}
else {
cache.waitUntilBulkLoadComplete ()
// Do the work when waitUntilBulkLoadComplete () returns.
}

Waiting may not be necessary if the code can handle potentially stale data:

if (!cache.isClusterBulkLoadEnabled()) {

// Do some work.

}

else {

// Do some work knowing that data in myCache may be stale.

}

The following methods have been deprecated: setNodeCoherent (boolean mode),
isNodeCoherent (), isClusterCoherent () and waitUntilClusterCoherent ().

Bulk Loading in Ehcache 109/284

http://ehcache.org/apidocs/net/sf/ehcache/CacheManager
http://ehcache.org/apidocs/net/sf/ehcache/CacheManager

Speed Improvement
Speed Improvement

The speed performance improvement is an order of magnitude faster. ehcacheperf (Spring Pet Clinic) now has
a bulk load test which shows the performance improvement for using a Terracotta cluster.

FAQ

Are there any alternatives to putting the cache into bulk-load mode?
Bulk-loading Cache methods putAll(), getAll(), and removeAll() provide high-performance and eventual

consistency. These can also be used with strong consistency. If you can use them, it's unnecessary to use
bulk-load mode. See the API documentation for details.

Why does the bulk loading mode only apply to Terracotta clusters?

Ehcache, both standalone and replicated is already very fast and nothing needed to be added.

How does bulk load with RMI distributed caching work?

The core updates are very fast. RMI updates are batched by default once per second, so bulk loading will be
efficiently replicated.

Performance Tips

When to use Multiple Put Threads
It is not necessary to create multiple threads when calling cache . put. Only a marginal performance
improvement will result, because the call is already so fast. It is only necessary if the source is slow. By

reading from the source in multiple threads a speed up could result. An example is a database, where multiple
reading threads will often be better.

Bulk Loading on Multiple Nodes

The implementation scales very well when the load is split up against multiple Ehcache CacheManagers on
multiple machines. You add extra nodes for bulk loading to get up to 93 times performance.

Why not run in bulk load mode all the time

Terracotta clustering provides consistency, scaling and durability. Some applications will require consistency,
or not for some caches, such as reference data. It is possible to run a cache permanently in inconsistent mode.

Download

The bulk loading feature is in the ehcache-core module but only provides a performance improvement to
Terracotta clusters (as bulk loading to Ehcache standalone is very fast already) Download here. For a full
distribution enabling connection to the Terracotta Server array download here.

Bulk Loading in Ehcache 110/284

http://svn.terracotta.org/svn/forge/projects/ehcacheperf/trunk/
http://ehcache.org/apidocs
http://sourceforge.net/projects/ehcache/files/ehcache-core
http://sourceforge.net/projects/ehcache/files/ehcache

Further Information
Further Information

Saravanan who was the lead on this feature has blogged about it here.

Bulk Loading in Ehcache 111/284

http://sarosblog.blogspot.com/2010/02/terracotta-distributed-ehcaches-new.html

Transactions in Ehcache

Introduction

Transactions are supported in versions of Ehcache 2.0 and higher. The 2.3.x or lower releases only support
XA. However since ehcache 2.4 support for both Global Transactions with xa_strict and xa modes, and
Local Transactions with 1ocal mode has been added.

All or nothing

If a cache is enabled for transactions, all operations on it must happen within a transaction context otherwise a
TransactionException will be thrown.

Change Visibility

The isolation level offered in Ehcache is READ COMMITTED. Ehcache can work as an XAResource in which
case, full two-phase commit is supported. Specifically:

¢ All mutating changes to the cache are transactional including put, remove, putWithWriter,
removeWithWriter and removeAll.

® Mutating changes are not visible to other transactions in the local JVM or across the cluster until
COMMIT has been called.

e Until then, read such as by cache.get (.. .) by other transactions will return the old copy. Reads
do not block.

When to use transactional modes

Transactional modes are a powerful extension of Ehcache allowing you to perform atomic operations on your
caches and potentially other data stores, eg: to keep your cache in sync with your database.

® 1ocal When you want your changes across multiple caches to be performed atomically. Use this
mode when you need to update your caches atomically, ie: have all your changes be committed or
rolled back using a straight simple API. This mode is most useful when a cache contains data
calculated out of other cached data.

¢ xa Use this mode when you cache data from other data stores (eg: DBMS, JMS) and want to do it in
an atomic way under the control of the JTA API but don't want to pay the price of full two-phase
commit. In this mode, your cached data can get out of sync with the other resources participating in
the transactions in case of a crash so only use it if you can afford to live with stale data for a brief
period of time.

® xa_strict Same as xa but use it only if you need strict XA disaster recovery guarantees. In this
mode, the cached data can never get out of sync with the other resources participating in the
transactions, even in case of a crash but you pay a high price in performance to get that extra safety.
This is the only mode that can work with nonstop caches (beginning with Ehcache 2.4.1).

Requirements

The objects you are going to store in your transactional cache must:

Transactions in Ehcache 112/284

Requirements

® implement java.io.Serializable This is required to store cached objects when the cache is
clustered with Terracotta but it's also required by the copy on read / copy on write mechanism used to
implement isolation.

¢ override equals and hashcode Those must be overridden as the transactional stores rely on
element value comparison, see: ElementValueComparator and the
elementValueComparator configuration setting.

Configuration

Transactions are enabled on a cache by cache basis with the t ransactionalMode cache attribute. The
allowed values are:

® xa strict
® xa

® local
eoff

The default value is off. Enabling a cache for xa_strict transactions is shown in the following example:

<cache name="xaCache"
maxEntriesLocalHeap="500"
eternal="false"
timeToIdleSeconds="300"
timeToLiveSeconds="600"
overflowToDisk="false"
diskPersistent="false"
diskExpiryThreadIntervalSeconds="1"
transactionalMode="xa_strict">

</cache>

Transactional Caches with Terracotta Clustering

For Terracotta clustered caches, t ransactionalMode can only be used where terracotta
consistency="strong". Because caches can be dynamically changed to bulk-load mode, any attempt to
perform a transaction when this is the case will throw a CacheExcept ion. Note that transactions do not
work with Terracotta's ident ity mode. An attempt to initialise a transactional cache when this mode is set
will result in a CacheException being thrown. The default mode is serialization mode. Also note
that all transactional modes are currently sensitive to the ABA problem.

Transactional Caches with Spring
Note the following when using Spring:

e If you access the cache from an @Transactional Spring-annotated method, then
begin/commit/rollback statements are not required in application code as they are emitted by Spring.

¢ Both Spring and Ehcache need to access the transaction manager internally, and therefore you must
inject your chosen transaction manager into Spring's PlatformTransactionManager as well as use an
appropriate lookup strategy for Ehcache.

® The Ehcache default lookup strategy may not be able to detect your chosen transaction manager. For
example, it cannot detect the WebSphere transaction manager (see Transactions Managers).

¢ Configuring a <t x : met hod> with read-only=true could be problematic with certain transaction

Transactions in Ehcache 113/284

Transactional Caches with Spring

managers such as WebSphere.

Global Transactions

Global Transactions are supported by Ehcache. Ehcache can act as an { XAResouce} to participate in JTA
("Java Transaction API") transactions under the control of a Transaction Manager. This is typically provided
by your application server, however you may also use a third party transaction manager such as Bitronix. To
use Global Transactions, select either xa_strict or xa mode. The differences are explained in the sections
below.

Implementation

Global transactions support is implemented at the Store level, through XATransactionStore and
JtaLocalTransactionStore. The former actually decorates the underlying MemoryStore implementation,
augmenting it with transaction isolation and two-phase commit support through an <XAResouce>
implementation. The latter decorates a LocalTransactionStore-decorated cache to make it controllable by the
standard JTA API instead of the proprietary TransactionController API. During its initialization, the Cache
will lookup the TransactionManager using the provided TransactionManagerL.ookup implementation. Then,
using the TransactionManagerLookup.register (XAResouce), the newly created XAResource
will be registered. The store is automatically configured to copy every Element read from the cache or written
to it. Cache is copy-on-read and copy-on-write.

Failure Recovery

As specified by the JTA specification, only <prepared> transaction data is recoverable. Prepared data is
persisted onto the cluster and locks on the memory are held. This basically means that non-clustered caches
cannot persist transactions data, so recovery errors after a crash may be reported by the transaction manager.

Recovery

At any time after something went wrong, an XAResource may be asked to recover. Data that has been
prepared may either be committed or rolled back during recovery. In accordance with XA, data that has not
yet been prepared is discarded. The recovery guarantee differs depending on the xa mode.

xa Mode

With xa, the cache doesn't get registered as an { XAResource} with the transaction manager but merely can
follow the flow of a JTA transaction by registering a JTA {Synchronization}. The cache can end up
inconsistent with the other resources if there is a JVM crash in the mutating node. In this mode, some
inconsistency may occur between a cache and other XA resources (such as databases) after a crash. However,
the cache's data remains consistent because the transaction is still fully atomic on the cache itself.

xa_strict Mode
If xa_strict is used the cache will always respond to the TransactionManager's recover calls with the list

of prepared XIDs of failed transactions. Those transaction branches can then be committed or rolled back by
the transaction manager. This is the standard XA mechanism in strict compliance with the JTA specification.

Transactions in Ehcache 114/284

Sample Apps
Sample Apps

We have three sample applications showing how to use XA with a variety of technologies.

XA Sample App

This sample application uses JBoss application server. It shows an example using User managed transactions.
While we expect most people will use JTA from within Spring or EJB where the container rather than
managing it themselves, it clearly shows what is going on. The following snippet from our SimpleTX servlet
shows a complete transaction.

Ehcache cache = cacheManager.getEhcache ("xaCache");
UserTransaction ut = getUserTransaction();
printLine (servletResponse, "Hello...");
try {
ut .begin();
int index = serviceWithinTx (servletResponse, cache);
printLine (servletResponse, "Bye #" + index);
ut .commit () ;
} catch (Exception e) {
printLine (servletResponse,

"Caught a " + e.getClass() + "! Rolling Tx back");
if ('printStackTrace) {

PrintWriter s = servletResponse.getWriter();

e.printStackTrace(s);

s.flush{();

}

rollbackTransaction (ut);

The source code for the demo can be checked out from the Terracotta Forge. A README.txt explains how to
get the JTA Sample app going.

XA Banking Application

The Idea of this application is to show a real world scenario. A Web app reads <account transfer> messages
from a queue and tries to execute these account transfers. With JTA turned on, failures are rolled back so that
the cached account balance is always the same as the true balance summed from the database. This app is a
Spring-based Java web app running in a Jetty container. It has (embedded) the following components:

* A JMS Server (ActiveMQ)
¢ 2 databases (embedded Derby XA instances)
e 2 caches (JTA Ehcache)

All XA Resources are managed by Atomikos TransactionManager. Transaction demarcation is done using
Spring AOP's @Transactional annotation. You can run it with: mvn clean jetty:run. Then point
your browser at: http://localhost:9080. To see what happens without XA transactions: mvn clean
jetty:run -Dxa=no

The source code for the demo can be checked out from the Terracotta Forge. A README.txt explains how to
get the JTA Sample app going.

Transactions in Ehcache 115/284

http://svn.terracotta.org/svn/forge/projects/ehcache-jta-sample/trunk
http://localhost:9080
http://svn.terracotta.org/svn/forge/projects/ehcache-jta-banking/trunk

Examinator

Examinator

Examinator is our complete application that shows many aspects of caching in one web based Exam
application, all using the Terracotta Server Array. Check out from the Terracotta Forge.

Transaction Managers

Automatically Detected Transaction Managers
Ehcache automatically detects and uses the following transaction managers in the following order:

® GenericJNDI (e.g. Glassfish, JBoss, JTOM and any others that register themselves in JNDI at the
standard location of java:/TransactionManager

® Weblogic (since 2.4.0)

¢ Bitronix

e Atomikos

No configuration is required; they work out of the box. The first found is used.

Configuring a Transaction Manager

If your Transaction Manager is not in the above list or you wish to change the priority, provide your own
lookup class based on an implementation of
net.sf.ehcache.transaction.manager.TransactionManagerLookup and specify it in
place of the DefaultTransactionManagerLookup in ehcache.xml:

<transactionManagerLookup
class= "com.mycompany.transaction.manager.MyTransactionManagerLookupClass"
properties="" propertySeparator=":"/>

Another option is to provide a different location for the JNDI lookup by passing the jndiName property to the
DefaultTransactionManagerLookup. The example below provides the proper location for the
TransactionManager in GlassFish v3:

<transactionManagerLookup
class="net.sf.ehcache.transaction.manager.DefaultTransactionManagerLookup"
properties="jndiName=java:appserver/TransactionManager" propertySeparator=";"/>

Local Transactions

Local Transactions allow single phase commit across multiple cache operations, across one or more caches,
and in the same CacheManager, whether distributed with Terracotta or standalone. This lets you apply
multiple changes to a CacheManager all in your own transaction. If you also want to apply changes to other
resources such as a database then you need to open a transaction to them and manually handle commit and
rollback to ensure consistency. Local transactions are not controlled by a Transaction Manager. Instead there
is an explicit API where a reference is obtained to a TransactionController for the CacheManager
using cacheManager.getTransactionController () and the steps in the transaction are called
explicitly. The steps in a local transaction are:

Transactions in Ehcache 116/284

http://svn.terracotta.org/svn/forge/projects/exam/

Local Transactions

e transactionController.begin () - This marks the beginning of the local transaction on the
current thread. The changes are not visible to other threads or to other transactions.

® transactionController.commit () - Commits work done in the current transaction on the
calling thread.

e transactionController.rollback () - Rolls back work done in the current transaction on
the calling thread. The changes done since begin are not applied to the cache. These steps should be
placed in a try-catch block which catches TransactionException. If any exceptions are thrown,
rollback() should be called. Local Transactions has it's own exceptions that can be thrown, which are
all subclasses of CacheException. They are:

® TransactionException - a general exception

® TransactionInterruptedException - if Thread.interrupt() got called while the cache was
processing a transaction.

® TransactionTimeoutException - if a cache operation or commit is called after the
transaction timeout has elapsed.

Introduction Video

Ludovic Orban the primary author of Local Transactions presents an introductory video on Local
Transactions.

Configuration

Local transactions are configured as follows:

<cache name="sampleCache"

transactionalMode="1local"
</cache>

Isolation Level

As with the other transaction modes, the isolation level is READ _COMMITTED.

Transaction Timeouts

If a transaction cannot complete within the timeout period, then a TransactionTimeoutException
will be thrown. To return the cache to a consistent state you need to call
transactionController.rollback ().Because TransactionController is at the level of the
CacheManager, a default timeout can be set which applies to all transactions across all caches in a
CacheManager. If not set, it is 15 seconds. To change the defaultTimeout:

transactionController.setDefaultTransactionTimeout (int defaultTransactionTimeoutSeconds)
The countdown starts straight after begin () is called. You might have another local transaction on a JDBC
connection and you may be making multiple changes. If you think it could take longer than 15 seconds for an

individual transaction, you can override the default when you begin the transaction with:

transactionController.begin(int transactionTimeoutSeconds) {

Transactions in Ehcache 117/284

http://vimeo.com/21299785

Sample Code
Sample Code

This example shows a transaction which performs multiple operations across two caches.

CacheManager cacheManager = CacheManager.getInstance();

try {
cacheManager.getTransactionController () .begin();
cachel.put (new Element (1, "one"));
cache2.put (new Element (2, "two"));
cachel.remove (4);
cacheManager.getTransactionController () .commit () ;
} catch (CacheException e) {
cacheManager.getTransactionController () .rollback ()

}

What can go wrong

JVM crash between begin and commit

On restart none of the changes applied after begin are there. On restart, nothing needs to be done. Under the

covers in the case of a Terracotta cluster, the Element's new value is there but not applied. It's will be lazily
removed on next access.

Performance

Managing Contention

If two transactions, either standalone or across the cluster, attempt to perform a cache operation on the same
element then the following rules apply:

 The first transaction gets access
¢ The following transactions will block on the cache operation until either the first transaction
completes or the transaction timeout occurs.

Under the covers, when an element is involved in a transaction, it is replaced with a new element with a
marker that is locked, along with the transaction ID. The normal cluster semantics are used. Because
transactions only work with consistency=strong caches, the first transaction will be the thread that manages to
atomically place a soft lock on the Element. (Up to Terracotta 3.4 this was done with write locks. After that it
is done with the CAS based putlfAbsent and replace methods).

What granularity of locking is used?
Ehcache standalone up to 2.3 used page level locking, where each segment in the CompoundStore is

locked. From 2.4, it is one with soft locks stored in the Element itself and is on a key basis. Terracotta
clustered caches are locked on the key level.

Performance Comparisons

Any transactional cache adds an overhead which is significant for writes and nearly negligible for reads.
Within the modes the relative time take to perform writes, where off = 1, is:

Transactions in Ehcache 118/284

Performance Comparisons

¢ off - no overhead

® xa_strict - 20 times slower

® xa - 3 times slower

® Jocal - 3 times slower The relative read performance is:
¢ off - no overhead

® xa_strict - 20 times slower

® xa - 30% slower

e Jocal - 30% slower

Accordingly, xa_strict should only be used where it's full guarantees are required, othewise one of the other
modes should be used.

FAQ

Why do some threads regularly time out and throw an excption?

In transactional caches, write locks are in force whenever an element is updated, deleted, or added. With
concurrent access, these locks cause some threads to block and appear to deadlock. Eventually the deadlocked
threads time out (and throw an exception) to avoid being stuck in a deadlock condition.

Is IBM Websphere Transaction Manager supported?

Mostly. xa_strict is not supported due to each version of Websphere essentially being a custom
implementation i.e. no stable interface to implement against. However, xa, which uses TransactionManager
callbacks and 1ocal are supported.

When using Spring, make sure your configuration is set up correctly with respect to the
PlatformTransactionManager and the Websphere TM.

To confirm that Ehcache will succeed, try to manually register a

com.ibm.websphere. jtaextensions.SynchronizationCallback inthe
com.ibm.websphere. jtaextensions.ExtendedJTATransaction. Simply get
java:comp/websphere/ExtendedJTATransaction from JNDI, cast that to
com.ibm.websphere. jtaextensions.ExtendedJTATransaction and call the
registerSynchronizationCallbackForCurrentTran method. If you succeed, then Ehcache
should too.

How do transactions interact with Write-behind and Write-through
caches?

If your transactional enabled cache is being used with a writer, write operations will be queued until
transaction commit time. Solely a Write-through approach would have its potential XAResource participate in
the same transaction. Write-behind, while supported, should probably not be used with an XA transactional
Cache, as the operations would never be part of the same transaction. Your writer would also be responsible
for obtaining a new transaction... Using Write-through with a non XA resource would also work, but there is
no guarantee the transaction will succeed after the write operations have been executed successfully. On the
other hand, any thrown exception during these write operations would cause the transaction to be rolled back
by having UserTransaction.commit() throw a RollbackException.

Transactions in Ehcache 119/284

Are Hibernate Transactions supported?

Are Hibernate Transactions supported?

Ehcache is a "transactional" cache for Hibernate purposes. The
net.sf.ehcache.hibernate.EhCacheRegionFactory has support for Hibernate entities
configured with <cache usage="transactional"/>.

How do | make WebLogic 10 work with Ehcache JTA?

WebLogic uses an optimization that is not supported by our implementation. By default WebLogic 10 will
spawn threads to start the Transaction on each XAResource in parallel. As we need transaction work to be
performed on the same Thread, you will have to turn this optimization off by setting
parallel-xa-enabled option to false in your domain configuration :

... 300 false 30 ...

How do | make Atomikos work with Ehcache JTA's xa mode?

Atomikos has a bug which makes the xa mode's normal transaction termination mechanism unreliable, There
is an alternative termination mechanism built in that transaction mode that is automatically enabled when
net.sf.ehcache.transaction.xa.alternativeTerminationMode is set to true or when
Atomikos is detected as the controlling transaction manager. This alternative termination mode has strict
requirement on the way threads are used by the transaction manager and Atomikos's default settings won't
work. You have to configure this property to make it work:

com.atomikos.icatch.threaded_2pc=false

Transactions in Ehcache 120/284

http://fogbugz.atomikos.com/default.asp?community.6.802.3

Explicit Locking

Introduction

This package contains an implementation of an Ehcache which provides for explicit locking, using Read and
Write locks. It is possible to get more control over Ehcache's locking behaviour to allow business logic to
apply an atomic change with guaranteed ordering across one or more keys in one or more caches. It can
therefore be used as a custom alternative to XA Transactions or Local transactions.

With that power comes a caution. It is possible to create deadlocks in your own business logic using this APIL

Note that prior to Ehcache 2.4, this API was implemented as a CacheDecorator and was available in the
ehcache-explicitlocking module. It is now built into the core module.

The API

The following methods are available on Cache and Ehcache.

/**
* Acquires the proper read lock for a given cache key
*
* @param key - The key that retrieves a value that you want to protect via locking
*/
public void acquireReadLockOnKey (Object key) {
this.acquireLockOnKey (key, LockType.READ);
}
/**
* Acquires the proper write lock for a given cache key
*
* @param key - The key that retrieves a value that you want to protect via locking
*/
public void acquireWriteLockOnKey (Object key) {
this.acquireLockOnKey (key, LockType.WRITE);

}

/**

* Try to get a read lock on a given key. If can't get it in timeout millis then

* return a boolean telling that it didn't get the lock

*

* @param key - The key that retrieves a value that you want to protect via locking
* @param timeout - millis until giveup on getting the lock

* @return whether the lock was awarded

* @throws InterruptedException

*/

public boolean tryReadLockOnKey (Object key, long timeout) throws InterruptedException {
Sync s = getLockForKey (key);
return s.tryLock (LockType.READ, timeout);

}

/**

* Try to get a write lock on a given key. If can't get it in timeout millis then

* return a boolean telling that it didn't get the lock

*

* @param key - The key that retrieves a value that you want to protect via locking
* @param timeout - millis until giveup on getting the lock

* @return whether the lock was awarded

* @throws InterruptedException

*/

Explicit Locking 121/284

The API

public boolean tryWriteLockOnKey (Object key, long timeout) throws InterruptedException {
Sync s = getLockForKey (key);
return s.tryLock (LockType.WRITE, timeout);
}
/**
* Release a held read lock for the passed in key
*
* @param key - The key that retrieves a value that you want to protect via locking
*/
public void releaseReadLockOnKey (Object key) {
releaselLockOnKey (key, LockType.READ);
}
/**
* Release a held write lock for the passed in key
*
* @param key - The key that retrieves a value that you want to protect via locking
*/
public void releaseWriteLockOnKey (Object key) {
releaselLockOnKey (key, LockType.WRITE);
}
/**
* Returns true if a read lock for the key is held by the current thread
*
* @param key
* @return true if a read lock for the key is held by the current thread
*/
boolean isReadLockedByCurrentThread (Object key);
/**

* Returns true if a write lock for the key is held by the current thread
*

* Only Terracotta clustered cache instances currently support querying a thread's read lock hold
*

* @param key

* @return true if a write lock for the key is held by the current thread

*/

boolean isWriteLockedByCurrentThread (Object key);

Example

Here is a brief example:

String key = "123";
Foo val = new Foo();
cache.acquireWriteLockOnKey (key) ;
try {
cache.put (new Element (key, val));
} finally {
cache.releaseWriteLockOnKey (key) ;
}

...sometime later

String key = "123";
cache.acquireWriteLockOnKey (key) ;
try |

Object cachedvVal = cache.get (key) .getValue();
cachedVal.setSomething ("abc");
cache.put (new Element (key, cachedval));
} finally {
cache.releaseWriteLockOnKey (key) ;

}

Explicit Locking 122/284

Supported Topologies
Supported Topologies

Except as noted in the Javadoc (see above), explicit locking is supported in Ehcache standalone and also in
Distributed Ehcache. It is not supported in Replicated Ehcache.

How it works

A READ lock does not prevent other READers from also acquiring a READ lock and reading. A READ lock
cannot be obtained if there is an outstanding WRITE lock - it will queue. A WRITE lock cannot be obtained
while there are outstanding READ locks - it will queue. In each case the lock should be released after use to
avoid locking problems. The lock release should be in a finally block. If before each read you acquire a
READ lock and then before each write you acquire a WRITE lock, then an isolation level akin to
READ_COMMITTED is achieved.

Explicit Locking 123/284

Write-through and Write-behind Caching with the
CacheWriter

Introduction

Write-through caching is a caching pattern where writes to the cache cause writes to an underlying resource.
The cache acts as a facade to the underlying resource. With this pattern, it often makes sense to read through
the cache too. Write-behind caching uses the same client API; however, the write happens asynchronously.
Ehcache-2.0 introduced write-through and write-behind caching. While file systems or a web-service clients
can underlie the facade of a write-through cache, the most common underlying resource is a database. To
simplify the discussion, we will use the database as the example resource.

Potential Benefits of Write-Behind

The major benefit of write-behind is database offload. This can be achieved in a number of ways:

e time shifting - moving writes to a specific time or time interval. For example, writes could be batched
up and written overnight, or at 5 minutes past the hour, to avoid periods of peak contention.

e rate limiting - spreading writes out to flatten peaks. Say a Point of Sale network has an end-of-day
procedure where data gets written up to a central server. All POS nodes in the same time zone will
write all at once. A very large peak will occur. Using rate limiting, writes could be limited to 100
TPS, and the queue of writes are whittled down over several hours

e conflation - consolidate writes to create fewer transactions. For example, a value in a database row is
updated by 5 writes, incrementing it from 10 to 20 to 31 to 40 to 45. Using conflation, the 5
transactions are replaced by one to update the value from 10 to 45.

These benefits must be weighed against the limitations and constraints imposed.

Limitations & Constraints of Write-Behind

Transaction Boundaries

If the cache participates in a JTA transaction (ehcache-2.0 and higher), which means it is an XAResource,
then the cache can be made consistent with the database. A write to the database, and a commit or rollback,
happens with the transaction boundary. In write-behind, the write to the resource happens after the write to the
cache. The transaction boundary is the write to the outstanding queue, not the write behind. In write-through
mode, commit can get called and both the cache and the underlying resource can get committed at once.
Because the database is being written to outside of the transaction, there is always a risk that a failure on the
eventual write will occur. While this can be mitigated with retry counts and delays, compensating actions may
be required.

Time delay

The obvious implication of asynchronous writes is that there is a delay between when the cache is updated and
when the database is updated. This introduces an inconsistency between the cache and the database, where the
cache holds the correct value and the database will be eventually consistent with the cache. The data passed
into the CacheWriter methods is a snapshot of the cache entry at the time of the write to operation. A read

Write-through and Write-behind Caching with the CacheWriter 124/284

Time delay

against the database will result in incorrect data being loaded.

Applications Tolerant of Inconsistency
The application must be tolerant of inconsistent data. The following examples illustrate this requirement:

¢ The database is logging transactions and only appends are done.

¢ Reading is done by a part of the application that does not write, so there is no way that data can be
corrupted. The application is tolerant of delays. For example, a news application where the reader
displays the articles that are written.

Note if other applications are writing to the database, then a cache can often be inconsistent with the database.

Node time synchronisation

Ideally node times should be synchronised. The write-behind queue is generally written to the underlying
resource in timestamp order, based on the timestamp of the cache operation, although there is no guaranteed
ordering. The ordering will be more consistent if all nodes are using the same time. This can easily be
achieved by configuring your system clock to synchronise with a time authority using Network Time
Protocol.

No ordering guarantees

The items on the write-behind queue are generally in order, but this isn't guaranteed. In certain situations and
more particularly in clustered usage, the items can be processed out of order. Additionally, when batching is
used, write and delete collections are aggregated separately and can be processed inside the CacheWriter in a
different order than the order that was used by the queue. Your application must be tolerant of item reordering
or you need to compensate for this in your implementation of the CacheWriter. Possible examples are:

e Working with versioning in the cache elements.

You may have to explicitly version elements. Auto-versioning is off by default and is effective only
for unclustered MemoryStore caches. Distributed caches or caches that use off-heap or disk stores
cannot use auto-versioning. To enable auto-versioning, set the system property
net.sf.ehcache.element.version.auto (it is false by default). Note that if this property
is turned on for one of the ineligible caches, auto-versioning will silently fail.

e Verifications with the underlying resource to check if the scheduled write-behind operation is still
relevant.

Using a combined Read-Through and Write-Behind Cache

For applications that are not tolerant of inconsistency, the simplest solution is for the application to always
read through the same cache that it writes through. Provided all database writes are through the cache,
consistency is guaranteed. And in the distributed caching scenario, using Terracotta clustering extends the
same guarantee to the cluster. If using transactions, the cache is the XAResource, and a commit is a commit to
the cache. The cache effectively becomes the System Of Record ("SOR"). Terracotta clustering provides HA
and durability and can easily act as the SOR. The database then becomes a backup to the SOR. The following
aspects of read-through with write-behind should be considered:

Write-through and Write-behind Caching with the CacheWriter 125/284

Lazy Loading
Lazy Loading

The entire data set does not need to be loaded into the cache on startup. A read-through cache uses a
CacheLoader that loads data into the cache on demand. In this way the cache can be populated lazily.

Caching of a Partial Dataset

If the entire dataset cannot fit in the cache, then some reads will miss the cache and fall through to the
CacheLoader which will in turn hit the database. If a write has occurred but has not yet hit the database due
to write-behind, then the database will be inconsistent. The simplest solution is to ensure that the entire dataset
is in the cache. This then places some implications on cache configuration in the areas of expiry and eviction.
Eviction

Eviction or flushing of elements, occurs when the maximum elements for the cache have been exceeded. Be
sure to size the cache appropriately to avoid eviction or flushing. See How to Size Caches for more
information.

Expiry

Even if all of the dataset can fit in the cache, it could be evicted if Elements expire. Accordingly, both
timeToLive and timeToIdle should be set to eternal ("0") to prevent this from happening.

Introductory Video

Alex Snaps the primary author of Write Behind presents an introductory video on Write Behind.

Sample Application
We have created a sample web application for a raffle which fully demonstrates how to use write behind. You

can also checkout the Ehcache Raffle application, that demonstrates Cache Writers and Cache Loaders from
github.com.

Ehcache Versions
Both Ehcache standalone (DX) and with Terracotta Server Array (Ehcache EX and FX) are supported.

Ehcache DX (Standalone Ehcache)

The write-behind queue is stored locally in memory. It supports all configuration options, but any data in the
queue will be lost on JVM shutdown.

Ehcache EX and FX
Durable HA write-behind Queue

EX and FX when used with the Terracotta Server Array will store the queue on the Terracotta Server Array
and can thus be configured for durability and HA. The data is still kept in the originating node for

Write-through and Write-behind Caching with the CacheWriter 126/284

http://vimeo.com/21193026
https://github.com/alexsnaps/Ehcache-Raffle

Ehcache EX and FX

performance.

Configuration

There are many configuration options. See the CacheWriterConfiguration for properties that may be
set and their effect. Below is an example of how to configure the cache writer in XML:

<cache name="writeThroughCachel" ... >

<cacheWriter writeMode="write_behind" maxWriteDelay="8" ratelLimitPerSecond="5"
writeCoalescing="true" writeBatching="true" writeBatchSize="20"
retryAttempts="2" retryAttemptDelaySeconds="2">

<cacheWriterFactory class="com.company.MyCacheWriterFactory"
properties="7just.some.property=test; another.property=test2" propertySeparator
</cacheWriter>
</cache>

Further examples:

<cache name="writeThroughCache2" ... >
<cacheWriter/>

</cache>

<cache name="writeThroughCache3" ... >

<cacheWriter writeMode="write_through" notifyListenersOnException="true" maxWriteDelay="30"
ratelLimitPerSecond="10" writeCoalescing="true" writeBatching="true" writeBatchSize="8"
retryAttempts="20" retryAttemptDelaySeconds="60"/>

</cache>

<cache name="writeThroughCached4" ... >

<cacheWriter writeMode="write_through" notifylListenersOnException="false" maxWriteDelay="0"
ratelLimitPerSecond="0" writeCoalescing="false" writeBatching="false" writeBatchSize="1"
retryAttempts="0" retryAttemptDelaySeconds="0">

<cacheWriterFactory class="net.sf.ehcache.writer.WriteThroughTestCacheWriterFactory"/>

</cacheWriter>

</cache>

<cache name="writeBehindCache5" ... >

<cacheWriter writeMode="write-behind" notifylListenersOnException="true" maxWriteDelay="8" rateli
writeCoalescing="true" writeBatching="false" writeBatchSize="20"
retryAttempts="2" retryAttemptDelaySeconds="2">

<cacheWriterFactory class="net.sf.ehcache.writer.WriteThroughTestCacheWriterFactory"

properties="just.some.property=test; another.property=test2" propertySeparator="
</cacheWriter>
</cache>

This configuration can also be achieved through the Cache constructor in Java:

Cache cache = new Cache(

new CacheConfiguration ("cacheName", 10)

.cacheWriter (new CacheWriterConfiguration ()

.writeMode (CacheWriterConfiguration.WriteMode.WRITE_BEHIND)

.maxWriteDelay (8)

.ratelLimitPerSecond (5)

.writeCoalescing (true)

.writeBatching (true)

.writeBatchSize (20)

.retryAttempts (2)

.retryAttemptDelaySeconds (2)

.cacheWriterFactory (new CacheWriterConfiguration.CacheWriterFactoryConfiguration ()
.className ("com.company.MyCacheWriterFactory")
.properties ("just.some.property=test; another.property=test2")
.propertySeparator (";"))));

Write-through and Write-behind Caching with the CacheWriter 127/284

Configuration

Instead of relying on a CacheWriterFactoryConfiguration to create a CacheWriter, it's also
possible to explicitly register a CacheWriter instance from within Java code. This allows you to refer to
local resources like database connections or file handles.

Cache cache = manager.getCache ("cacheName") ;
MyCacheWriter writer = new MyCacheWriter (jdbcConnection);
cache.registerCacheWriter (writer);

Configuration Attributes
The CacheWriterFactory supports the following attributes:
All modes

e write-mode [write-through | write-behind] - Whether to run in write-behind or write-through mode.
The default is write-through.

write-through mode only

¢ notifyListenersOnException - Whether to notify listeners when an exception occurs on a store
operation. Defaults to false. If using cache replication, set this attribute to "true" to ensure that
changes to the underlying store are replicated.

write-behind mode only

¢ writeBehindMaxQueueSize - The maximum number of elements allowed per queue, or per bucket (if
the queue has multiple buckets). "0" means unbounded (default). When an attempt to add an element
is made, the queue size (or bucket size) is checked, and if full then the operation is blocked until the
size drops by one. Note that elements or a batch currently being processed (and coalesced elements)
are not included in the size value. Programmatically, this attribute can be set with
net.sf.ehcache.config.CacheWriterConfiguration.setWriteBehindMaxQueueSize (

¢ writeBehindConcurrency - The number of thread-bucket pairs on the node for the given cache (default
is 1). Each thread uses the settings configured for write-behind. For example, if rateLimitPerSecond is
set to 100, each thread-bucket pair will perform up to 100 operations per second. In this case, setting
writeBehindConcurrency="4" means that up to 400 operations per second will occur on the node for
the given cache. Programmatically, this attribute can be set with
net.sf.ehcache.config.CacheWriterConfiguration.setWriteBehindConcurrency ()

e maxWriteDelaySeconds - The maximum number of seconds to wait before writing behind. Defaults
to 0. If set to a value greater than 0, it permits operations to build up in the queue to enable effective
coalescing and batching optimisations.

e rateLimitPerSecond - The maximum number of store operations to allow per second.

¢ writeCoalescing - Whether to use write coalescing. Defaults to false. When set to true, if multiple
operations on the same key are present in the write-behind queue, then only the latest write is done
(the others are redundant). This can dramatically reduce load on the underlying resource.

e writeBatching - Whether to batch write operations. Defaults to false. If set to true, storeAll and
deleteAll will be called rather than store and delete being called for each key. Resources such as
databases can perform more efficiently if updates are batched to reduce load.

e writeBatchSize - The number of operations to include in each batch. Defaults to 1. If there are less
entries in the write-behind queue than the batch size, the queue length size is used. Note that batching
is split across operations. For example, if the batch size is 10 and there were 5 puts and 5 deletes, the
CacheWriter is invoked. It does not wait for 10 puts or 10 deletes.

Write-through and Write-behind Caching with the CacheWriter 128/284

Configuration Attributes

e retry Attempts - The number of times to attempt writing from the queue. Defaults to 1.
e retryAttemptDelaySeconds - The number of seconds to wait before retrying.

API

CacheLoaders are exposed for API use through the cache.getWithLoader (.. .) method.
CacheWriters are exposed with cache .putWithWriter (...) and
cache.removeWithWriter (...) methods. For example, following is the method signature for
cache.putWithWriter(...).

/ * K

* Put an element in the cache writing through a CacheWriter. If no CacheWriter has been
* set for the cache, then this method has the same effect as cache.put().

Resets the access statistics on the element, which would be the case if it has previously
been gotten from a cache, and is now being put back.

Also notifies the CacheEventListener, if the writer operation succeeds, that:

- the element was put, but only if the Element was actually put.
- if the element exists in the cache, that an update has occurred, even if the element
would be expired if it was requested

@param element An object. If Serializable it can fully participate in replication and the
DiskStore.

@throws IllegalStateException if the cache is not {@link net.sf.ehcache.Status#STATUS_ALIVE}
@throws IllegalArgumentException if the element is null

@throws CacheException
/
vold putWithWriter (Element element) throws IllegalArgumentException, IllegalStateException,
CacheException;

L e . S S R SR

See the Cache JavaDoc for the complete APL

SPI

The Ehcache write-through SPI is the CacheWriter interface. Implementers perform writes to the
underlying resource in their implementation.

/**

* A CacheWriter is an interface used for write-through and write-behind caching to a

* underlying resource.

* <p/>

* If configured for a cache, CacheWriter's methods will be called on a cache operation.

* A cache put will cause a CacheWriter write

* and a cache remove will cause a writer delete.

* <p>

* Implementers should create an implementation which handles storing and deleting to an

* underlying resource.

* </p>

* <h4>Write-Through</h4>

* In write-through mode, the cache operation will occur and the writer operation will occur
* before CacheEventListeners are notified. If

* the write operation fails an exception will be thrown. This can result in a cache which
* i1s inconsistent with the underlying resource.

*

To avoid this, the cache and the underlying resource should be configured to participate

Write-through and Write-behind Caching with the CacheWriter 129/284

(%)
L

in a transaction. In the event of a failure

a rollback can return all components to a consistent state.

<p/>

<h4>Write-Behind</h4>

In write-behind mode, writes are written to a write-behind queue. They are written by a
separate execution thread in a configurable

way. When used with Terracotta Server Array, the queue is highly available. In addition
any node in the cluster may perform the

write-behind operations.

<p/>

<h4>Creation and Configuration</h4>

CacheWriters can be created using the CacheWriterFactory.

<p/>

The manner upon which a CacheWriter is actually called is determined by the

{@link net.sf.ehcache.config.CacheWriterConfiguration} that is set up for a cache

using the CacheWriter.

<p/>

See the CacheWriter chapter in the documentation for more information on how to use writers.

@author Greg Luck

@author Geert Bevin

@version $Id: $

/

public interface CacheWriter {

/**

Creates a clone of this writer. This method will only be called by ehcache before a
cache is initialized.

<p/>

Implementations should throw CloneNotSupportedException if they do not support clone
but that will stop them from being used with defaultCache.

L R . S S S N S . S N S

*

@return a clone

@throws CloneNotSupportedException if the extension could not be cloned.
/

public CacheWriter clone (Ehcache cache) throws CloneNotSupportedException;

/**

L T

* Notifies writer to initialise themselves.

* <p/>

* This method is called during the Cache's initialise method after it has changed it's
* status to alive. Cache operations are legal in this method.

*

* @throws net.sf.ehcache.CacheException

*/

void init ();

/**

* Providers may be doing all sorts of exotic things and need to be able to clean up on

* dispose.

* <p/>

* Cache operations are illegal when this method is called. The cache itself is partly
* disposed when this method is called.

*/

void dispose() throws CacheException;

/**

* Write the specified value under the specified key to the underlying store.
This method is intended to support both key/value creation and value update for a
specific key.

@param element the element to be written

/

volid write (Element element) throws CacheException;
/**

* Write the specified Elements to the underlying store. This method is intended to

* % o ok ot

Write-through and Write-behind Caching with the CacheWriter 130/284

FAQ

* support both insert and update.
* If this operation fails (by throwing an exception) after a partial success,
* the convention is that entries which have been written successfully are to be removed
* from the specified mapEntries, indicating that the write operation for the entries left
* in the map has failed or has not been attempted.
*
* @param elements the Elements to be written
*/
void writeAll (Collection<Element> elements) throws CacheException;
/**

* Delete the cache entry from the store
*

* @param entry the cache entry that is used for the delete operation

*/

void delete (CacheEntry entry) throws CacheException;
/**

* Remove data and keys from the underlying store for the given collection of keys, if

* present. If this operation fails * (by throwing an exception) after a partial success,

* the convention is that keys which have been erased successfully are to be removed from

* the specified keys, indicating that the erase operation for the keys left in the collection

* has failed or has not been attempted.

*

* @param entries the entries that have been removed from the cache

*/

void deleteAll (Collection<CacheEntry> entries) throws CacheException;
/**
* This method will be called whenever an Element couldn't be handled by the writer and all of
* the {@link net.sf.ehcache.config.CacheWriterConfiguration#getRetryAttempts () retryAttempts} ha
* <p>When batching is enabled, all of the elements in the failing batch will be passed to this m
* <p>Try to not throw RuntimeExceptions from this method. Should an Exception occur, it will be
* the element will still be lost.
* @param element the Element that triggered the failure, or one of the elements in the batch tha
* @param operationType the operation we tried to execute
* @param e the RuntimeException thrown by the Writer when the last retry attempt was being execu
*

/

void throwAway (Element element, SingleOperationType operationType, RuntimeException e);

FAQ

Is there a way to monitor the write-behind queue size?

Use the method
net.sf.ehcache.statistics.LiveCacheStatistics#getWriterQueueLength (). This
method returns the number of elements on the local queue (in all local buckets) that are waiting to be
processed, or -1 if no write-behind queue exists. Note that elements or a batch currently being processed (and
coalesced elements) are not included in the returned value.

What happens if an exception occurs when the writer is called?

Once all retry attempts have been executed, on exception the element (or all elements of that batch) will be
passed to the net . sf.ehcache.writer.CacheWriter#throwAway method. The user can then act
one last time on the element that failed to write. A reference to the last thrown RuntimeException, and the
type of operation that failed to execute for the element, are received. Any Exception thrown from that method
will simply be logged and ignored. The element will be lost forever. It is important that implementers are
careful about proper Exception handling in that last method.

Write-through and Write-behind Caching with the CacheWriter 131/284

What happens if an exception occurs when the writer is called?

A handy pattern is to use an eternal cache (potentially using a writer, so it is persistent) to store failed
operations and their element. Users can monitor that cache and manually intervene on those errors at a later
point.

Write-through and Write-behind Caching with the CacheWriter 132/284

BlockingCache and SelfPopulatingCache

Introduction

The net .sf.ehcache.constructs package contains some applied caching classes which use the core
classes to solve everyday caching problems. Two of these are BlockingCache and SelfPopulatingCache.

Blocking Cache

Imagine you have a very busy web site with thousands of concurrent users. Rather than being evenly
distributed in what they do, they tend to gravitate to popular pages. These pages are not static, they have
dynamic data which goes stale in a few minutes. Or imagine you have collections of data which go stale in a
few minutes. In each case the data is extremely expensive to calculate. Let's say each request thread asks for
the same thing. That is a lot of work. Now, add a cache. Get each thread to check the cache; if the data is not
there, go and get it and put it in the cache.

Now, imagine that there are so many users contending for the same data that in the time it takes the first user
to request the data and put it in the cache, 10 other users have done the same thing. The upstream system,
whether a JSP or velocity page, or interactions with a service layer or database are doing 10 times more work
than they need to. Enter the BlockingCache. It is blocking because all threads requesting the same key wait for
the first thread to complete. Once the first thread has completed the other threads simply obtain the cache
entry and return. The BlockingCache can scale up to very busy systems. Each thread can either wait
indefinitely, or you can specify a timeout using the t imeoutMil1is constructor argument.

SelfPopulatingCache

You want to use the BlockingCache, but the requirement to always release the lock creates gnarly code. You
also want to think about what you are doing without thinking about the caching. Enter the
SelfPopulatingCache. The name SelfPopulatingCache is synonymous with Pull-through cache, which is a
common caching term. SelfPopulatingCache though always is in addition to a BlockingCache.
SelfPopulatingCache uses a CacheEntryFactory, that given a key, knows how to populate the entry.
Note: JCache inspired getWithLoader and getAllWithLoader directly in Ehcache which work with a
CacheLoader may be used as an alternative to SelfPopulatingCache.

BlockingCache and SelfPopulatingCache 133/284

Terracotta Cluster Events

Introduction

Beginning with Ehcache 2.0, the Terracotta Distributed Ehcache cluster events API provides access to
Terracotta cluster events and cluster topology. This event-notification mechanism reports events related to the

nodes in the Terracotta cluster, not cache events.

Cluster Topology

The interface net . sf.ehcache.cluster.CacheCluster provides methods for obtaining topology

information for a Terracotta cluster. The following methods are available:

® String getScheme ()

Returns a scheme name for the cluster information. Currently TERRACOTTA is the only scheme

supported.

® Collection<ClusterNode> getNodes ()

Returns information on all the nodes in the cluster, including ID, hostname, and IP address.
®boolean addTopologyListener (ClusterTopologyListener listener)

Adds a cluster-events listener. Returns true if the listener is already active.
®boolean removeTopologyListener (ClusterTopologyListener)

Removes a cluster-events listener. Returns true if the listener is already inactive.

The interface net . sf.ehcache.cluster.ClusterNode provides methods for obtaining information

on specific cluster nodes.

public interface ClusterNode {
/**

* Get a unique (per cluster) identifier for this node.

*

* @return Unique per cluster identifier

*/

String getId();

/**

* Get the host name of the node
*

* @return Host name of node

*/

String getHostname () ;

/**

* Get the IP address of the node
*

* @return IP address of node

*/

String getlIp();

}

Terracotta Cluster Events

134/284

Listening For Cluster Events
Listening For Cluster Events

The interface net . sf.ehcache.cluster.ClusterTopologyListener provides methods for
detecting the following cluster events:

public interface ClusterTopologyListener ({
/**

* A node has joined the cluster

*

* @param node The joining node

*/

void nodeJoined (ClusterNode node) ;
/**

* A node has left the cluster
*

* @param node The departing node
*/
void nodeLeft (ClusterNode node);
/**

* This node has established contact with the cluster and can execute clustered operations.
*

* @param node The current node

*/

void clusterOnline (ClusterNode node) ;

/**

* This node has lost contact (possibly temporarily) with the cluster and cannot execute

* clustered operations
*

* @param node The current node
*/
void clusterOffline (ClusterNode node);

}

/**

* This node lost contact and rejoined the cluster again.
*

* This event is only fired in the node which rejoined and not to all the connected nodes * @param oldNode
The old node which got disconnected * @param newNode The new node after rejoin */ void
clusterRejoined(ClusterNode oldNode, ClusterNode newNode);

Example Code

This example prints out the cluster nodes and then registers a ClusterTopologyListener which prints
out events as they happen.

CacheManager mgr =
CacheCluster cluster = mgr.getCluster ("TERRACOTTA");
// Get current nodes

Collection<ClusterNode> nodes = cluster.getNodes () ;
for (ClusterNode node : nodes) {
System.out.println(node.getId() + " " + node.getHostname() + " " + node.getIp());

// Register listener
cluster.addTopologyListener (new ClusterTopologyListener () {

public void nodeJoined(ClusterNode node) { System.out.println(node + " Jjoined"); 1}
public void nodelLeft (ClusterNode node) { System.out.println(node + " left"); }
public void clusterOnline (ClusterNode node) { System.out.println(node + " enabled"); }

public void clusterOffline (ClusterNode node) { System.out.println(node + " disabled"); }

Terracotta Cluster Events 135/284

Example Code

public void clusterRejoined(ClusterNode node, ClusterNode newNode) {
System.out.println(node + " rejoined the cluster as " + newNode);

}
1)

Uses for Cluster Events
From Ehcache 2.4.1/Terracotta 3.5 these events are used for operation of NonStopCache

If Ehcache got disconnected from the Terracotta Server Array say due to a network issue, then in Ehcache 2.0
each cache operation will block indefinitely. In other words it is configured for fail-fast to protect the ACIDity
of the cluster. However this approach will also cause processing of requests to the cache to stop likely causing
the outage to cascade.

In some cases graceful degradation may be more appropriate. When the clusterOffline events fire you
could call Cache.setDisabled (), which will cause puts and gets to bypass the cache. Your application
would then degrade to operating without a cache, but might be able to do useful work. You could also take the
whole application off-line. When connectivity is restored you could then reverse the action, taking the cache
back online or the application back on line as the case may be.

Terracotta Cluster Events 136/284

Cache Decorators

Introduction

Ehcache 1.2 introduced the Ehcache interface, of which Cache is an implementation. It is possible and
encouraged to create Ehcache decorators that are backed by a Cache instance, implement Ehcache and provide
extra functionality.

The Decorator pattern is one of the the well known Gang of Four patterns.

Decorated caches are accessed from the CacheManager using CacheManager.getEhcache (String

name) . Note that, for backward compatibility, CacheManager.getCache (String name) has been
retained. However only CacheManager.getEhcache (String name) returns the decorated cache.

Creating a Decorator

Programmatically
Cache decorators are created as follows:
BlockingCache newBlockingCache = new BlockingCache (cache);

The class must implement Ehcache.

By Configuration

Cache decorators can be configured directly in ehcache.xml. The decorators will be created and added to the
CacheManager.

It accepts the name of a concrete class that extends net.sf.ehcache.constructs.CacheDecoratorFactory
The properties will be parsed according to the delimiter (default is comma ',') and passed to the concrete
factory's createDecoratedEhcache (Ehcache cache, Properties properties) method

along with the reference to the owning cache.

It is configured as per the following example:

<cacheDecoratorFactory
class="com.company.SomethingCacheDecoratorFactory"
properties="propertyl=36 ..." />

Note that from version 2.2, decorators can be configured against the defaultCache. This is very useful for
frameworks like Hibernate that add caches based on the defaultCache.

Adding decorated caches to the CacheManager

Having created a decorator programmatically it is generally useful to put it in a place where multiple threads
may access it. Note that decorators created via configuration in ehcache.xml have already been added to the

Cache Decorators 137/284

Adding decorated caches to the CacheManager

CacheManager.

Using CacheManager.replaceCacheWithDecoratedCache ()

A built-in way is to replace the Cache in CacheManager with the decorated one. This is achieved as in the
following example:

cacheManager.replaceCacheWithDecoratedCache (cache, newBlockingCache) ;

The CacheManager {replaceCacheWithDecoratedCache} method requires that the decorated
cache be built from the underlying cache from the same name.

Note that any overwridden Ehcache methods will take on new behaviours without casting, as per the normal
rules of Java. Casting is only required for new methods that the decorator introduces.

Any calls to get the cache out of the CacheManager now return the decorated one.

A word of caution. This method should be called in an appropriately synchronized init style method before
multiple threads attempt to use it. All threads must be referencing the same decorated cache. An example of a
suitable init method is found in CachingFilter:

/**

* The cache holding the web pages. Ensure that all threads for a given cache name
* are using the same instance of this.

*/

private BlockingCache blockingCache;

/**

* Initialises blockingCache to use

@throws CacheException The most likely cause is that a cache has not been
configured in Ehcache's configuration file ehcache.xml
for the filter name

* % X ok o

/
public void doInit () throws CacheException {
synchronized (this.getClass()) {
if (blockingCache == null) {
final String cacheName = getCacheName () ;
Ehcache cache = getCacheManager () .getEhcache (cacheName) ;
if (! (cache instanceof BlockingCache)) {
//decorate and substitute
BlockingCache newBlockingCache = new BlockingCache (cache);
getCacheManager () .replaceCacheWithDecoratedCache (cache, newBlockingCache) ;
}
blockingCache = (BlockingCache) getCacheManager () .getEhcache (getCacheName ());

Ehcache blockingCache = singletonManager.getEhcache ("sampleCachel");

The returned cache will exhibit the decorations.

Using CacheManager .addDecoratedCache ()

Sometimes you want to add a decorated cache but retain access to the underlying cache.

Cache Decorators 138/284

Using CacheManager.addDecoratedCache()

The way to do this is to create a decorated cache and then call cache. setName (new_name) and then add
it to CacheManager with CacheManager .addDecoratedCache ().

/**

Adds a decorated {@link Ehcache} to the CacheManager. This method neither creates
the memory/disk store nor initializes the cache. It only adds the cache reference
to the map of caches held by this cacheManager.

* %

*

* It is generally required that a decorated cache, once constructed, is made available * to other execution
threads. The simplest way of doing this is to either add it to * the cacheManager with a different name or
substitute the original cache with the * decorated one. *

* This method adds the decorated cache assuming it has a different name. If another * cache (decorated or
not) with the same name already exists, it will throw * { @link ObjectExistsException}. For replacing existing
* cache with another decorated cache having same name, please use * { @link
#replaceCacheWithDecoratedCache(Ehcache, Ehcache)} *

* Note that any overridden Ehcache methods by the decorator will take on new * behaviours without casting.
Casting is only required for new methods that the * decorator introduces. For more information see the well
known Gang of Four * Decorator pattern. * * @param decoratedCache * @throws ObjectExistsException * if

another cache with the same name already exists. */ public void addDecoratedCache(Ehcache
decoratedCache) throws ObjectExistsException {

Built-in Decorators

BlockingCache
A blocking decorator for an Ehcache, backed by a { @link Ehcache}.
It allows concurrent read access to elements already in the cache. If the element is null, other reads will block

until an element with the same key is put into the cache. This is useful for constructing read-through or
self-populating caches. BlockingCache is used by CachingFilter.

SelfPopulatingCache

A selfpopulating decorator for Ehcache that creates entries on demand.

Clients of the cache simply call it without needing knowledge of whether the entry exists in the cache. If null
the entry is created. The cache is designed to be refreshed. Refreshes operate on the backing cache, and do not
degrade performance of get calls.

SelfPopulatingCache extends BlockingCache. Multiple threads attempting to access a null element will block

until the first thread completes. If refresh is being called the threads do not block - they return the stale data.
This is very useful for engineering highly scalable systems.

Caches with Exception Handling

These are decorated. See Cache Exception Handlers for full details.

Cache Decorators 139/284

CacheManager Event Listeners

Introduction

CacheManager event listeners allow implementers to register callback methods that will be executed when a
CacheManager event occurs. Cache listeners implement the CacheManagerEventListener interface. The
events include:

¢ adding a Cache
® removing a Cache

Callbacks to these methods are synchronous and unsynchronized. It is the responsibility of the implementer to
safely handle the potential performance and thread safety issues depending on what their listener is doing.

Configuration

One CacheManagerEventListenerFactory and hence one CacheManagerEventListener can be specified per
CacheManager instance. The factory is configured as below:

<cacheManagerEventListenerFactory class="" properties=""/>

The entry specifies a CacheManagerEventListenerFactory which will be used to create a
CacheManagerEventListener, which is notified when Caches are added or removed from the CacheManager.
The attributes of a CacheManagerEventListenerFactory are:

® class - a fully qualified factory class name
® properties - comma separated properties having meaning only to the factory.

Callbacks to listener methods are synchronous and unsynchronized. It is the responsibility of the implementer
to safely handle the potential performance and thread safety issues depending on what their listener is doing.
If no class is specified, or there is no cacheManagerEventListenerFactory element, no listener is created.
There is no default.

Implementing a CacheManagerEventListenerFactory
and CacheManagerEventListener

CacheManagerEventListenerFactory is an abstract factory for creating cache manager listeners. Implementers
should provide their own concrete factory extending this abstract factory. It can then be configured in
ehcache.xml. The factory class needs to be a concrete subclass of the abstract factory
CacheManagerEventListenerFactory, which is reproduced below:

/**

* An abstract factory for creating {@link CacheManagerEventListener}s. Implementers should
* provide their own concrete factory extending this factory. It can then be configured in
* ehcache.xml

*

* Q@author Greg Luck

* @version $Id: cachemanager_event_listeners.apt 4369 2011-07-15 19:59:147 ilevy $

* @see "http://ehcache.org/documentation/cachemanager_event_listeners.html"

*

/

CacheManager Event Listeners 140/284

Implementing a CacheManagerEventListenerFactoryand CacheManagerEventListener

public abstract class CacheManagerEventListenerFactory {
/**

* Create a <code>CacheEventListener</code>

@param properties implementation specific properties. These are configured as comma
separated name value pairs in ehcache.xml. Properties may be null

@return a constructed CacheManagerEventListener

/

public abstract CacheManagerEventListener

createCacheManagerEventListener (Properties properties);

* % X ok ot

The factory creates a concrete implementation of CacheManagerEventListener, which is reproduced below:

/**

* Allows implementers to register callback methods that will be executed when a

* <code>CacheManager</code> event occurs.

* The events include:

*

* adding a <code>Cache</code>

* removing a <code>Cache</code>

*

* <p/>

* Callbacks to these methods are synchronous and unsynchronized. It is the responsibility of
* the implementer to safely handle the potential performance and thread safety issues
* depending on what their listener is doing.

* Qauthor Greg Luck

* @version $Id: cachemanager_event_listeners.apt 4369 2011-07-15 19:59:147 ilevy $

* @since 1.2

* @see CacheEventListener

*/

public interface CacheManagerEventListener ({

/**

* Called immediately after a cache has been added and activated.

* <p/>

* Note that the CacheManager calls this method from a synchronized method. Any attempt to
* call a synchronized method on CacheManager from this method will cause a deadlock.
* <p/>

* Note that activation will also cause a CacheEventListener status change notification
* from {@link net.sf.ehcache.Status#STATUS_UNINITIALISED} to

* {@link net.sf.ehcache.Status#STATUS_ALIVE}. Care should be taken on processing that
* notification because:

* o

* the cache will not yet be accessible from the CacheManager.

* the addCaches methods whih cause this notification are synchronized on the

* CacheManager. An attempt to call {@link net.sf.ehcache.CacheManager#getCache (String) }
* will cause a deadlock.

*

* The calling method will block until this method returns.

* <p/>

* @param cacheName the name of the <code>Cache</code> the operation relates to

* @see CacheEventListener

*/

void notifyCacheAdded (String cacheName) ;

/**

* Called immediately after a cache has been disposed and removed. The calling method will
block until this method returns.

<p/>

Note that the CacheManager calls this method from a synchronized method. Any attempt to
call a synchronized method on CacheManager from this method will cause a deadlock.

<p/>

Note that a {@link CacheEventListener} status changed will also be triggered. Any

* % X ok % %

CacheManager Event Listeners 141/284

Implementing a CacheManagerEventListenerFactoryand CacheManagerEventListener

* attempt from that notification to access CacheManager will also result in a deadlock.
* @param cacheName the name of the <code>Cache</code> the operation relates to

*/

void notifyCacheRemoved (String cacheName) ;

}

The implementations need to be placed in the classpath accessible to ehcache. Ehcache uses the ClassLoader
returned by Thread.currentThread () .getContextClassLoader () to load classes.

CacheManager Event Listeners 142/284

Cache Event Listeners

Introduction

Cache listeners allow implementers to register callback methods that will be executed when a cache event
occurs. Cache listeners implement the CacheEventListener interface. The events include:

¢ an Element has been put

¢ an Element has been updated. Updated means that an Element exists in the Cache with the same key
as the Element being put.

¢ an Element has been removed

¢ an Element expires, either because timeToLive or timeToldle have been reached.

Callbacks to these methods are synchronous and unsynchronized. It is the responsibility of the implementer to
safely handle the potential performance and thread safety issues depending on what their listener is doing.
Listeners are guaranteed to be notified of events in the order in which they occurred. Elements can be put or
removed from a Cache without notifying listeners by using the putQuiet and removeQuiet methods. In
clustered environments event propagation can be configured to be propagated only locally, only remotely, or
both. The default is both, to be backwardly compatible.

Configuration

Cache event listeners are configured per cache. Each cache can have multiple listeners. Each listener is
configured by adding a cacheEventListenerFactory element as follows:

<cache ...>
<cacheEventListenerFactory class="" properties="" listenFor=""/>
</cache>

The entry specifies a CacheEventListenerFactory which is used to create a CacheEventListener, which then
receives notifications. The attributes of a CacheEventListenerFactory are:

e class - a fully qualified factory class name
e properties - an optional comma separated properties having meaning only to the factory.
e listenFor - describes which events will be delivered in a clustered environment, defaults to 'all'.
These are the possible values:
¢ all - the default is to deliver all local and remote events
¢ local - deliver only events originating in the current node

¢ remote - deliver only events originating in other nodes

Callbacks to listener methods are synchronous and unsynchronized. It is the responsibility of the implementer
to safely handle the potential performance and thread safety issues depending on what their listener is doing.

Implementing a CacheEventListenerFactory and
CacheEventListener

Cache Event Listeners 143/284

Implementing a CacheEventListenerFactory andCacheEventListener

A CacheEventListenerFactory is an abstract factory for creating cache event listeners. Implementers should
provide their own concrete factory, extending this abstract factory. It can then be configured in
ehcache.xml. The following example demonstrates how to create an abstract CacheEventListenerFactory:

/**
An abstract factory for creating listeners. Implementers should provide their own
concrete factory extending this factory. It can then be configured in ehcache.xml

@author Greg Luck

@version $Id: cache_event_listeners.apt 4369 2011-07-15 19:59:147 ilevy $
/

public abstract class CacheEventListenerFactory {

/**

* Create a <code>CacheEventListener</code>

*

*
*
*
*
*
*

* @param properties implementation specific properties. These are configured as comma

* separated name value pairs in ehcache.xml
* @return a constructed CacheEventListener
*/

public abstract CacheEventListener createCacheEventListener (Properties properties);

}

The following example demonstrates how to create a concrete implementation of the CacheEventListener
interface:

/**

* Allows implementers to register callback methods that will be executed when a cache event
* occurs.

* The events include:

*

* <1li>put Element

* update Element

* remove Element

* an Element expires, either because timeToLive or timeToIdle has been reached.

*

* <p/>

* Callbacks to these methods are synchronous and unsynchronized. It is the responsibility of
* the implementer to safely handle the potential performance and thread safety issues
* depending on what their listener is doing.
* <p/>
* Events are guaranteed to be notified in the order in which they occurred.
* <p/>
* Cache also has putQuiet and removeQuiet methods which do not notify listeners.
*

*

*

*

*

*

@author Greg Luck
@version $Id: cache_event_listeners.apt 4369 2011-07-15 19:59:147 ilevy $
@see CacheManagerEventListener
@since 1.2
/
public interface CacheEventListener extends Cloneable ({
/**

Called immediately after an element has been removed. The remove method will block until

*

this method returns.

<p/>

Ehcache does not chech for
<p/>

As the {@link net.sf.ehcache.Element} has been removed, only what was the key of the
element is known.
<p/>

L T

Cache Event Listeners 144/284

Implementing a CacheEventListenerFactory andCacheEventListener

* @param cache the cache emitting the notification

* @param element just deleted

*/

void notifyElementRemoved (final Ehcache cache, final Element element) throws CacheException;
/**

Called immediately after an element has been put into the cache. The

{@link net.sf.ehcache.Cachef#put (net.sf.ehcache.Element)} method

will block until this method returns.

<p/>

Implementers may wish to have access to the Element's fields, including value, so the
element is provided. Implementers should be careful not to modify the element. The
effect of any modifications is undefined.

*

@param cache the cache emitting the notification

@param element the element which was just put into the cache.

/

void notifyElementPut (final Ehcache cache, final Element element) throws CacheException;
/**

Called immediately after an element has been put into the cache and the element already
existed in the cache. This is thus an update.

<p/>

The {@link net.sf.ehcache.Cache#put (net.sf.ehcache.Element)} method

will block until this method returns.

<p/>

Implementers may wish to have access to the Element's fields, including value, so the
element is provided. Implementers should be careful not to modify the element. The
effect of any modifications is undefined.

P S S

*

@param cache the cache emitting the notification

@param element the element which was just put into the cache.

/

void notifyElementUpdated(final Ehcache cache, final Element element) throws CacheException;
/**

Called immediately after an element is <i>found</i> to be expired. The

{@link net.sf.ehcache.Cachefremove (Object)} method will block until this method returns.

PO T T

*

<p/>

As the {@link Element} has been expired, only what was the key of the element is known.
<p/>

Elements are checked for expiry in Ehcache at the following times:

When a get request is made

When an element is spooled to the diskStore in accordance with a MemoryStore
eviction policy

<1li>In the DiskStore when the expiry thread runs, which by default is

{@link net.sf.ehcache.Cache#DEFAULT_EXPIRY_THREAD_INTERVAL_SECONDS}

If an element is found to be expired, it is deleted and this method is notified.

@param cache the cache emitting the notification

@param element the element that has just expired
<p/>
Deadlock Warning: expiry will often come from the <code>DiskStore</code>
expiry thread. It holds a lock to the DiskStorea the time the
notification is sent. If the implementation of this method calls into a
synchronized <code>Cache</code> method and that subsequently calls into
DiskStore a deadlock will result. Accordingly implementers of this method
should not call back into Cache.

L . . R R S I S S I S S

/

void notifyElementExpired(final Ehcache cache, final Element element);

/**

* Give the replicator a chance to cleanup and free resources when no longer needed

*/

Cache Event Listeners 145/284

Adding a Listener Programmatically

void dispose();
/**
* Creates a clone of this listener. This method will only be called by Ehcache before a
cache is initialized.
<p/>
This may not be possible for listeners after they have been initialized. Implementations
should throw CloneNotSupportedException if they do not support clone.
@return a clone
@throws CloneNotSupportedException if the listener could not be cloned.
/
public Object clone() throws CloneNotSupportedException;
}

* % X ok ok X X

Two other methods are also available:
®evoid notifyElementEvicted (Ehcache cache, Element element)
Called immediately after an element is evicted from the cache. Eviction, which happens when a cache
entry is deleted from a store, should not be confused with removal, which is a result of calling

Cache.removeElement (Element).
¢ void notifyRemoveAll (Ehcache cache)

Called during Ehcache.removeAll () to indicate that all elements have been removed from the
cache in a bulk operation. The usual

notifyElementRemoved (net.sf.ehcache.Ehcache, net.sf.ehcache.Element)
is not called. Only one notification is emitted because performance considerations do not allow for
serially processing notifications where potentially millions of elements have been bulk deleted.

The implementations need to be placed in the classpath accessible to Ehcache. See the chapter on
Classloading for details on how the loading of these classes will be done.

Adding a Listener Programmatically

To add a listener programmatically, follow this example:

cache.getCacheEventNotificationService () .registerListener (myListener);

Cache Event Listeners 146/284

Cache Exception Handlers

Introduction

By default, most cache operations will propagate a runtime CacheException on failure. An interceptor, using a
dynamic proxy, may be configured so that a CacheExceptionHandler can be configured to intercept
Exceptions. Errors are not intercepted.

Caches with ExceptionHandling configured are of type Ehcache. To get the exception handling behaviour
they must be referenced using CacheManager .getEhcache (), not CacheManager.getCache (),
which returns the underlying undecorated cache.

CacheExceptionHandlers may be set either declaratively in the ehcache.xml configuration file or
programmatically.

Declarative Configuration

Cache event listeners are configured per cache. Each cache can have at most one exception handler. An
exception handler is configured by adding a cacheExceptionHandlerFactory element as shown in the
following example:

<cache ...>

<cacheExceptionHandlerFactory
class="net.sf.ehcache.exceptionhandler.CountingExceptionHandlerFactory"
properties="logLevel=FINE"/>

</cache>

Implementing a CacheExceptionHandlerFactory and
CacheExceptionHandler

CacheExceptionHandlerFactory is an abstract factory for creating cache exception handlers. Implementers
should provide their own concrete factory, extending this abstract factory. It can then be configured in
ehcache.xml The factory class needs to be a concrete subclass of the abstract factory class
CacheExceptionHandlerFactory, which is reproduced below:

/**

An abstract factory for creating <code>CacheExceptionHandler</code>s at configuration
time, in ehcache.xml.

<p/>

Extend to create a concrete factory

@author Greg Luck
@version $Id: cache_exception_handlers.apt 4369 2011-07-15 19:59:14Z ilevy $

L T

~

public abstract class CacheExceptionHandlerFactory {
/**

* Create an <code>CacheExceptionHandler</code>

*

* @param properties implementation specific properties. These are configured as comma

* separated name value pairs in ehcache.xml
* @return a constructed CacheExceptionHandler
*/

Cache Exception Handlers 147/284

Implementing a CacheExceptionHandlerFactory andCacheExceptionHandler

public abstract CacheExceptionHandler createExceptionHandler (Properties properties);

}

The factory creates a concrete implementation of the CacheExceptionHandler interface, which is reproduced
below:

/**
A handler which may be registered with an Ehcache, to handle exception on Cache operations.
<p/>
Handlers may be registered at configuration time in ehcache.xml, using a
CacheExceptionHandlerFactory, or * set at runtime (a strategy).
<p/>
If an exception handler is registered, the default behaviour of throwing the exception
will not occur. The handler * method <code>onException</code> will be called. Of course, if
the handler decides to throw the exception, it will * propagate up through the call stack.
If the handler does not, it won't.
<p/>
Some common Exceptions thrown, and which therefore should be considered when implementing
this class are listed below:

{@link IllegalStateException} if the cache is not
{@link net.sf.ehcache.Status#STATUS_ALIVE}
{@link IllegalArgumentException} if an attempt is made to put a null
element into a cache
<1li>{@link net.sf.ehcache.distribution.RemoteCacheException} if an issue occurs
in remote synchronous replication

@author Greg Luck

@version $Id: cache_exception_handlers.apt 4369 2011-07-15 19:59:14Z ilevy $
/

public interface CacheExceptionHandler {

/**

* Called if an Exception occurs in a Cache method. This method is not called
if an <code>Error</code> occurs.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

@param Ehcache the cache in which the Exception occurred

@param key the key used in the operation, or null if the operation does not use a
key or the key was null

@param exception the exception caught

/

void onException (Ehcache ehcache, Object key, Exception exception);

}

L R S

The implementations need to be placed in the classpath accessible to Ehcache. See the chapter on
Classloading for details on how classloading of these classes will be done.

Programmatic Configuration

The following example shows how to add exception handling to a cache then adding the cache back into
cache manager so that all clients obtain the cache handling decoration.

CacheManager cacheManager =

Ehcache cache = cacheManger.getCache ("exampleCache");

ExceptionHandler handler = new ExampleExceptionHandler(...);
cache.setCachelLoader (handler) ;

Ehcache proxiedCache = ExceptionHandlingDynamicCacheProxy.createProxy (cache);

Cache Exception Handlers 148/284

Programmatic Configuration

cacheManager.replaceCacheWithDecoratedCache (cache, proxiedCache);

Cache Exception Handlers 149/284

Cache Extensions

Introduction

CacheExtensions are a general purpose mechanism to allow generic extensions to a Cache. CacheExtensions
are tied into the Cache lifecycle. For that reason this interface has the lifecycle methods. CacheExtensions are
created using the CacheExtensionFactory which has a createCacheCacheExtension () method which
takes as a parameter a Cache and properties. It can thus call back into any public method on Cache, including,
of course, the load methods. CacheExtensions are suitable for timing services, where you want to create a
timer to perform cache operations. The other way of adding Cache behaviour is to decorate a cache. See
link net.sf.ehcache.constructs.blocking.BlockingCache for an example of how to do
this. Because a CacheExtension holds a reference to a Cache, the CacheExtension can do things such as
registering a CacheEventListener or even a CacheManagerEventListener, all from within a CacheExtension,
creating more opportunities for customisation.

Declarative Configuration

Cache extension are configured per cache. Each cache can have zero or more. A CacheExtension is
configured by adding a cacheExceptionHandlerFactory element as shown in the following example:

<cache ...>
<cacheExtensionFactory class="com.example.FileWatchingCacheRefresherExtensionFactory"
properties="refreshIntervalMillis=18000, loaderTimeout=3000,
flushPeriod=whatever, someOtherProperty=someValue ..."/>
</cache>

Implementing a CacheExtensionFactory and
CacheExtension

CacheExtensionFactory is an abstract factory for creating cache extension. Implementers should provide their
own concrete factory, extending this abstract factory. It can then be configured in ehcache.xml The factory
class needs to be a concrete subclass of the abstract factory class CacheExtensionFactory, which is reproduced
below:

/**

* An abstract factory for creating CacheExtensions. Implementers should

* provide their own * concrete factory extending this factory. It can then be configured
* in ehcache.xml.

*

* Qauthor Greg Luck

* @version $Id: cache_extensions.apt 4369 2011-07-15 19:59:147 ilevy S

*

/

public abstract class CacheExtensionFactory {

/**

* @param cache the cache this extension should hold a reference to, and to whose

* lifecycle it should be bound.

* @param properties implementation specific properties configured as delimiter separated
* name value pairs in ehcache.xml

*/

public abstract CacheExtension createCacheExtension (Ehcache cache, Properties properties);

}

Cache Extensions 150/284

mailto:gluck@gregluck.com

Implementing a CacheExtensionFactory andCacheExtension

The factory creates a concrete implementation of the CacheExtension interface, which is reproduced below:

/**

This is a general purpose mechanism to allow generic extensions to a Cache.

CacheExtensions are tied into the Cache lifecycle. For that reason this interface has the
lifecycle methods.

CacheExtensions are created using the CacheExtensionFactory which has a
createCacheCacheExtension () method which takes as a parameter a Cache and

properties. It can thus call back into any public method on Cache, including, of course,
the load methods.

CacheExtensions are suitable for timing services, where you want to create a timer to
perform cache operations. The other way of adding Cache behaviour is to decorate a cache.
See {@link net.sf.ehcache.constructs.blocking.BlockingCache} for an example of how to do
this.

Because a CacheExtension holds a reference to a Cache, the CacheExtension can do things
such as registering a CacheEventListener or even a CacheManagerEventListener, all from
within a CacheExtension, creating more opportunities for customisation.

@author Greg Luck

@version $Id: cache_extensions.apt 4369 2011-07-15 19:59:147 ilevy $
/

public interface CacheExtension {

/**

* Notifies providers to initialise themselves.

PO S S S S R I S

*

* This method is called during the Cache's initialise method after it has changed it's
* status to alive. Cache operations are legal in this method.

*

* @throws CacheException

*/

void init ();

/**

* Providers may be doing all sorts of exotic things and need to be able to clean up on
dispose.

Cache operations are illegal when this method is called. The cache itself is partly
disposed when this method is called.

@throws CacheException

/

void dispose() throws CacheException;

/**

Creates a clone of this extension. This method will only be called by Ehcache before a
cache is initialized.

* % o ok o X X

*

Implementations should throw CloneNotSupportedException if they do not support clone
but that will stop them from being used with defaultCache.

@return a clone

@throws CloneNotSupportedException if the extension could not be cloned.

/

public CacheExtension clone (Ehcache cache) throws CloneNotSupportedException;
/**

* @return the status of the extension

*/

public Status getStatus();

}

L T

Cache Extensions 151/284

mailto:gluck@gregluck.com

Programmatic Configuration

The implementations need to be placed in the classpath accessible to ehcache. See the chapter on Classloading

for details on how class loading of these classes will be done.

Programmatic Configuration

Cache Extensions may also be programmatically added to a Cache as shown.

TestCacheExtension testCacheExtension = new TestCacheExtension (cache,
testCacheExtension.init () ;
cache.registerCacheExtension (testCacheExtension);

Cache Extensions

152/284

Cache Eviction Algorithms

Introduction

A cache eviction algorithm is a way of deciding which element to evict when the cache is full. In Ehcache, the
MemoryStore may be limited in size (see How to Size Caches for more information). When the store gets
full, elements are evicted. The eviction algorithms in Ehcache determine which elements are evicted. The
default is LRU.

What happens on eviction depends on the cache configuration. If a DiskStore is configured, the evicted
element will overflow to disk (is flushed to disk); otherwise it will be removed. The DiskStore size by
default is unbounded. But a maximum size can be set (see Sizing Caches for more information). If the
DiskStore is full, then adding an element will cause one to be evicted unless it is unbounded. The
DiskStore eviction algorithm is not configurable. It uses LFU.

The local DiskStore is not used in distributed cache, which relies on the Terracotta Server Array for
storage.

Provided MemoryStore Eviction Algorithms

The idea here is, given a limit on the number of items to cache, how to choose the thing to evict that gives the
best result.

In 1966 Laszlo Belady showed that the most efficient caching algorithm would be to always discard the
information that will not be needed for the longest time in the future. This it a theoretical result that is
unimplementable without domain knowledge. The Least Recently Used ("LRU") algorithm is often used as a
proxy. It works pretty well because of the locality of reference phenomenon and is the default in most caches.

A variation of LRU is the default eviction algorithm in Ehcache.

Altogether Ehcache provides three eviction algorithms to choose from for the MemoryStore.

Least Recently Used (LRU)

This is the default and is a variation on Least Frequently Used.

The oldest element is the Less Recently Used (LRU) element. The last used timestamp is updated when an
element is put into the cache or an element is retrieved from the cache with a get call.

This algorithm takes a random sample of the Elements and evicts the smallest. Using the sample size of 15
elements, empirical testing shows that an Element in the lowest quartile of use is evicted 99% of the time.

If probabilistic eviction does not suit your application, a true Least Recently Used deterministic algorithm is
available by setting java -Dnet.sf.ehcache.use.classic.lru=true.

Least Frequently Used (LFU)

Cache Eviction Algorithms 153/284

Least Frequently Used (LFU)

For each get call on the element the number of hits is updated. When a put call is made for a new element (and
assuming that the max limit is reached) the element with least number of hits, the Least Frequently Used
element, is evicted.

If cache element use follows a pareto distribution, this algorithm may give better results than LRU.
LFU is an algorithm unique to Ehcache. It takes a random sample of the Elements and evicts the smallest.

Using the sample size of 15 elements, empirical testing shows that an Element in the lowest quartile of use is
evicted 99% of the time.

First In First Out (FIFO)

Elements are evicted in the same order as they come in. When a put call is made for a new element (and
assuming that the max limit is reached for the memory store) the element that was placed first (First-In) in the
store is the candidate for eviction (First-Out).

This algorithm is used if the use of an element makes it less likely to be used in the future. An example here
would be an authentication cache.

It takes a random sample of the Elements and evicts the smallest. Using the sample size of 15 elements,
empirical testing shows that an Element in the lowest quartile of use is evicted 99% of the time.

Plugging in your own Eviction Algorithm

Ehcache 1.6 and higher allows you to plugin in your own eviction algorithm. You can utilise any Element
metadata which makes possible some very interesting approaches. For example, evict an Element if it has
been hit more than 10 times.

/**

* Sets the eviction policy strategy. The Cache will use a policy at startup.

* There are three policies which can be configured: LRU, LFU and FIFO. However

* many other policies are possible. That the policy has access to the whole element
* enables policies based on the key, value, metadata, statistics, or a combination
* of any of the above.

*

* It is safe to change the policy of a store at any time. The new policy takes

* effect immediately.

*

* @param policy the new policy

*

~

public void setMemoryStoreEvictionPolicy(Policy policy) {
memoryStore.setEvictionPolicy (policy);

}
A Policy must implement the following interface:

public interface Policy {

/**
* @return the name of the Policy. Inbuilt examples are LRU, LFU and FIFO.
*/

String getName () ;

/**
* Finds the best eviction candidate based on the sampled elements. What
* distinguishes this approach from the classic data structures approach is

Cache Eviction Algorithms 154/284

Plugging in your own Eviction Algorithm

that an Element contains metadata (e.g. usage statistics) which can be used
for making policy decisions, while generic data structures do not. It is
expected that implementations will take advantage of that metadata.

@param sampledElements this should be a random subset of the population
@param justAdded we probably never want to select the element just added.
It is provided so that it can be ignored if selected. May be null.

* @return the selected Element

*/
Element selectedBasedOnPolicy (Element[] sampledElements, Element JjustAdded);
/**

* Compares the desirableness for eviction of two elements

* % X ok % X X

@param elementl the element to compare against

@param element2 the element to compare

@return true if the second element is preferable for eviction to the first
element under ths policy

/

boolean compare (Element elementl, Element element?2);

* % X ok % X

DiskStore Eviction Algorithms

The DiskStore uses the Least Frequently Used algorithm to evict an element when it is full.

Cache Eviction Algorithms 155/284

Class loading and Class Loaders

Introduction

Class loading, within the plethora of environments that Ehcache can be running, is a somewhat vexed issue.
Since ehcache-1.2, all classloading is done in a standard way in one utility class: ClassLoaderUtil.

Plugin class loading

Ehcache allows plugins for events and distribution. These are loaded and created as follows:

*

/
Creates a new class instance. Logs errors along the way. Classes are loaded
using the Ehcache standard classloader.

@param className a fully qualified class name
@return null if the instance cannot be loaded
/

public static Object createNewInstance (String className) throws CacheException {

* % X ok % X X

Class clazz;

Object newlInstance;

try {

clazz = Class.forName (className, true, getStandardClassLoader());
} catch (ClassNotFoundException e) {

//try fallback

try {
clazz = Class.forName (className, true, getFallbackClassLoader());
} catch (ClassNotFoundException ex) {
throw new CacheException ("Unable to load class " + className +
". Initial cause was " + e.getMessage(), e);
}
}
try {
newInstance = clazz.newlInstance();
} catch (IllegalAccessException e) {
throw new CacheException ("Unable to load class " + className +
". Initial cause was " + e.getMessage(), e);
} catch (InstantiationException e) {
throw new CacheException ("Unable to load class " + className +
". Initial cause was " + e.getMessage(), e);

}

return newlInstance;

Gets the ClassLoader that all classes in ehcache, and extensions,
should use for classloading. All ClassLoading in Ehcache should use this one.
This is the only thing that seems to work for all of the class loading
situations found in the wild.
@return the thread context class loader.
/
public static ClassLoader getStandardClassLoader () {
return Thread.currentThread() .getContextClassLoader () ;

* % X ok % X X

/**

Class loading and Class Loaders 156/284

Plugin class loading

* Gets a fallback ClassLoader that all classes in ehcache, and
* extensions, should use for classloading. This is used if the context class loader
* does not work.
* @return the ClassLoaderUtil.class.getClassLoader();
*/
public static ClassLoader getFallbackClassLoader () {
return ClassLoaderUtil.class.getClassLoader();

}

If this does not work for some reason a CacheException is thrown with a detailed error message.

Loading of ehcache.xml resources

If the configuration is otherwise unspecified, Ehcache looks for a configuration in the following order:
¢ Thread.currentThread().getContextClassLoader().getResource("/ehcache.xml")
¢ ConfigurationFactory.class.getResource("/ehcache.xml")

¢ ConfigurationFactory.class.getResource("/ehcache-failsafe.xml")

Ehcache uses the first configuration found. Note the use of "/ehcache.xml" which requires that ehcache.xml be
placed at the root of the classpath, i.e. not in any package.

Classloading with Terracotta clustering

If Terracotta clustering is being used with valueMode="serialization" then keys and values will be moved
across the cluster in byte[] and deserialized on other nodes.

The classloaders used (in order) to instantiate those classes will be:

® Thread.currentThread().getContextClassLoader()
® The classloader that defined the CacheManager initially

Class loading and Class Loaders 157/284

Operations Overview

The following sections provide a documentation Table of Contents and additional information sources about
Ehcache operations.

Operations Table of Contents

Topic

Tuning GC

Ehcache
Monitor

IMX
Management
Logging

Shutting Down
Ehcache

RMI Cache
Remote
Debugger

Description

Detecting Garbage Collection problems, Garbage Collection tuning, and distributed caching
Garbage Collection tuning.

The Ehcache Monitor is an add-on tool for Ehcache which provides enterprise-class
monitoring and management capabilities for use in both development and production. It is
intended to help understand and tune cache usage, detect errors, and provide an easy-to-use
access point to integrate with production management systems. It also provides
administrative functionality, such as the ability to forcefully remove items from caches.

As an alternative to the Ehcache Monitor, JMX creates a standard way of instrumenting
classes and making them available to a management and monitoring infrastructure.

Ehcache uses the the slf4j logging facade, so you can plug in your own logging framework.
This page also provides recommended logging levels.

If you are using persistent disk stores, or distributed caching, care should be taken when
shutting down Ehcache. This page covers the ServletContextListener, the shutdown hook,
and dirty shutdown.

The Remote Debugger can be used to debug replicated cache operations. When started with
the same configuration as the cluster, it will join the cluster and then report cluster events
for the cache of interest. By providing a window into the cluster, it can help to identify the
cause of cluster problems.

Additional Information about Operations

The following page provides additional information about the Ehcache Monitor:

¢ Terracotta Console for Enterprise Ehcache
¢ Cache Size and Statistics Code Samples
® CacheManager Shutdown Code Sample

Operations Overview 158/284

http://terracotta.org/documentation/terracotta-tools/dev-console#enterprise-ehcache-applications

Tuning Garbage Collection

Introduction

Applications that use Ehcache can be expected to use large heaps. Some Ehcache applications have heap sizes
greater than 6GB. Ehcache works well at this scale. However, large heaps or long held objects, which is what
a cache is composed of, can place strain on the default Garbage Collector. Now with Ehcache 2.3 and higher,
this problem can be solved with BigMemory in-memory data management, which provides an additional store
outside of the heap.

Note: The following documentation relates to Sun JDK 1.5.

Detecting Garbage Collection Problems

A full garbage collection event pauses all threads in the JVM. Nothing happens during the pause. If this pause
takes more than a few seconds, it will become noticeable.

The clearest way to see if this is happening is to run jstat. The following command will produce a log of
garbage collection statistics, updated every ten seconds.

jstat —-gcutil <pid> 10 1000000

The thing to watch for is the Full Garbage Collection Time. The difference between the total time for each
reading is the amount of time the system was paused. A jump of more than a few seconds will not be
acceptable in most application contexts.

Garbage Collection Tuning

The Sun core garbage collection team has offered the following tuning suggestion for virtual machines with
large heaps using caching:

java ... —XX:+tDisableExplicitGC —-XX:+UseConcMarkSweepGC
-XX:NewSize=<1/4 of total heap size> —-XX:SurvivorRatio=16

Note that it is better to use ~XX:+DisableExplicitGC, instead of calling System.gc (). It also helps
to use the low pause collector —XX: +UseConcMarkSweepGC.

Distributed Caching Garbage Collection Tuning

Some users have reported that enabling distributed caching causes a full GC each minute. This is an issue with
RMI generally, which can be worked around by increasing the interval for garbage collection. The effect RMI
has is similar to a user application calling System.gc () each minute. The setting above disables explicit
GC calls, but it does not disable the full GC initiated by RMI. The default in JDK6 was increased to 1 hour.
The following system properties control the interval.

-Dsun.rmi.dgc.client.gcInterval=60000
-Dsun.rmi.dgc.server.gcInterval=60000

Tuning Garbage Collection 159/284

Distributed Caching Garbage Collection Tuning

See http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4403367 for the bug report and detailed
instructions on workarounds. Increase the interval as required in your application.

Tuning Garbage Collection 160/284

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4403367

Ehcache Monitor

Introduction

The Ehcache Monitor is an add-on tool for Ehcache provides enterprise-class monitoring and management
capabilities for use in both development and production. It is intended to help understand and tune cache
usage, detect errors, and provide an easy to use access point to integrate with production management
systems. It also provides administrative functionality such as the ability to forcefully remove items from
caches.

Simply install the Monitor on an Operations server, add the Monitor Probe jar to your app, add a few lines of
config in ehcache.xml and your done. The package contains a probe and a server. The probe installs with your
existing Ehcache cache instance, and communicates to a central server. The server aggregates data from
multiple probes. It can be accessed via a simple web Ul, as well as a scriptable API. In this way, it is easy to
integrate with common third party systems management tools (such as Hyperic, Nagios etc). The probe is
designed to be compatible with all versions of Ehcache from 1.5 and requires JDK 1.5 or 1.6.

Installation And Configuration

First download and extract the Ehcache Monitor package. The package consists of a lib directory with the
probe and monitor server jars, a bin directory with startup and shutdown scripts for the monitor server and an
et c directory with an example monitor server configuration file and a Jetty Server configuration file.

Recommended Deployment Topology

Ehcache Monitor Deployment Topology

Application

Ehcache |[—— TCP

Maonitor Probe

I.II

_Il User

Application
Ehcache ——o+—— TCP

Ehcache
Manitor
Server

Maonitor Probe

i

XML
aver
HTTP

Operations

Maonitor

Application

Ehcache |f———— TCP

Maonitor Probe

0

Production Operations

Ehcache Monitor 161/284

http://ehcache.org/downloads/monitor

Recommended Deployment Topology

It is recommended that you install the Monitor on an Operations server separate to production. The Monitor
acts as an aggregation point for access by end users and for scripted connection from Operations tools for data
feeds and set up of alerts.

Probe

To include the probe in your Ehcache application, you need to perform two steps:

1. Add the ehcache-probe-.jar to your application classpath (or war file). Do this in the same way you
added the core ehcache jar to your application. If you are Maven based, the probe module is in the
Terracotta public repository for easy integration.

<repository>
<id>terracotta-releases</id>
<url>http://www.terracotta.org/download/reflector/releases</url>
</repository>
<dependency>
<groupId>org.terracotta</groupId>
<artifactId>ehcache-probe</artifactId>
<version>[version]</version>
</dependency>
2. Configure Ehcache to communicate with the probe by specifying the class name of the probe, the
address (or hostname), the port that the monitor will be running on and whether to do memory

measurement. This is done by adding the following to ehcache.xml:

<cacheManagerPeerListenerFactory
class="org.terracotta.ehcachedx.monitor.probe.ProbePeerlListenerFactory"
properties="monitorAddress=localhost, monitorPort=9889, memoryMeasurement=true" />

3. Include required SLF4J logging jars.

Ehcache 1.7.1 and above require SLF4J. Earlier versions used commons logging. The probe, like all
new Ehcache modules, uses SLF4J, which is becoming a new standard in open source projects.

If you are using Ehcache 1.5 to 1.7.0, you will need to add slf4j-api and one concrete logger. If you
are using Ehcache 1.7.1 and above you should not need to do anything because you will already be
using slf4j-api and one concrete logger.

More information on SLF4] is available from http://www.slf4j.org.
4. Ensure that statistics capture in each cache is turned on for the probe to gather statistics. Statistics
were turned off by default from Ehcache 2.1 onwards.

<cache name="sampleCache2"
maxEntriesLocalHeap="1000"
eternal="true"
overflowToDisk="false"
memoryStoreEvictionPolicy="FIFO"
statistics="true"

/>

Starting the Monitor

Copy the monitor package to a monitoring server.

Ehcache Monitor 162/284

Starting the Monitor

To start the monitor, run the startup script provided in the bin directory: startup.sh on Unix and startup.bat on
Microsoft Windows.

NOTE: If errors occur at startup, remove the line —j "SPRGDIR/etc/jetty.xml" \ (or —j
$PRGDIR%\etc\jetty.xml *)from the startup script.

The monitor port selected in this script should match the port specified in ehcache.xml. The monitor can be
configured, including interface, port and simple security settings, in et c/ehcache-monitor.conf. Note
that for the commercial version, the location of your license file must be specified in
ehcache-monitor.conft.

For example:

license_file=/Users/karthik/Documents/workspace/lib/license/terracotta-license.key

The monitor connection timeout can also be configured. If the monitor is frequently timing out while
attempting to connect to a node (due to long GC cycles, for example), then the default timeout value may not
be suitable for your environment. You can set the monitor timeout using the system property
ehcachedx.connection.timeout.seconds. For example,
-Dehcachedx.connection.timeout.seconds=60 sets the timeout to 60 seconds.

Securing the Monitor

The Monitor can be secured in a variety of ways. The simplest method involves simply editing
ehcache-monitor.conf to specify a single user name and password. This method has the obvious
drawbacks that (1) it provides only a single login identity, and (2) the credentials are stored in clear-text.

A more comprehensive security solution can be achieved by configuring the Jetty Server with one ore more
UserRealms as described by Jetty and JAAS. Simply edit et ¢/ jetty.xml to use the appropriate
UserRealm implementation for your needs. To configure the Monitor to authenticate against an existing
LDAP server, first ensure that you have defined and properly registered a LoginConfig, such as the
following example:

MyExistingLDAPLoginConfig {
com.sun.security.auth.module.LdapLoginModule REQUIRED
java.naming.security.authentication="simple"
userProvider="1dap://ldap-host:389"
authIdentity="uid={USERNAME}, ou=People,dc=myorg,dc=org"
useSSL=false
bindDn="cn=Manager"
bindCredential="secretBindCredential"
bindAuthenticationType="simple"
debug=true;

}i

Note: the LdapLoginModule is new with JDK 1.6.
JAAS supports many different types of login modules and it is up to the reader to provide a valid, working
JAAS environment. For more information regarding JAAS refer to JAAS Reference Guide. For information

on how to register your LoginConfig refer to SJAVA_HOME/ jre/lib/security/java.security.

Next, edit etc/ jetty.xml:

Ehcache Monitor 163/284

http://docs.codehaus.org/display/JETTY/JAAS
http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html

Securing the Monitor

<?xml version="1.0"7?>
<!DOCTYPE Configure PUBLIC "-//Mort Bay Consulting//DTD Configure//EN"
"http://jetty.mortbay.org/configure.dtd">
<Configure id="Server" class="org.terracotta.ehcachedx.org.mortbay. jetty.Server">
<Set name="UserRealms">
<Array type="org.terracotta.ehcachedx.org.mortbay. jetty.security.UserRealm">
<Item>
<New class="org.terracotta.ehcachedx.org.mortbay. jetty.plus. jaas.JAASUserRealm">
<Set name="Name">MyArbitraryLDAPRealmName</Set>
<Set name="LoginModuleName">MyExistingLDAPLoginConfig</Set>
</New>
</Item>
</Array>
</Set>
</Configure>

The LoginModuleName you specify as the second constructor parameter to the JAASUserRealm class
must exactly match the name of your LoginModule. The realm name specified as the first constructor

parameter can be an arbitrary value.

Note: the version of Jetty used in the Monitor has been repackaged so be sure to prefix any standard Jetty
class names with org.terracotta.ehcachedx.

If the Jetty Server is found to have been configured with any security realms, the simple user name and
password from ehcache-monitor.conf isignored.

Using the Web GUI

The web-based GUI is available by pointing your browser at http://:/monitor. For a default installation on the
local machine, this would be http://localhost:9889/monitor The GUI contains six tabs, described as follows:

Cache Managers
This tab shows aggregate statistics for the cache managers being monitored by probes connected to the

monitor server. Double-clicking on any cache manager drills down to the detailed Statistics tab for that
manager.

Statistics

This tab shows the statistics being gathered for each cache managed by the selected cache manager. The
Settings button permits you to add additional statistics fields to the display. Note: only displayed fields are
collected and aggregated by the probe. Adding additional display fields will increase the processing required

for probe and the monitor. The selected settings are stored in a preferences cookie in your browser.
Double-clicking on any cache drills down to the Contents tab for that cache.

Configuration

This tab shows the key configuration information for each cache managed by the selected cache manager.

Ehcache Monitor 164/284

Contents

Contents

This tab enables you to look inside the cache, search for elements via their keys and remove individual or
groups of elements from the cache. The GUI is set to refresh at the same frequency that the probes aggregate
their statistic samples which is every 10 seconds by default. The progress bar at the bottom of the screen
indicates the time until the next refresh.

Charts

This tab contains various live charts of cache statistics. It gives you a feel for the trending of the each statistic,
rather than just the latest value.

Estimated Memory Use Chart

This chart shows the estimated memory use of the Cache. Memory is estimated by sampling. The first 15 puts
or updates are measured and then every 100th put or update. Most caches contain objects of similar size. If
this is not the case for your cache, then the estimate will not be accurate. Measurements are performed by
walking the object graph of sampled elements through reflection. In some cases such as classes not visible to
the classloader, the measurement fails and O is recorded for cache size. If you see a chart with 0 memory size
values but the cache has data in it, then this is the cause. For this release, caches distributed via Terracotta
server show as 0.

API

This tab contains a listing of the API methods. Each is a hyperlink, which may be clicked on. Some will
display data and some will require additional arguments. If additional arguments are required an error
message will be displayed with the details. This tab is meant for iterative testing of the API.

Using the API

The Monitor provides a API over HTTP on the same port as the Web GUI. The list of functions supported by
the API can be accessed by pointing your browser at http://:/monitor/list. For a default installation on the local
machine, this would be http://localhost:9889/monitor/list. The API returns data as either structured XML or
plan text. The default format is txt. For example, the getVersion function returns the software version of the
monitor server. It can be called as follows: http://localhost:9889/monitor/getVersion or, to receive the results
as XML: http://localhost:9889/monitor/getVersion?format=xml

To query the data collected by the monitor server from scripts that can then be used to pass the data to
enterprise system management frameworks, commands such as curl or wget can be used. For example, on
a Linux system, to query the list of probes that a local monitor on the default port is currently aware of, and
return the data in XML format, the following command could be used:

$ curl http://localhost:9889/monitor/listProbes?format=xml

Licensing

Unless otherwise indicated, this module is licensed for usage in development. For details see the license terms
in the appropriate LICENSE.txt. To obtain a commercial license for use in production, please contact
sales @terracottatech.com

Ehcache Monitor 165/284

Limitations

Limitations

History not Implemented

This release has server side history configuration in place, however history is not implemented. It is
anticipated it will be implemented in the next release. In the meantime, the charts with their recent history
provide trending.

Memory Measurement limitations

Unfortunately in Java, there is no JSR for memory measurement of objects. Implementations, such as the
sizeof one we use are subject to fragilities. For example, Java 7 memory measurement is not supported at this
time. You will geta java.lang.NoSuchFieldException: header exception message if you use
memory measurement with Java 7. Memory measurement can optionally be turned off by setting
memoryMeasurement=false in the probe configuration.

Ehcache Monitor 166/284

JMX Management and Monitoring

Introduction

As an alternative to the Ehcache Monitor, JMX creates a standard way of instrumenting classes and making
them available to a management and monitoring infrastructure.

Terracotta Monitoring Products

An extensive monitoring product, available in Enterprise Ehcache, provides a monitoring server with probes
supporting Ehcache-1.2.3 and higher for standalone and clustered Ehcache. It comes with a web console and a
RESTful API for operations integration. See the ehcache-monitor documentation for more information. When
using Ehcache 1.7 with Terracotta clustering, the Terracotta Developer Console shows statistics for Ehcache.

JMX Overview

IMX, part of JDK1.5, and available as a download for 1.4, creates a standard way of instrumenting classes
and making them available to a management and monitoring infrastructure. The
net.sf.ehcache.management package contains MBeans and a Management Service for IMX
management of ehcache. It is in a separate package so that JMX libraries are only required if you wish to use
it - there is no leakage of JMX dependencies into the core Ehcache package. This implementation attempts to
follow Sun's JMX best practices. See
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/best-practices.jsp. Use
net.sf.ehcache.management .ManagementService.registerMBeans (.. .) static method
to register a selection of MBeans to the MBeanServer provided to the method. If you wish to monitor Ehcache
but not use JIMX, just use the existing public methods on Cache and CacheStatistics.

The Management package is illustrated in the follwing image.

JMX Management and Monitoring 167/284

JMX Overview

net.sf.ehcache. management

CacheConfigurationMBean

|
|
1

CacheConfiguration

CacheManagerMBean

B

CacheManager

ManagementService

generated by yDoc

MBeans

Ehcache uses Standard MBeans. MBeans are available for the following:

e CacheManager

® Cache

e CacheConfiguration
® CacheStatistics

CacheMBean

CacheStatisticsMBean

I
L

CacheStatistics

All MBean attributes are available to a local MBeanServer. The CacheManager MBean allows traversal to its
collection of Cache MBeans. Each Cache MBean likewise allows traversal to its CacheConfiguration MBean

and its CacheStatistics MBean.

JMX Remoting

The JMX Remote API allows connection from a remote JMX Agent to an MBeanServer via an

MBeanServerConnection. Only Serializable attributes are available remotely. The following
Ehcache MBean attributes are available remotely:

¢ limited CacheManager attributes

e limited Cache attributes

¢ all CacheConfiguration attributes

e a]l CacheStatistics attributes

JMX Management and Monitoring

168/284

JMX Remoting

Most attributes use built-in types. To access all attributes, you need to add ehcache.jar to the remote JMX
client's classpath e.g. jconsole -J-Djava.class.path=ehcache. jar.

ObjectName haming scheme

e CacheManager - "net.sf.ehcache:type=CacheManager,name=<CacheManager>"

® Cache - "net.sf.ehcache:type=Cache,CacheManager=<cacheManagerName>,name=<cacheName>"

® CacheConfiguration

¢ "net.sf.ehcache:type=CacheConfiguration,CacheManager=<cacheManagerName>,name=<cacheName>"

¢ CacheStatistics -
"net.sf.ehcache:type=CacheStatistics,CacheManager=<cacheManagerName>,name=<cacheName>"

The Management Service

The Management Service class is the API entry point.

net.sf.ehcache.event

CacheManagerEventListener

A

netsf.ehcache.management

javax.management .
ManagementService

MBeanserver =—
+ disposel) : void

+ getStatus() : Status

+ init) : void

+ notifyCacheAdded (String) : void

+ notifyCacheRemoved(String) : void

+ registerMBeans(CacheManager, MBean5Server, boolean, boolean, boolean, boolean) : void

net.sf.ehcache

CacheManager = |

Status =

generated by yDoc

There is only one method, ManagementService.registerMBeans which is used to initiate JIMX
registration of an Ehcache CacheManager's instrumented MBeans. The Management Serviceisa
CacheManagerEventListener and is therefore notified of any new Caches added or disposed and
updates the MBeanServer appropriately. Once initiated the MBeans remain registered in the MBeanServer
until the CacheManager shuts down, at which time the MBeans are deregistered. This behaviour ensures
correct behaviour in application servers where applications are deployed and undeployed.

/**
* This method causes the selected monitoring options to be be registered

* with the provided MBeanServer for caches in the given CacheManager.
*

JMX Management and Monitoring 169/284

The Management Service

While registering the CacheManager enables traversal to all of the other

items,
this requires programmatic traversal. The other options allow entry points closer
to an item of interest and are more accessible from JMX management tools like JConsole.
Moreover CacheManager and Cache are not serializable, so remote monitoring is not
possible * for CacheManager or Cache, while CacheStatistics and CacheConfiguration are.
Finally * CacheManager and Cache enable management operations to be performed.

*
*
*
*
*
*
*
*
* Once monitoring is enabled caches will automatically added and removed from the
* MBeanServer * as they are added and disposed of from the CacheManager. When the
* CacheManager itself * shutsdown all registered MBeans will be unregistered.

*

*

*

*

*

*

*

*

@param cacheManager the CacheManager to listen to
@param mBeanServer the MBeanServer to register MBeans to
@param registerCacheManager Whether to register the CacheManager MBean
@param registerCaches Whether to register the Cache MBeans
@param registerCacheConfigurations Whether to register the CacheConfiguration MBeans
@param registerCacheStatistics Whether to register the CacheStatistics MBeans
/
public static void registerMBeans (
net.sf.ehcache.CacheManager cacheManager,
MBeanServer mBeanServer,
boolean registerCacheManager,
boolean registerCaches,
boolean registerCacheConfigurations,
boolean registerCacheStatistics) throws CacheException {

JConsole Example

This example shows how to register CacheStatistics in the JDK1.5 platform MBeanServer, which works with
the JConsole management agent.

CacheManager manager = new CacheManager () ;
MBeanServer mBeanServer = ManagementFactory.getPlatformMBeanServer();
ManagementService.registerMBeans (manager, mBeanServer, false, false, false, true);

CacheStatistics MBeans are then registered.

JMX Management and Monitoring 170/284

JConsole Example

86ea J25E 5.0 Monitoring & Management Console: 3075@localhost

Connection

f Summary Memory Threads Classes MBeans WM |

@ SimplePageCachingFilter -

@ SimplePageCachingFilterwithBlankPageProblem

@ simplePageFragmentCachingFilter

@ net.sf.ehcache.constructs.asynchronous.MessageCache

@ persistentLongExpirylntervalCache

@ sampleCachel

@ sampleCache?

@ sampleCacheNoldle

@ sampleCacheNotEternalButNoldleOrExpiry B .
@ sampleldlingExpiringCache L Refresh)

~MBeans
=1 Tree [; ; Ly |
= - Attributes = Operations — »#
F | JMimplementation
» |7 java.lang MName Value
o _ AssociatedCacheName sampleCache
P | java.util.logging CacheHits 1
¥ || netsf.ehcache CacheMisses 0
¥ | CacheStatistics InMemoryHits 1
¥ | net.sf.ehcache.CacheManager@881ch3 DbJ'E_ClCC_*Uﬂl 1
@ CachedLogin OnDiskHits 0
@ FooterPageCache StatisticsAccuracy 1
) g StatisticsAccuracyDescription Best Effort

CacheStatistics MBeans in JConsole

Hibernate statistics

If you are running Terracotta clustered caches as hibernate second-level cache provider, it is possible to access
the hibernate statistics + ehcache stats etc via jmx. EhcacheHibernateMBean is the main interface that
exposes all the API's via jmx. It basically extends two interfaces -- EhcacheStats and
HibernateStats. And as the name implies EhcacheStats contains methods related with Ehcache and
HibernateStats related with Hibernate. You can see cache hit/miss/put rates, change config element
values dynamically -- like maxElementInMemory, TTI, TTL, enable/disable statistics collection etc and
various other things. Please look into the specific interface for more details.

JMX Tutorial

See this online tutorial.

Performance

Collection of cache statistics is not entirely free of overhead. In production systems where monitoring is not
required statistics can be disabled. This can be done either programatically by calling
setStatisticsEnabled (false) on the cache instance, or in configuration by setting the
statistics="false" attribute of the relevant cache configuration element. From Ehcache 2.1.0 statistics

JMX Management and Monitoring 171/284

http://weblogs.java.net/blog/maxpoon/archive/2007/06/extending_the_n_2.html

Performance

are off by default.

JMX Management and Monitoring 172/284

Logging
Introduction

As of 1.7.1, Ehcache uses the the slf4j logging facade, so you can plug in your own logging framework. This
page covers Ehcache logging. For more information about slf4j in general, refer to the slf4;j site.

SLF4dJ Logging

With slf4j, users must choose a concrete logging implementation at deploy time. The options include Maven
and the download kit.

Concrete Logging Implementation Use in Maven

The maven dependency declarations are reproduced here for convenience. Add one of these to your Maven
pom.

<dependency>
<groupId>org.slfdj</groupId>
<artifactId>slf4j-jdkl4d</artifactId>
<version>1.5.8</version>
</dependency>
<dependency>
<groupId>org.slfdj</groupId>
<artifactId>slf4j-logdjl2</artifactId>
<version>1.5.8</version>
</dependency>
<dependency>
<groupId>org.slfdj</groupId>
<artifactId>slf4j-simple</artifactId>
<version>1.5.8</version>
</dependency>

Concrete Logging Implemenation Use in the Download Kit

We provide the slf4j-api and slf4j-jdk14 jars in the kit along with the ehcache jars so that, if the app does not
already use SLF4J, you have everything you need. Additional concrete logging implementations can be
downloaded from http://www.slf4j.org.

Recommended Logging Levels

Ehcache seeks to trade off informing production support developers or important messages and cluttering the
log. ERROR messages should not occur in normal production and indicate that action should be taken.

WARN messages generally indicate a configuration change should be made or an unusual event has occurred.
DEBUG and TRACE messages are for development use. All DEBUG level statements are surrounded with a
guard so that no performance cost is incurred unless the logging level is set. Setting the logging level to
DEBUG should provide more information on the source of any problems. Many logging systems enable a
logging level change to be made without restarting the application.

Logging 173/284

http://www.slf4j.org
http://www.slf4j.org

Shutting Down Ehcache

Introduction

If you are using persistent disk stores, or distributed caching, care should be taken to shutdown ehcache. Note
that Hibernate automatically shuts down its Ehcache CacheManager. The recommended way to shutdown
the Ehcache is:

¢ to call CacheManager.shutdown ()
® in a web app, register the Ehcache ShutdownListener

Though not recommended, Ehcache also lets you register a JVM shutdown hook.

ServietContextListener

Ehcache proivdes a ServletContextListener that shutsdown CacheManager. Use this when you want to
shutdown Ehcache automatically when the web application is shutdown. To receive notification events, this
class must be configured in the deployment descriptor for the web application. To do so, add the following to
web.xml in your web application:

<listener>
<listener-class>net.sf.ehcache.constructs.web.ShutdownlListener</listener-class>
</listener>

The Shutdown Hook

Ehcache CacheManager can optionally register a shutdown hook. To do so, set the system property
net.sf.ehcache.enableShutdownHook=true. This will shutdown the CacheManager when it
detects the Virtual Machine shutting down and it is not already shut down.

When to use the shutdown hook
Use the shutdown hook where:
¢ you need guaranteed orderly shutdown, when for example using persistent disk stores, or distributed
caching.
e CacheManager is not already being shutdown by a framework you are using or by your application.
Having said that, shutdown hooks are inherently dangerous. The JVM is shutting down, so sometimes things

that can never be null are. Ehcache guards against as many of these as it can, but the shutdown hook should be
the last option to use.

What the shutdown hook does

The shutdown hook is on CacheManager. It simply calls the shutdown method. The sequence of events is:

e call dispose for each registered CacheManager event listener
e call dispose for each Cache. Each Cache will:

Shutting Down Ehcache 174/284

What the shutdown hook does

¢ shutdown the MemoryStore. The MemoryStore will flush to the DiskStore

¢ shutdown the DiskStore. If the DiskStore is persistent, it will write the entries and index to disk.
¢ shutdown each registered CacheEventListener

e set the Cache status to shutdown, preventing any further operations on it.

e set the CacheManager status to shutdown, preventing any further operations on it

When a shutdown hook will run, and when it will not

The shutdown hook runs when:

e A program exists normally. For example, System.exit () is called, or the last non-daemon thread
exits.

e the Virtual Machine is terminated. e.g. CTRL-C. This corresponds to ki1l —-SIGTERM pid or
kill -15 pid on Unix systems. The shutdown hook will not run when:

e the Virtual Machine aborts

e A SIGKILL signal is sent to the Virtual Machine process on Unix systems. e.g. ki1l —-SIGKILL
pidorkill -9 pid

® A TerminateProcess call is sent to the process on Windows systems.

Dirty Shutdown

If Ehcache is shutdown dirty then any persistent disk stores will be corrupted. They will be deleted, with a log
message, on the next startup. Replications waiting to happen to other nodes in a distributed cache will also not
get written.

Shutting Down Ehcache 175/284

Remote Network debugging and monitoring for
Distributed Caches

Introduction

The ehcache-1.x-remote-debugger. jar can be used to debug replicated cache operations. When
started with the same configuration as the cluster, it will join the cluster and then report cluster events for the
cache of interest. By providing a window into the cluster it can help to identify the cause of cluster problems.

Packaging

From version 1.5 it is packaged in its own distribution tarball along with a maven module. It is provided as an
executable JAR on the download page.

Limitations

This version of the debugger has been tested only with the default RMI based replication.

Usage

It is invoked as follows:

java —jar ehcache-debugger-1.5.0.jar ehcache.xml sampleCachel path_to_ehcache.xml [cacheToMonitor
It takes one or two arguments:

e the first argument, which is mandatory, is the Ehcache configuration file e.g. app/config/ehcache.xml.
This file should be configured to allow Ehcache to joing the cluster. Using one of the existing
ehcache.xml files from the other nodes normally is sufficient.

e the second argument, which is optional, is the name of the cache e.g. distributedCachel

If only the first argument is passed, it will print our a list of caches with replication configured from the
configuration file, which are then available for monitoring. If the second argument is also provided, the
debugger will monitor cache operations received for the given cache. This is done by registering a
CacheEventListener which prints out each operation.

NOTE: Adding Application Libraries to the Classpath Use the Class-Path attribute inside a manifest file to
add any additional libraries to the debugger's classpath. Be sure to leave a blank line at the end of the file.
Following is an example of Class-Path attribute inside a manifest file (showing two separate JARs added to
the classpath):

Class-Path: lib/my.Jjar lib/myLoggerjar
Output
When monitoring a cache it prints a list of caches with replication configured, prints notifications as they

happen, and periodically prints the cache name, size and total events received. See sample output below which
is produced when the RemoteDebuggerTest is run.

Remote Network debugging and monitoring for Distributed Caches 176/284

http://ehcache.org/downloads/catalog

Output

Caches with replication configured which are available for monitoring are:
sampleCachel9 sampleCache20 sampleCache26 sampleCached4?2 sampleCache33
sampleCacheb51 sampleCache40 sampleCache32 sampleCachel8 sampleCache25
sampleCache9 sampleCachel5 sampleCache56 sampleCache31l sampleCache?
sampleCachel?2 sampleCachel?7 sampleCache45 sampleCached4l sampleCache30
sampleCachel3 sampleCache46 sampleCache4 sampleCache36 sampleCache29
sampleCache50 sampleCache37 sampleCache49 sampleCached48 sampleCache38
sampleCache6 sampleCache?2 sampleCacheb55 sampleCachel6 sampleCache27
sampleCachell sampleCache3 sampleCache54 sampleCache28 sampleCachel0
sampleCache8 sampleCached47 sampleCache5 sampleCache53 sampleCache39
sampleCache23 sampleCache34 sampleCache22 sampleCached44 sampleCacheb52
sampleCache24 sampleCache35 sampleCache2l sampleCached43 sampleCachel
Monitoring cache: sampleCachel
Cache: sampleCachel Notifications received: 0 Elements in cache: 0

Received put notification for element [key = this is an id, wvalue=this is
a value, version=1l, hitCount=0, CreationTime = 121065602345¢,
LastAccessTime = 0]

Received update notification for element [key = this is an id, value=this

is a value, version=1210656025351, hitCount=0, CreationTime =
1210656024458, LastAccessTime = 0]

Cache: sampleCachel Notifications received: 2 Elements in cache: 1
Received remove notification for element this is an id

Received removeAll notification.

Providing more Detailed Logging
If you see nothing happening, but cache operations should be going through, enable trace (LOG4J) or finest
(JDK) level logging on net . sf.ehcache.distribution in the logging configuration being used by

the debugger. A large volume of log messages will appear. The normal problem is that the CacheManager has
not joined the cluster. Look for the list of cache peers.

Yes, but | still have a cluster problem

Check the FAQ where a lot of commonly reported errors and their solutions are provided. Beyond that, post to
the forums or mailing list or contact Ehcache for support.

Remote Network debugging and monitoring for Distributed Caches 177/284

Replication Overview

The following sections provide a documentation Table of Contents and additional information sources about

replication.

Replication Table of Contents

Topic

RMI Replicated Caching

JGroups Replicated Caching

JMS Replicated Caching

Description

Ehcache provides replicated caching using RMI. To set up RMI replicated
caching, you need to configure the CacheManager with a PeerProvider and a
CacheManagerPeerListener. Then for each cache that will be replicated, you
need to add one of the RMI cacheEventListener types to propagate messages.
You can also optionally configure a cache to bootstrap from other caches in the
cluster.

JGroups can be used as the underlying mechanism for the replication operations
in Ehcache. JGroups offers a very flexible protocol stack, reliable unicast, and
multicast message transmission. To set up replicated caching using JGroups,
you need to configure a PeerProviderFactory. For each cache that will be
replicated, you then need to add a cacheEventListenerFactory to propagate
messages.

JMS can also be used as the underlying mechanism for replication operations in
Ehcache. The Ehcache jmsreplication module lets organisations with a message
queue investment leverage it for caching. It provides replication between cache
nodes using a replication topic, pushing of data directly to cache nodes from
external topic publishers, and a JMSCacheLoader, which sends cache load
requests to a queue.

Additional Information about Replication

The following pages provide additional information about replicated caching with Ehcache:

® Replicated Caching FAQ
¢ Hibernate and Replicated Caching

Replication Overview

178/284

RMI Replicated Caching

Introduction

Since version 1.2, Ehcache has provided replicated caching using RMI.
An RMI implementation is desirable because:

e it itself is the default remoting mechanism in Java

® it is mature

¢ it allows tuning of TCP socket options

¢ Element keys and values for disk storage must already be Serializable, therefore directly transmittable
over RMI without the need for conversion to a third format such as XML.

¢ it can be configured to pass through firewalls

e RMI had improvements added to it with each release of Java, which can then be taken advantage of.

Apphcahnn J—l Appllcatmn
Server 1 Ehcache Server 2 Ehcanhe

Rl
>

Put, Rerﬁive, Removehlﬂ Bootstrap

(Sync o w
Application Application
Server 4 Ehcache Server 3 Ehcanhe

While RMI is a point-to-point protocol, which can generate a lot of network traffic, Ehcache manages this
through batching of communications for the asynchronous replicator.

To set up RMI replicated caching you need to configure the CacheManager with:

¢ a PeerProvider
¢ a CacheManagerPeerListener

The for each cache that will be replicated, you then need to add one of the RMI cacheEventListener types to
propagate messages. You can also optionally configure a cache to bootstrap from other caches in the cluster.

Suitable Element Types

Only Serializable Elements are suitable for replication.

RMI Replicated Caching 179/284

Suitable Element Types

Some operations, such as remove, work off Element keys rather than the full Element itself. In this case the
operation will be replicated provided the key is Serializable, even if the Element is not.

Configuring the Peer Provider

Peer Discovery

Ehcache has the notion of a group of caches acting as a replicated cache. Each of the caches is a peer to the
others. There is no master cache. How do you know about the other caches that are in your cluster? This
problem can be given the name Peer Discovery. Ehcache provides two mechanisms for peer discovery, just
like a car: manual and automatic.

To use one of the built-in peer discovery mechanisms specify the class attribute of
cacheManagerPeerProviderFactory as
net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory in the
ehcache.xml configuration file.

Automatic Peer Discovery

Automatic discovery uses TCP multicast to establish and maintain a multicast group. It features minimal
configuration and automatic addition to and deletion of members from the group. No a priori knowledge of
the servers in the cluster is required. This is recommended as the default option. Peers send heartbeats to the
group once per second. If a peer has not been heard of for 5 seconds it is dropped from the group. If a new
peer starts sending heartbeats it is admitted to the group.

Any cache within the configuration set up as replicated will be made available for discovery by other peers.

To set automatic peer discovery, specify the properties attribute of
cacheManagerPeerProviderFactory as follows:

peerDiscovery=automatic

multicastGroupAddress=multicast address | multicast host name

multicastGroupPort=port

timeToLive=0-255 (See below in common problems before setting this)

hostName=the hostname or IP of the interface to be used for sending and receiving multicast packets
(relevant to mulithomed hosts only)

Example

Suppose you have two servers in a cluster. You wish to distribute sampleCachel1 and sampleCachel2. The
configuration required for each server is identical:

Configuration for serverl and server2

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"
properties="peerDiscovery=automatic, multicastGroupAddress=230.0.0.1,
multicastGroupPort=4446, timeToLive=32"/>

RMI Replicated Caching 180/284

Manual Peer Discovery {#Manual Peer Discovery}

Manual Peer Discovery {#Manual Peer Discovery}

Manual peer configuration requires the IP address and port of each listener to be known. Peers cannot be
added or removed at runtime. Manual peer discovery is recommended where there are technical difficulties
using multicast, such as a router between servers in a cluster that does not propagate multicast datagrams. You
can also use it to set up one way replications of data, by having server2 know about server]l but not vice versa.

To set manual peer discovery, specify the properties attribute of
cacheManagerPeerProviderFactory as follows:

peerDiscovery=manual
rmiUrls=//server:port/cacheName, ...

The rmiUrls is a list of the cache peers of the server being configured. Do not include the server being
configured in the list.

Example

Suppose you have two servers in a cluster. You wish to distribute sampleCachel1 and sampleCache12.
Following is the configuration required for each server:

Configuration for serverl

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"
properties="peerDiscovery=manual,
rmiUrls=//server2:40001/sampleCachell|//server2:40001/sampleCachel2"/>

Configuration for server2

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"
properties="peerDiscovery=manual,
rmiUrls=//serverl:40001/sampleCachell|//server1:40001/sampleCachel2"/>

Configuring the CacheManagerPeerListener

A CacheManagerPeerListener listens for messages from peers to the current CacheManager.

You configure the CacheManagerPeerListener by specifiying a CacheManagerPeerListenerFactory which is
used to create the CacheManagerPeerListener using the plugin mechanism.

The attributes of cacheManagerPeerListenerFactory are:

e class - a fully qualified factory class name
® properties - comma separated properties having meaning only to the factory.

Ehcache comes with a built-in RMI-based distribution system. The listener component is
RMICacheManagerPeerListener which is configured using RMICacheManagerPeerListenerFactory. It is
configured as per the following example:

<cacheManagerPeerListenerFactory

RMI Replicated Caching 181/284

Configuring the CacheManagerPeerListener

class="net.sf.ehcache.distribution.RMICacheManagerPeerListenerFactory"
properties="hostName=localhost, port=40001,
socketTimeoutMillis=2000"/>

Valid properties are:

¢ hostName (optional) - the hostName of the host the listener is running on. Specify where the host is
multihomed and you want to control the interface over which cluster messages are received. The
hostname is checked for reachability during CacheManager initialisation. If the hostName is
unreachable, the CacheManager will refuse to start and an CacheException will be thrown indicating
connection was refused. If unspecified, the hostname will use
InetAddress.getLocalHost () .getHostAddress (), which corresponds to the default
host network interface. Warning: Explicitly setting this to localhost refers to the local loopback of
127.0.0.1, which is not network visible and will cause no replications to be received from remote
hosts. You should only use this setting when multiple CacheManagers are on the same machine.

e port (mandatory) - the port the listener listens on.

e socketTimeoutMillis (optional) - the number of seconds client sockets will wait when sending
messages to this listener until they give up. By default this is 2000m:s.

Configuring Cache Replicators

Each cache that will be replicated needs to set a cache event listener which then replicates messages to the
other CacheManager peers. This is done by adding a cacheEventListenerFactory element to each cache's
configuration.

<!-— Sample cache named sampleCache2. -->
<cache name="sampleCache2"

maxEntriesLocalHeap="10"

eternal="false"

timeToIdleSeconds="100"

timeToLiveSeconds="100"

overflowToDisk="false">
<cacheEventListenerFactory
class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"
properties="replicateAsynchronously=true, replicatePuts=true, replicateUpdates=true,
replicateUpdatesViaCopy=false, replicateRemovals=true "/>
</cache>

class - use net.sf.ehcache.distribution.RMICacheReplicatorFactory
The factory recognises the following properties:

e replicatePuts=true | false - whether new elements placed in a cache are replicated to others. Defaults
to true.

e replicateUpdates=true | false - whether new elements which override an element already existing with
the same key are replicated. Defaults to true.

e replicateRemovals=true - whether element removals are replicated. Defaults to true.

e replicate Asynchronously=true | false - whether replications are asyncrhonous (true) or synchronous
(false). Defaults to true.

¢ replicateUpdatesViaCopy=true | false - whether the new elements are copied to other caches (true), or

whether a remove message is sent. Defaults to true.

RMI Replicated Caching 182/284

Configuring Cache Replicators

To reduce typing if you want default behaviour, which is replicate everything in asynchronous mode, you can
leave off the RMICacheReplicatorFactory properties as per the following example:

<!—— Sample cache named sampleCache4. All missing RMICacheReplicatorFactory properties
default to true —-—>
<cache name="sampleCache4d"
maxEntriesLocalHeap="10"
eternal="true"
overflowToDisk="false"
memoryStoreEvictionPolicy="LFU">
<cacheEventListenerFactory
class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"/>
</cache>

Configuring Bootstrap from a Cache Peer

When a peer comes up, it will be incoherent with other caches. When the bootstrap completes it will be
partially coherent. Bootstrap gets the list of keys from a random peer, and then loads those in batches from
random peers. If bootstrap fails then the Cache will not start (not like this right now). However if a cache
replication operation occurs which is then overwritten by bootstrap there is a chance that the cache could be
inconsistent.

Here are some scenarios:

Delete overwritten by boostrap put

Cache A keys with values: 1, 2, 3,4, 5

Cache B starts bootstrap

Cache A removes key 2

Cache B removes key 2 and then bootstrap puts it back

Put overwritten by boostrap put

Cache A keys with values: 1, 2, 3,4, 5

Cache B starts bootstrap

Cache A updates the value of key 2

Cache B updates the value of key 2 and then bootstrap overwrites it with the old value

The solution is for bootstrap to get a list of keys and write them all before committing transactions.
This could cause synchronous transaction replicates to back up. To solve this problem, commits will be

accepted, but not written to the cache until after bootstrap. Coherency is maintained because the cache is not
available until bootstrap has completed and the transactions have been completed.

Full Example

Ehcache's own integration tests provide complete examples of RMI-based replication.

The best example is the integration test for cache replication. You can see it online here:
http://ehcache.org/xref-test/net/st/ehcache/distribution/RMICacheReplicatorTest.html

The test uses 5 ehcache.xml's representing 5 CacheManagers set up to replicate using RMI.

RMI Replicated Caching 183/284

http://ehcache.org/xref-test/net/sf/ehcache/distribution/RMICacheReplicatorTest.html

Common Problems

Common Problems

Tomcat on Windows

There is a bug in Tomcat and/or the JDK where any RMI listener will fail to start on Tomcat if the installation
path has spaces in it. See http://archives.java.sun.com/cgi-bin/wa? A2=ind0205&L=rmi-users&P=797 and
http://www.ontotext.com/kim/doc/sys-doc/fag-howto-bugs/known-bugs.html. As the default on Windows is to
install Tomcat in "Program Files", this issue will occur by default.

Multicast Blocking

The automatic peer discovery process relies on multicast. Multicast can be blocked by routers. Virtualisation
technologies like Xen and VMWare may be blocking multicast. If so enable it. You may also need to turn it
on in the configuration for your network interface card. An easy way to tell if your multicast is getting through
is to use the Ehcache remote debugger and watch for the heartbeat packets to arrive.

Multicast Not Propagating Far Enough or Propagating Too Far

You can control how far the multicast packets propagate by setting the badly misnamed time to live. Using the
multicast IP protocol, the timeToLive value indicates the scope or range in which a packet may be forwarded.

By convention:

0 is restricted to the same host

1 is restricted to the same subnet

32 is restricted to the same site

64 is restricted to the same region

128 is restricted to the same continent
255 is unrestricted

The default value in Java is 1, which propagates to the same subnet. Change the timeToLive property to
restrict or expand propagation.

RMI Replicated Caching 184/284

Replicated Caching using JGroups

Introduction

JGroups can be used as the underlying mechanism for the replication operations in ehcache. JGroups offers a
very flexible protocol stack, reliable unicast and multicast message transmission.

On the down side JGroups can be complex to configure and some protocol stacks have dependencies on
others.

To set up replicated caching using JGroups you need to configure a PeerProviderFactory of type
JGroupsCacheManagerPeerProviderFactory which is done globally for a CacheManager

For each cache that will be replicated, you then need to add a cacheEventListenerFactory of type
JGroupsCacheReplicatorFactory to propagate messages.

Suitable Element Types

Only Serializable Elements are suitable for replication.

Some operations, such as remove, work off Element keys rather than the full Element itself. In this case the
operation will be replicated provided the key is Serializable, even if the Element is not.

Peer Discovery

If you use the UDP multicast stack there is no additional configuration. If you use a TCP stack you will need
to specify the initial hosts in the cluster.

Configuration

There are two things to configure:
® The JGroupsCacheManagerPeerProviderFactory which is done once per CacheManager and therefore
once per ehcache.xml file.
® The JGroupsCacheReplicatorFactory which is added to each cache's configuration.

The main configuration happens in the JGroupsCacheManagerPeerProviderFactory connect sub-property.

A connect property is passed directly to the JGroups channel and therefore all the protocol stacks and options
available in JGroups can be set.

Example configuration using UDP Multicast

If you use the UDP multicast stack there is no additional configuration. If you use a TCP stack you will need
to specify the initial hosts in the cluster.

Replicated Caching using JGroups 185/284

Configuration
Configuration

There are two things to configure:

® The JGroupsCacheManagerPeerProviderFactory which is done once per CacheManager and therefore
once per ehcache.xml file.
® The JGroupsCacheReplicatorFactory which is added to each cache's configuration.

The main configuration happens in the JGroupsCacheManagerPeerProviderFactory connect sub-property.

A connect property is passed directly to the JGroups channel and therefore all the protocol stacks and options
available in JGroups can be set.

Example configuration using UDP Multicast

Suppose you have two servers in a cluster. You wish to replicated sampleCachel1 and sampleCachel2 and
you wish to use UDP multicast as the underlying mechanism. The configuration for serverl and server2 are
identical and will look like this:

<cacheManagerPeerProviderFactory

class="net.sf.ehcache.distribution. jgroups.JGroupsCacheManagerPeerProviderFactory"
properties="connect=UDP (mcast_addr=231.12.21.132;mcast_port=45566;) :PING:

MERGE2 :FD_SOCK:VERIFY_SUSPECT:pbcast .NAKACK:UNICAST:pbcast.STABLE:FRAG:pbcast.GMS"
propertySeparator="::"

/>

Example configuration using TCP Unicast

The TCP protocol requires the IP address of all servers to be known. They are configured through the
{TCPP ING protocol} of Jgroups.

Suppose you have 2 servers hostl and host2, then the configuration is:

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution. jgroups.JGroupsCacheManagerPeerProviderFactory"
properties="connect=TCP (start_port=7800) :
TCPPING (initial_hosts=host1[7800],host2[7800];port_range=10;timeout=3000;
num_initial_ members=3;up_thread=true;down_thread=true) :
VERIFY_SUSPECT (timeout=1500; down_thread=false;up_thread=false):
pbcast .NAKACK (down_thread=true;up_thread=true;gc_lag=100; retransmit_timeout=3000) :
pbcast.GMS (join_timeout=5000; join_retry_timeout=2000; shun=false;
print_local_addr=false;down_thread=true;up_thread=true)"
propertySeparator="::" />

Protocol considerations.

You should read the JGroups documentation to configure the protocols correctly.
See http://www.jgroups.org/javagroupsnew/docs/manual/html_single/index.html.

If using UDP you should at least configure PING, FD_SOCK (Failure detection), VERIFY_SUSPECT,

Replicated Caching using JGroups 186/284

http://www.jgroups.org/javagroupsnew/docs/manual/html_single/index.html

Protocol considerations.

pbcast NAKACK (Message reliability), pbcast. STABLE (message garbage collection).

Configuring CacheReplicators

Each cache that will be replicated needs to set a cache event listener which then replicates messages to the
other CacheManager peers. This is done by adding a cacheEventListenerFactory element to each cache's
configuration. The properties are identical to the one used for RMI replication. The listener factory must be of
type JGroupsCacheReplicatorFactory.

<!-— Sample cache named sampleCache2. -->
<cache name="sampleCache2"
maxEntriesLocalHeap="10"
eternal="false"
timeToIdleSeconds="100"
timeToLiveSeconds="100"
overflowToDisk="false">
<cacheEventListenerFactory
class="net.sf.ehcache.distribution. jgroups.JGroupsCacheReplicatorFactory"
properties="replicateAsynchronously=true, replicatePuts=true,
replicateUpdates=true, replicateUpdatesViaCopy=false, replicateRemovals=true" />
</cache>

The configuration options are explained below:
class - use net.sf.ehcache.distribution.jgroups.JGroupsCacheReplicatorFactory
The factory recognises the following properties:

e replicatePuts=true | false - whether new elements placed in a cache are replicated to others. Defaults
to true.

e replicateUpdates=true | false - whether new elements which override an element already existing with
the same key are replicated. Defaults to true.

e replicateRemovals=true - whether element removals are replicated. Defaults to true.

e replicate Asynchronously=true | false - whether replications are asyncrhonous (true) or synchronous
(false). Defaults to true.

¢ replicateUpdatesViaCopy=true | false - whether the new elements are copied to other caches (true), or
whether a remove message is sent. Defaults to true.

¢ asynchronousReplicationIntervalMillis default 1000ms Time between updates when replication is
asynchroneous

Complete Sample configuration

A typical complete configuration for one replicated cache configured for UDP will look like:

<Ehcache xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:noNamespaceSchemalLocation="../../../main/config/ehcache.xsd">

<diskStore path="java.io.tmpdir/one"/>

<cacheManagerPeerProviderFactory class="net.sf.ehcache.distribution. jgroups
.JGroupsCacheManagerPeerProviderFactory"
properties="connect=UDP (mcast_addr=231.12.21.132;mcast_port=45566; ip_ttl=32;
mcast_send_buf_size=150000;mcast_recv_buf_size=80000) :
PING (timeout=2000; num_initial_members=6) :
MERGE2 (min_interval=5000;max_interval=10000) :
FD_SOCK:VERIFY_SUSPECT (timeout=1500) :

Replicated Caching using JGroups 187/284

Complete Sample configuration

pbcast .NAKACK (gc_lag=10; retransmit_timeout=3000) :
UNICAST (timeout=5000) :
pbcast.STABLE (desired_avg_gossip=20000) :
FRAG:
pbcast.GMS (join_timeout=5000; join_retry_timeout=2000;
shun=false;print_local_addr=true)"
propertySeparator="::"

/>

<cache name="sampleCacheAsync"
maxEntriesLocalHeap="1000"
eternal="false"
timeToIdleSeconds="1000"
timeToLiveSeconds="1000"
overflowToDisk="false">

<cacheEventListenerFactory
class="net.sf.ehcache.distribution. jgroups.JGroupsCacheReplicatorFactory"
properties="replicateAsynchronously=true, replicatePuts=true,

replicateUpdates=true, replicateUpdatesViaCopy=false,
replicateRemovals=true" />
</cache>
</ehcache>

Common Problems

If replication using JGroups doesn't work the way you have it configured try this configuration which has
been extensively tested:

<cacheManagerPeerProviderFactory class="net.sf.ehcache.distribution. jgroups.JGroupsCacheManagerPe
<cache name="sampleCacheAsync"
maxEntriesLocalHeap="1000"
eternal="false"
timeToIdleSeconds="1000"
timeToLiveSeconds="1000"
overflowToDisk="false">
<cacheEventListenerFactory
class="net.sf.ehcache.distribution. jgroups.JGroupsCacheReplicatorFactory"
properties="replicateAsynchronously=true, replicatePuts=true,
replicateUpdates=true, replicateUpdatesViaCopy=false,
replicateRemovals=true" />
</cache>

If this fails to replicate, see the example programs in the JGroups documentation.

Once you have figured out the connection string that works in your network for JGroups, you can directly
paste it in the connect property of JGroupsCacheManagerPeerProviderFactory.

Replicated Caching using JGroups 188/284

http://www.jgroups.org/manual/html/ch02.html

Replicated Caching using JMS

Introduction

As of version 1.6, JMS can be used as the underlying mechanism for the replicated operations in Ehcache with
the jmsreplication module.

IMS, ("Java Message Service") is an industry standard mechanism for interacting with message queues.
Message queues themselves are a very mature piece of infrastructure used in many enterprise software
contexts. Because they are a required part of the Java EE specification, the large enterprise vendors all provide
their own implementations. There are also several open source choices including Open MQ and Active MQ.
Ehcache is integration tested against both of these.

The Ehcache jmsreplication module lets organisations with a message queue investment leverage it for
caching.

It provides:

e replication between cache nodes using a replication topic, in accordance with ehcache's standard
replication mechanism

¢ pushing of data directly to cache nodes from external topic publishers, in any language. This is done
by sending the data to the replication topic, where it automatically picked up by the cache subscribers.

® a JMSCachel.oader, which sends cache load requests to a queue. Either an Ehcache cluster node, or
an external queue receiver can respond.

Ehcache Replication and External Publishers

Ehcache replicates using JMS as follows:
® Each cache node subscribes to a predefined topic, configured as the <topicBindingName> in
ehcache.xml.

e Each replicated cache publishes cache E1ements to that topic. Replication is configured per cache.

To set up replicated caching using JMS you need to configure a JIMSCacheManagerPeerProviderFactory
which is done globally for a CacheManager.

For each cache that wishing to replicate, you add a JGroupsCacheReplicatorFactory element to the cache
element.

Replicated Caching using JMS 189/284

Ehcache Replication and External Publishers

Itzer Application
Made 1

ehcache

Object LA

MESSBQB Text m
Quoun XML / cachez
Mon cache "'f__r_,_.r- cached
: blisher
publisher Object] pub
[Jawa) [T Tt w
XML ament
tople
Chbject Element * .
Text & Object
|- XL Taxt
Mon cache XML
publisher Itser Application
(non Java) ; Made n
ghcache
[t cacnez
[cachet
pubdisher
Configuration

Message Queue Configuration

Each cluster needs to use a fixed topic name for replication. Set up a topic using the tools in your message
queue. Out of the box, both ActiveMQ and Open MQ support auto creation of destinations, so this step may

be optional.
Ehcache Configuration
Configuration is done in the ehcache.xml.

There are two things to configure:

® The IMSCacheManagerPeerProviderFactory which is done once per CacheManager and therefore

once per ehcache.xml file.
¢ The JIMSCacheReplicatorFactory which is added to each cache's configuration if you want that cache

replicated.

The main configuration happens in the JGroupsCacheManagerPeerProviderFactory connect sub-property. A
connect property is passed directly to the JGroups channel and therefore all the protocol stacks and options

available in JGroups can be set.
Configuring the JMSCacheManagerPeerProviderFactory
Following is the configuration instructions as it appears in the sample ehcache.xml shipped with ehcache:

{Configuring JMS replication}.

Replicated Caching using JMS 190/284

Configuration

The JMS PeerProviderFactory uses JNDI to maintain message queue independence.
Refer to the manual for full configuration examples using ActiveMQ and Open Message Queue.

Valid properties are:
* initialContextFactoryName (mandatory) - the name of the factory used to create
the message queue initial context.
* providerURL (mandatory) - the JNDI configuration information for the service
provider to use.
* topicConnectionFactoryBindingName (mandatory) - the JNDI binding name for the
TopicConnectionFactory
topicBindingName (mandatory) — the JNDI binding name for the topic name
securityPrincipalName - the JNDI java.naming.security.principal
securityCredentials - the JNDI java.naming.security.credentials
urlPkgPrefixes - the JNDI java.naming.factory.url.pkgs
userName - the user name to use when creating the TopicConnection to the Message
Queue
* password - the password to use when creating the TopicConnection to the Message
Queue
* acknowledgementMode - the JMS Acknowledgement mode for both publisher and
subscriber.
The available choices are
AUTO_ACKNOWLEDGE, DUPS_OK_ACKNOWLEDGE and SESSION_TRANSACTED.
The default is AUTO_ACKNOWLEDGE.
* listenToTopic - true or false. If false, this cache will send to the JMS topic
but will not listen for updates.
* Default is true.

* % o ok ot

Example Configurations

Usage is best illustrated with concrete examples for Active MQ and Open MQ.

Configuring the JMSCacheManagerPeerProviderFactory for Active MQ

This configuration works with Active MQ out of the box.

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution. jms.JMSCacheManagerPeerProviderFactory"
properties="initialContextFactoryName=ExampleActiveMQInitialContextFactory,
providerURL=tcp://localhost:61616,
topicConnectionFactoryBindingName=topicConnectionFactory,
topicBindingName=ehcache"
propertySeparator=","

/>

You need to provide your own ActiveMQInitialContextFactory for the initialContextFactoryName. An
example which should work for most purposes is:

public class ExampleActiveMQInitialContextFactory
extends ActiveMQInitialContextFactory {

/**
* {@inheritDoc}
*/

@Override

@SuppressWarnings ("unchecked")

public Context getInitialContext (Hashtable environment)
throws NamingException

Replicated Caching using JMS 191/284

Configuration

Map<String, Object> data = new ConcurrentHashMap<String, Object>();
String factoryBindingName =
(String)environment.get (JMSCacheManagerPeerProviderFactory
.TOPIC_CONNECTION_FACTORY_BINDING_NAME) ;
try {
data.put (factoryBindingName, createConnectionFactory(environment));
} catch (URISyntaxException e) {
throw new NamingException ("Error initialisating ConnectionFactory"
+ " with message "
+ e.getMessage());
}
String topicBindingName =
(String)environment .get (JMSCacheManagerPeerProviderFactory
.TOPIC_BINDING_NAME) ;
data.put (topicBindingName, createTopic (topicBindingName)) ;
return createContext (environment, data);

Configuring the JMSCacheManagerPeerProviderFactory for {Open MQ}

This configuration works with an out of the box Open MQ.

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution. jms.JMSCacheManagerPeerProviderFactory"
properties="initialContextFactoryName=com.sun. jndi.fscontext.RefFSContextFactory,
providerURL=file:///tmp,
topicConnectionFactoryBindingName=MyConnectionFactory,
topicBindingName=ehcache"
propertySeparator=","

/>

To set up the Open MQ file system initial context to work with this example use the following imgob jmgr
commands to create the requires objects in the context.

imgobjmgr add -t tf -1 'MyConnectionFactory' —-7J java.naming.provider.url \
=file:///tmp —-j java.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory —-f
imgobjmgr add -t t -1 'ehcache' -o 'imgDestinationName=EhcacheTopicDest'

-j java.naming.provider.url\
=file:///tmp —-j java.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory —-f

Configuring the JMSCacheReplicatorFactory

This is the same as configuring any of the cache replicators. The class should be
net.sf.ehcache.distribution. jms.JMSCacheReplicatorFactory.

See the following example:

<cache name="sampleCacheAsync"
maxEntriesLocalHeap="1000"
eternal="false"
timeToIdleSeconds="1000"
timeToLiveSeconds="1000"
overflowToDisk="false">
<cacheEventListenerFactory
class="net.sf.ehcache.distribution. jms.JMSCacheReplicatorFactory"
properties="replicateAsynchronously=true,
replicatePuts=true,
replicateUpdates=true,

Replicated Caching using JMS 192/284

External JMS Publishers

replicateUpdatesViaCopy=true,
replicateRemovals=true,
asynchronousReplicationIntervalMillis=1000"
propertySeparator=","/>
</cache>

External JMS Publishers

Anything that can publish to a message queue can also add cache entries to ehcache. These are called
non-cache publishers.

Required Message Properties
Publishers need to set up to four String properties on each message: cacheName, action, mimeType and key.
cacheName Property

A JMS message property which contains the name of the cache to operate on. If no cacheName is set the
message will be <ignored>. A warning log message will indicate that the message has been ignored.

action Property

A JMS message property which contains the action to perform on the cache.

Available actions are strings labeled PUT, REMOVE and REMOVE_ALL.

If not set no action is performed. A warning log message will indicate that the message has been ignored.
mimeType Property

A JMS message property which contains the mimeType of the message. Applies to the PUT action. If not set
the message is interpreted as follows:

ObjectMessage - if it is an net.sf.ehcache.Element, then it is treated as such and stored in the cache. For other
objects, a new Element is created using the object in the ObjectMessage as the value and the key property as a

key. Because objects are already typed, the mimeType is ignored.

TextMessage - Stored in the cache as value of MimeTypeByteArray. The mimeType should be specified. If
not specified it is stored as type text /plain.

BytesMessage - Stored in the cache as value of MimeTypeByteArray. The mimeType should be specified. If
not specified it is stored as type application/octet—-stream.

Other message types are not supported.

To send XML use a TextMessage or BytesMessage and set the mimeType to application/xml.It will be
stored in the cache as a value of MimeTypeByteArray.

The REMOVE and REMOVE_ALL actions do not require a mimeType property.

Replicated Caching using JMS 193/284

External JMS Publishers

key Property
The key in the cache on which to operate on. The key is of type String.
The REMOVE_ALL action does not require a key property.

If an ObjectMessage of type net.sf.ehcache.Element is sent, the key is contained in the element. Any key set
as a property is ignored.

If the key is required but not provided, a warning log message will indicate that the message has been ignored.
Code Samples

These samples use Open MQ as the message queue and use it with out of the box defaults. They are heavily
based on Ehcache's own JMS integration tests. See the test source for more details.

Messages should be sent to the topic that Ehcache is listening on. In these samples it is
EhcacheTopicDest.

All samples get a Topic Connection using the following method:

private TopicConnection getMQConnection () throws JMSException {
com.sun.messaging.ConnectionFactory factory =
new com.sun.messaging.ConnectionFactory();
factory.setProperty (ConnectionConfiguration.imgAddressList, "localhost:7676");
factory.setProperty (ConnectionConfiguration.imgReconnectEnabled, "true");
TopicConnection myConnection = factory.createTopicConnection();
return myConnection;

PUT a Java Object into an Ehcache JMS Cluster

String payload = "this is an object";

TopicConnection connection = getMQConnection();

connection.start ();

TopicSession publisherSession =
connection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE) ;

ObjectMessage message = publisherSession.createObjectMessage (payload);
message.setStringProperty (ACTION_PROPERTY, "PUT");
message.setStringProperty (CACHE_NAME_PROPERTY, "sampleCacheAsync");

//don't set. Should work.

//message.setStringProperty (MIME_TYPE_PROPERTY, null);
//should work. Key should be ignored when sending an element.
message.setStringProperty (KEY_PROPERTY, "1234");

Topic topic = publisherSession.createTopic ("EhcacheTopicDest");
TopicPublisher publisher = publisherSession.createPublisher (topic);

publisher.send (message) ;

connection.stop();

Ehcache will create an Element in cache "sampleCacheAsync" with key "1234" and a Java class String value
of "this is an object".

Replicated Caching using JMS 194/284

External JMS Publishers
PUT XML into an Ehcache JMS Cluster

TopicConnection connection = getMQConnection();

connection.start ();

TopicSession publisherSession = connection.createTopicSession(false,
Session.AUTO_ACKNOWLEDGE) ;

String value = "<?xml version=\"1.0\"?>\n" +
"<oldjoke>\n" +
"<burns>Say <quote>goodnight</quote>,\n" +
"Gracie.</burns>\n" +
"<allen><quote>Goodnight, \n" +
"Gracie.</quote></allen>\n" +
"<applause/>\n" +
"</oldjoke>";

TextMessage message = publisherSession.createTextMessage (value);
message.setStringProperty (ACTION_PROPERTY, "PUT");
message.setStringProperty (CACHE_NAME_PROPERTY, "sampleCacheAsync");
message.setStringProperty (MIME_TYPE_PROPERTY, "application/xml");
message.setStringProperty (KEY_PROPERTY, "1234");

Topic topic = publisherSession.createTopic ("EhcacheTopicDest");
TopicPublisher publisher = publisherSession.createPublisher (topic);
publisher.send (message) ;

connection.stop();

Ehcache will create an Element in cache "sampleCacheAsync" with key "1234" and a value of type
MimeTypeByteArray.

On a get from the cache the MimeTypeByteArray will be returned. It is an Ehcache value object from which a
mimeType and byte[] can be retrieved. The mimeType will be "application/xml". The byte[] will contain the
XML String encoded in bytes, using the platform's default charset.

PUT arbitrary bytes into an Ehcache JMS Cluster

byte[] bytes = new byte[]{0x34, (byte) 0xe3, (byte) 0x88};
TopicConnection connection = getMQConnection();
connection.start ();

TopicSession publisherSession = connection.createTopicSession(false,
Session.AUTO_ACKNOWLEDGE) ;

BytesMessage message = publisherSession.createBytesMessage();
message.writeBytes (bytes);

message.setStringProperty (ACTION_PROPERTY, "PUT");
message.setStringProperty (CACHE_NAME_PROPERTY, "sampleCacheAsync");
message.setStringProperty (MIME_TYPE_PROPERTY, "application/octet-stream");
message.setStringProperty (KEY_PROPERTY, "1234");

Topic topic = publisherSession.createTopic ("EhcacheTopicDest");

TopicPublisher publisher = publisherSession.createPublisher (topic);
publisher.send (message) ;

Ehcache will create an Element in cache "sampleCacheAsync" with key "1234" in and a value of type
MimeTypeByteArray.

Replicated Caching using JMS 195/284

External JMS Publishers

On a get from the cache the MimeTypeByteArray will be returned. It is an Ehcache value object from which a
mimeType and byte[] can be retrieved. The mimeType will be "application/octet-stream". The byte[] will
contain the original bytes.

REMOVE

TopicConnection connection = getMQConnection();
connection.start ();

TopicSession publisherSession = connection.createTopicSession(false,
Session.AUTO_ACKNOWLEDGE) ;

ObjectMessage message = publisherSession.createObjectMessage();
message.setStringProperty (ACTION_PROPERTY, "REMOVE");
message.setStringProperty (CACHE_NAME_PROPERTY, "sampleCacheAsync");
message.setStringProperty (KEY_PROPERTY, "1234");

Topic topic = publisherSession.createTopic ("EhcacheTopicDest");

TopicPublisher publisher = publisherSession.createPublisher (topic);
publisher.send (message) ;

Ehcache will remove the Element with key "1234" from cache "sampleCacheAsync" from the cluster.

REMOVE_ALL

TopicConnection connection = getMQConnection();
connection.start ();

TopicSession publisherSession = connection.createTopicSession(false,
Session.AUTO_ACKNOWLEDGE) ;

ObjectMessage message = publisherSession.createObjectMessage();
message.setStringProperty (ACTION_PROPERTY, "REMOVE_ALL");
message.setStringProperty (CACHE_NAME_PROPERTY, "sampleCacheAsync");
Topic topic = publisherSession.createTopic ("EhcacheTopicDest");
TopicPublisher publisher = publisherSession.createPublisher (topic);

publisher.send (message) ;

connection.stop();

Ehcache will remove all Elements from cache "sampleCacheAsync" in the cluster.

Using the JMSCachelLoader

The JMSCacheLoader is a CacheLoader which loads objects into the cache by sending requests to a JMS
Queue.

The loader places an ObjectMessage of type JMSEventMessage on the getQueue with an Action of type GET.
It is configured with the following String properties, loaderArgument.
The defaultLoaderArgument, or the loaderArgument if specified on the load request. To work with the

JMSCacheManagerPeerProvider this should be the name of the cache to load from. For custom responders, it
can be anything which has meaning to the responder.

Replicated Caching using JMS 196/284

Using the JMSCacheloader

A queue responder will respond to the request. You can either create your own or use the one built-into the
JMSCacheManagerPeerProviderFactory, which attempts to load the queue from its cache.

The JMSCacheLoader uses JNDI to maintain message queue independence. Refer to the manual for full
configuration examples using ActiveMQ and Open Message Queue.

It is configured as per the following example:

<cachelLoaderFactory class="net.sf.ehcache.distribution. jms.JMSCachelLoaderFactory"
properties="initialContextFactoryName=com.sun. jndi.fscontext.RefFSContextFactory,
providerURL=file:///tmp,
replicationTopicConnectionFactoryBindingName=MyConnectionFactory,
replicationTopicBindingName=ehcache,
getQueueConnectionFactoryBindingName=queueConnectionFactory,
getQueueBindingName=ehcacheGetQueue,
timeoutMillis=20000
defaultLoaderArgument=/>

Valid properties are:

¢ initialContextFactoryName (mandatory) - the name of the factory used to create the message queue
initial context.

¢ providerURL (mandatory) - the JNDI configuration information for the service provider to use.

¢ getQueueConnectionFactoryBindingName (mandatory) - the JNDI binding name for the
QueueConnectionFactory

¢ getQueueBindingName (mandatory) - the JNDI binding name for the queue name used to do make
requests.

e defaultLoaderArgument - (optional) - an application specific argument. If not supplied as a
cache.load() parameter this default value will be used. The argument is passed in the JMS request as a
StringProperty called loaderArgument.

¢ timeoutMillis - time in milliseconds to wait for a reply.

e securityPrincipalName - the JNDI java.naming.security.principal

e securityCredentials - the JNDI java.naming.security.credentials

e urlPkgPrefixes - the JNDI java.naming.factory.url.pkgs

¢ userName - the user name to use when creating the TopicConnection to the Message Queue

e password - the password to use when creating the TopicConnection to the Message Queue

¢ acknowledgementMode - the JMS Acknowledgement mode for both publisher and subscriber. The
available choices are AUTO_ACKNOWLEDGE, DUPS_OK_ACKNOWLEDGE and
SESSION_TRANSACTED. The default is AUTO_ACKNOWLEDGE.

Example Configuration Using Active MQ

<cache name="sampleCacheNorep"
maxEntriesLocalHeap="1000"
eternal="false"
timeToIdleSeconds="1000"
timeToLiveSeconds="1000"
overflowToDisk="false">
<cacheEventListenerFactory
class="net.sf.ehcache.distribution. jms.JMSCacheReplicatorFactory"
properties="replicateAsynchronously=false, replicatePuts=false,
replicateUpdates=false, replicateUpdatesViaCopy=false,
replicateRemovals=false, loaderArgument=sampleCacheNorep"
propertySeparator=","/>
<cacheloaderFactory

Replicated Caching using JMS 197/284

Example Configuration Using Active MQ

class="net.sf.ehcache.distribution. jms.JMSCacheLoaderFactory"

properties="initialContextFactoryName=net.sf.ehcache.distribution. jms.
TestActiveMQInitialContextFactory,
providerURL=tcp://localhost:61616,
replicationTopicConnectionFactoryBindingName=topicConnectionFactory,
getQueueConnectionFactoryBindingName=queueConnectionFactory,
replicationTopicBindingName=ehcache,
getQueueBindingName=ehcacheGetQueue,
timeoutMillis=10000"/>

</cache>

Example Configuration Using Open MQ

<cache name="sampleCacheNorep"
maxEntriesLocalHeap="1000"
eternal="false"
timeToIdleSeconds="100000"
timeToLiveSeconds="100000"
overflowToDisk="false">
<cacheEventListenerFactory
class="net.sf.ehcache.distribution. jms.JMSCacheReplicatorFactory"
properties="replicateAsynchronously=false, replicatePuts=false,
replicateUpdates=false, replicateUpdatesViaCopy=false,
replicateRemovals=false"
propertySeparator=","/>
<cacheloaderFactory
class="net.sf.ehcache.distribution. jms.JMSCachelLoaderFactory"
properties="initialContextFactoryName=com.sun. jndi.fscontext.RefFSContextFactory,
providerURL=file:///tmp,
replicationTopicConnectionFactoryBindingName=MyConnectionFactory,
replicationTopicBindingName=ehcache,
getQueueConnectionFactoryBindingName=queueConnectionFactory,
getQueueBindingName=ehcacheGetQueue,
timeoutMillis=10000,
userName=test,
password=test"/>
</cache>

Configuring Clients for Message Queue Reliability

Ehcache replication and cache loading is designed to gracefully degrade if the message queue infrastructure
stops. Replicates and loads will fail. But when the message queue comes back, these operations will start up
again.

For this to work, the ConnectionFactory used with the specific message queue needs to be configured
correctly. For example, with Open MQ, reconnection is configured as follows:

® imgReconnect="true' - without this reconnect will not happen

¢ imgPinglnterval='5" - Consumers will not reconnect until they notice the connection is down. The
ping interval

® does this. The default is 30. Set it lower if you want the Ehcache cluster to reform more quickly.

¢ Finally, unlimited retry attempts are recommended. This is also the default.

For greater reliability consider using a message queue cluster. Most message queues support clustering. The
cluster configuration is once again placed in the ConnectionFactory configuration.

Replicated Caching using JMS 198/284

Tested Message Queues

Tested Message Queues

Sun Open MQ

This open source message queue is tested in integration tests. It works perfectly.

Active MQ

This open source message queue is tested in integration tests. It works perfectly other than having a problem
with temporary reply queues which prevents the use of IMSCachel.oader. IMSCacheLoader is not used
during replication.

Oracle AQ

Versions up to an including 0.4 do not work, due to Oracle not supporting the unified API (send) for topics.

JBoss Queue

Works as reported by a user.

Known JMS Issues

Active MQ Temporary Destinatons

ActiveMQ seems to have a bug in at least ActiveMQ 5.1 where it does not cleanup temporary queues, even
though they have been deleted. That bug appears to be long standing but was though to have been fixed.

See:

e http://www.nabble.com/Memory-Leak-Using-Temporary-Queues-td11218217.html#al11218217
e http://issues.apache.org/activemg/browse/AMQ-1255

The JMSCacheLoader uses temporary reply queues when loading. The Active MQ issue is readily reproduced
in Ehcache integration testing. Accordingly, use of the JMSCacheLoader with ActiveMQ is not

recommended. Open MQ tests fine.

Active MQ works fine for replication.

WebSphere 5 and 6

Websphere Application Server prevents MessageListeners, which are not MDBs, from being created in the
container.

While this is a general Java EE limitation, most other app servers either are permissive or can be configured to
be permissive. WebSphere 4 worked, but 5 and 6 enforce the restriction.

Accordingly the JMS replicator cannot be used with WebSphere 5 and 6.

Replicated Caching using JMS 199/284

Modules Overview

The following sections provide a documentation Table of Contents and additional information sources about
the Ehcache modules.

Modules Table of Contents

Topic Description
The Ehcache Cache Server has two APIs: RESTful resource oriented, and SOAP. The

IS{%;’; fi?(éache Ehcache RESTFul Web Services API exposes the singleton CacheManager. Resources are
Server identified using a URI template. Ehcache's W3C Web Services support the WS-I definition
and use the SOAP and WSDL specifications.
Ehcache provides a set of general purpose web caching filters in the ehcache-web module.
Web Caching Using these can make a significant difference to web application performance. With built-in

gzipping, storage and network transmission are highly efficient. Cache pages and fragments
make excellent candidates for DiskStore storage.

Additional Information about the Modules

The following pages provide additional information about the Ehcache modules:
® Download Information

¢ JMX Management and Monitoring
® Web Caching Discussion

Modules Overview 200/284

Cache Server

Introduction

Ehcache now comes with a Cache Server, available as a WAR for most web containers, or as a standalone
server. The Cache Server has two APIs: RESTful resource oriented, and SOAP. Both support clients in any
programming language. (A Note on terminology: Leonard Richardson and Sam Ruby have done a great job of
clarifying the different Web Services architectures and distinguishing them from each other. We use their
taxonomy in describing web services. See the Oreilly catalog.)

RESTful Web Services

Roy Fielding coined the acronym REST, denoting Representational State Transfer, in his PhD thesis. The
Ehcache implementation strictly follows the RESTful resource-oriented architecture style. Specifically:

e The HTTP methods GET, HEAD, PUT/POST and DELETE are used to specify the method of the
operation. The URI does not contain method information.

e The scoping information, used to identify the resource to perform the method on, is contained in the
URI path.

e The RESTful Web Service is described by and exposes a Web Application Description Language
(WADL) file. It contains the URIs you can call, and what data to pass and get back. Use the
OPTIONS method to return the WADL.

Roy is on the JSR311 expert group. JSR311 and Jersey, the reference implementation, are used to deliver
RESTful web services in Ehcache server.

RESTFul Web Services API

The Ehcache RESTFul Web Services API exposes the singleton CacheManager, which typically has been
configured in ehcache.xml or an IoC container. Multiple CacheManagers are not supported. Resources are
identified using a URI template. The value in parentheses should be substituted with a literal to specify a
resource. Response codes and response headers strictly follow HTTP conventions.

CacheManager Resource Operations

OPTIONS /{cache}}

Retrieves the WADL for describing the available CacheManager operations.
GET}/

Lists the Caches in the CacheManager.

Cache Resource Operations

Cache Server 201/284

http://www.oreilly.com/catalog/9780596529260/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Cache Resource Operations

OPTIONS /{cache}}

Retrieves the WADL describing the available Cache operations.

HEAD /{cache}}

Retrieves the same metadata a GET would receive returned as HTTP headers. There is no body returned.
GET /{cache}

Gets a cache representation. This includes useful metadata such as the configuration and cache statistics.
{PUT} /{cache}

Creates a Cache using the defaultCache configuration.

{DELETE} / {cache}

Deletes the Cache.

Element Resource Operations

OPTIONS /{cache}}

Retrieves the WADL describing the available Element operations.

HEAD /{cache}/{element}

Retrieves the same metadata a GET would receive returned as HTTP headers. There is no body returned.
GET /{cache}/{element}

Gets the element value.

HEAD /{cache}/{element}

Gets the element's metadata.

PUT /{cache}/{element\ {#GET} /

Lists the Caches in the CacheManager.

Cache Resource Operations
OPTIONS /{cache}}

Retrieves the WADL describing the available Cache operations.

Cache Server 202/284

Cache Resource Operations

HEAD /{cache}}

Retrieves the same metadata a GET would receive returned as HTTP headers. There is no body returned.
GET /{cache}

Gets a cache representation. This includes useful metadata such as the configuration and cache statistics.
{PUT} /{cache}

Creates a Cache using the defaultCache configuration.

{DELETE} / {cache}

Deletes the Cache.

Element Resource Operations

OPTIONS /{cache}}

Retrieves the WADL describing the available Element operations.

HEAD /{cache}/{element}

Retrieves the same metadata a GET would receive returned as HTTP headers. There is no body returned.
GET /{cache}/{element}

Gets the element value.

HEAD /{cache}/{element}

Gets the element's metadata.

PUT /{cache}/{element}

Puts an element into the Cache. The time to live of new Elements defaults to that for the cache. This may be
overridden by setting the HTTP request header ehcacheTimeToLiveSeconds. Values of O to
2147483647 are accepted. A value of 0 means eternal.

DELETE / {cache}/{element}

Deletes the element from the cache. The resource representation for all elements is *.
DELETE/\ {cache\}/* will call cache.removeAll ().

Resource Representations

We deal with resource representations rather than resources themselves.

Cache Server 203/284

Resource Representations

Element Resource Representations

When Elements are PUT into the cache, a MIME Type should be set in the request header. The MIME Type is
preserved for later use. The new MimeTypeByteArray is used to store the byte [] and the MimeType in
the value field of Element. Some common MIME Types which are expected to be used by clients are:

text/plain Plain text
text/xml Extensible Markup Language. Defined in RFC 3023
application/json JavaScript Object Notation JSON. Defined in RFC 4627

application/x-java-serialized-object A serialized Java object

Because Ehcache is a distributed Java cache, in some configurations the Cache server may contain Java
objects that arrived at the Cache server via distributed replication. In this case no MIME Type will be set and
the Element will be examined to determine its MIME Type. Because anything that can be PUT into the cache
server must be Serializable, it can also be distributed in a cache cluster i.e. it will be Serializable.

{RESTful Code Samples}

These are RESTful code samples in multiple languages.
Curl Code Samples

These samples use the popular curl command line utility.
OPTIONS

This example shows how calling OPTIONS causes Ehcache server to respond with the WADL for that
resource

curl --request OPTIONS http://localhost:8080/ehcache/rest/sampleCache2/2

The server responds with:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<application xmlns="http://research.sun.com/wadl/2006/10">
<resources base="http://localhost:8080/ehcache/rest/">
<resource path="sampleCache2/2">
<method name="HEAD"><response><representation mediaType="

</resource>

</resources>
</application>

HEAD
curl --head http://localhost:8080/ehcache/rest/sampleCache2/2
The server responds with:

HTTP/1.1 200 OK

X-Powered-By: Servlet/2.5

Server: GlassFish/v3

Last—-Modified: Sun, 27 Jul 2008 08:08:49 GMT
ETag: "1217146129490"

Cache Server 204/284

{RESTful Code Samples}

Content-Type: text/plain; charset=i1is0-8859-1
Content-Length: 157
Date: Sun, 27 Jul 2008 08:17:09 GMT

PUT

echo "Hello World" | <curl -S -T - http://localhost:8080/ehcache/rest/sampleCache2/3

The server will put Hello World into sampleCache?2 using key 3.
GET

curl http://localhost:8080/ehcache/rest/sampleCache2/2

The server responds with:

<?xml version="1.0"7?>

<oldjoke>

<burns>Say <quote>goodnight</quote>,
Gracie.</burns>
<allen><quote>Goodnight,
Gracie.</quote></allen>

<applause/>

Ruby Code Samples
GET

require 'rubygems'

require 'open-uri'

require 'rexml/document'

response = open ('http://localhost:8080/ehcache/rest/sampleCache2/2")
xml = response.read

puts xml

The server responds with:

<?xml version="1.0"7?>

<oldjoke>

<burns>Say <quote>goodnight</quote>,
Gracie.</burns>
<allen><quote>Goodnight,
Gracie.</quote></allen>

<applause/>

</oldjoke>

Python Code Samples
GET

import urllib2
f = urllib2.urlopen ('http://localhost:8080/ehcache/rest/sampleCache2/2")
print f.read()

The server responds with:

<?xml version="1.0"7?>

Cache Server 205/284

{RESTful Code Samples}

<oldjoke>

<burns>Say <quote>goodnight</quote>,
Gracie.</burns>
<allen><quote>Goodnight,
Gracie.</quote></allen>

<applause/>

</oldjoke>

Java Code Samples
Create and Get a Cache and Entry

package samples;

import java.io.InputStream;

import java.io.OutputStream;

import java.net.HttpURLConnection;

import java.net.URL;

/**

* A simple example Java client which uses the built-in java.net.URLConnection.

*

* @author BryantR

* Qauthor Greg Luck

*/

public class ExampleJavaClient {

private static String TABLE_COLUMN_BASE =
"http://localhost:8080/ehcache/rest/tableColumn";

private static String TABLE_COLUMN_ELEMENT =
"http://localhost:8080/ehcache/rest/tableColumn/1";

/**

* Creates a new instance of EHCacheREST

*/

public ExampleJavaClient () {

}

public static void main(String[] args) {

URL url;

HttpURLConnection connection = null;
InputStream is = null;

OutputStream os = null;

int result = 0;

try {

//create cache
URL u = new URL(TABLE_COLUMN_BASE) ;

HttpURLConnection urlConnection = (HttpURLConnection) u.openConnection();
urlConnection.setRequestMethod ("PUT") ;

int status = urlConnection.getResponseCode () ;
System.out.println("Status: " + status);

urlConnection.disconnect () ;

//get cache
url = new URL(TABLE_COLUMN_BASE) ;
connection = (HttpURLConnection) url.openConnection();
connection.setRequestMethod ("GET") ;
connection.connect () ;

is = connection.getInputStream();

byte[] responsel = new byte[4096];

result = is.read(responsel);

while (result != -1) {
System.out.write (responsel, 0, result);
result = is.read(responsel);

}

if (is != null) try {
is.close();

Cache Server 206/284

{RESTful Code Samples}

} catch (Exception ignore) {

}

System.out.println ("reading cache: " + connection.getResponseCode ()
+ " " + connection.getResponseMessage());
if (connection != null) connection.disconnect ();

//create entry
url = new URL(TABLE_COLUMN_ELEMENT) ;
connection = (HttpURLConnection) url.openConnection();
connection.setRequestProperty ("Content-Type", "text/plain");
connection.setDoOutput (true);
connection.setRequestMethod ("PUT") ;

connection.connect () ;

String sampleData = "Ehcache is way cool!!!";
byte[] sampleBytes = sampleData.getBytes();
os = connection.getOutputStream();

os.write(sampleBytes, 0, sampleBytes.length);
os.flush();

System.out.println ("result=" + result);

System.out.println("creating entry: " + connection.getResponseCode ()
+ " " + connection.getResponseMessage());

if (connection != null) connection.disconnect ();

//get entry
url = new URL(TABLE_COLUMN_ELEMENT) ;
connection = (HttpURLConnection) url.openConnection();
connection.setRequestMethod ("GET") ;
connection.connect () ;

is = connection.getInputStream();

byte[] response2 = new byte[4096];

result = is.read(response?);

while (result != -1) {
System.out.write (response2, 0, result);
result = is.read(response?);

}

if (is != null) try {

is.close();
} catch (Exception ignore) {

}

System.out.println("reading entry: " + connection.getResponseCode ()
+ " " + connection.getResponseMessage());
if (connection != null) connection.disconnect ();

} catch (Exception e) {
e.printStackTrace();
} finally {
if (os != null) try {
os.close();
} catch (Exception ignore) {
}
if (is != null) try {
is.close();
} catch (Exception ignore) {
}

if (connection != null) connection.disconnect ();

Scala Code Samples

Cache Server 207/284

{RESTful Code Samples}
GET

import java.net.URL
import scala.io.Source.fromInputStream
object ExampleScalaGet extends Application {

val url = new URL("http://localhost:8080/ehcache/rest/sampleCache2/2")

fromInputStream (url.openStream) .getLines.foreach (print)

}
Run it with:

scala —e ExampleScalaGet

The program outputs:

<?xml version="1.0"7?>

<oldjoke>

<burns>Say <quote>goodnight</quote>,
Gracie.</burns>
<allen><quote>Goodnight,
Gracie.</quote></allen>

<applause/>

PHP Code Samples
GET

<?php
Sch = curl_init ();

curl_setopt ($ch, CURLOPT_URL, "http://localhost:8080/ehcache/rest/sampleCache2/3");

curl_setopt ($ch, CURLOPT_HEADER, O0);
curl_exec ($ch);
curl_close ($ch);

7>

The server responds with:

Hello Ingo

PUT

<?php

Surl = "http://localhost:8080/ehcache/rest/sampleCache2/3";
Slocalfile = "localfile.txt";

Sfp = fopen (S$localfile, "xr");

Sch = curl_init();

curl_setopt ($ch, CURLOPT_VERBOSE, 1);

curl_setopt ($ch, CURLOPT_URL, S$url);

curl_setopt ($ch, CURLOPT_PUT, 1);

curl_setopt ($ch, CURLOPT_RETURNTRANSFER, 1);
curl_setopt ($ch, CURLOPT_INFILE, S$fp);

curl_setopt ($ch, CURLOPT_INFILESIZE, filesize($localfile));
Shttp_result = curl_exec(S$Sch);

Serror = curl_error (Sch);

Shttp_code = curl_getinfo($ch ,CURLINFO_HTTP_CODE) ;
curl_close ($ch);

fclose ($fp);

print $http_code;

print "

Shttp_result";

Cache Server

208/284

Creating Massive Caches with Load Balancers and Partitioning

if (Serror) {
print "

S$Serror";

}

7>

The server responds with:

About to connect () to localhost port 8080 (#0)
Trying ::1... * connected

Connected to localhost (::1) port 8080 (#0)
> PUT /ehcache/rest/sampleCache2/3 HTTP/1.1
Host: localhost:8080

Accept: */*

Content-Length: 11

Expect: 100-continue

HTTP/1.1 100 Continue

HTTP/1.1 201 Created

Content-Length: O
Server: Jetty(6.1.10)

A AN A A NRANEAS

Connection #0 to host localhost left intact

Closing connection #0

Creating Massive Caches with Load Balancers and

Partitioning

Location: http://localhost:8080/ehcache/rest/sampleCache2/3

The RESTful Ehcache Server is designed to achieve massive scaling using data partitioning - all from a
RESTful interface. The largest Ehcache single instances run at around 20GB in memory. The largest disk
stores run at 100Gb each. Add nodes together, with cache data partitioned across them, to get larger sizes. 50

nodes at 20GB gets you to 1 Terabyte. Two deployment choices need to be made:

e where is partitoning performed, and
¢ is redundancy required?

These choices can be mixed and matched with a number of different deployment topologies.

Non-redundant, Scalable with client hash-based routing

Cache Server

209/284

Non-redundant, Scalable with client hash-based routing

Mon-redundant Scalable Cache Server Topology
with client hash-based URI routing

Cluster 1

|_w| Ehcache Server 1

HTTF

Hashing
RESTHul
Cache
Client
(Java, PHF,

Ruty,
Pytnon, G ...

HTTP

\ Cluster n

-~ Ehcache Server 2

This topology is the simplest. It does not use a load balancer. Each node is accessed directly by the cache
client using REST. No redundancy is provided. The client can be implemented in any language because it is
simply a HTTP client. It must work out a partitioning scheme. Simple key hashing, as used by memcached, is
sufficient. Here is a Java code sample:

String[] cacheservers = new String[]{"cacheserver(0.company.com", "cacheserverl.company.com",
"cacheserver2.company.com", "cacheserver3.company.com", "cacheserver4.company.com",
"cacheserver5.company.com"};

Object key = "123231";

int hash = Math.abs (key.hashCode());

int cacheserverIndex = hash % cacheservers.length;

String cacheserver = cacheservers|[cacheserverIndex];

Redundant, Scalable with client hash-based routing

Cache Server 210/284

Redundant, Scalable with client hash-based routing

Hashing
RESTHul
Cache
Client
(Java, PHF,
Ruty,
Pytnon, G ...

HTTF

Redundant Scalable Cache Server Topology
with client hash-based URI routing

Load
Balancer

VIF

=

-

Cluster 1

Ehcache Sarver 1

Ehcache Server 2

1
BMUIJMS/IGroups
Replication

]

Cluster n

Ehcache Server 1

Ehcache Server 2

1
BMUIJMS/IGroups
Replication

]

Redundancy is added as shown in the above diagram by: Replacing each node with a cluster of two nodes.

One of the existing distributed caching options in Ehcache is used to form the cluster. Options in Ehcache 1.5
are RMI and JGroups-based clusters. Ehcache-1.6 will add JMS as a further option. Put each Ehcache cluster
behind VIPs on a load balancer.

Redundant, Scalable with load balancer hash-based routing

Redundant Scalable Cache Server Topology
with Load Balancer hash-based URI routing

Cluster 1

Load || Ehcache Server 1]
Balancer RMUIMS/IGroups
Replication
[~ Ehcache Sarver 2 |
Hashing
RESTH L
Cache
Client . uw
(Java, pHp, [HTTP | VIP
Auby, .
Python, G ... %
Hashing Cluster n
IRuta
|_w| Ehcache Server 1)
iP BMUJMSIGroups
Replication
[~ Ehcache Server 2 !

Many content-switching load balancers support URI routing using some form of regular expressions. So, you
could optionally skip the client-side hashing to achieve partitioning in the load balancer itself. For example:

Cache Server 211/284

Redundant, Scalable with load balancer hash-based routing

/ehcache/rest/sampleCachel/[a-h]* => clusterl
/ehcache/rest/sampleCachel/[i-z]* => cluster2

Things get much more sophisticated with F5 load balancers, which let you create iRules in the TCL language.
So rather than regular expression URI routing, you could implement key hashing-based URI routing.
Remember in Ehcache's RESTful server, the key forms the last part of the URI. e.g. In the URI
http://cacheserver.company.com/ehcache/rest/sampleCache1/3432 , 3432 is the key. You hash using the last
part of the URI. See this article for how to implment a URI hashing iRule on F5 load balancers.

W3C (SOAP) Web Services

The W3C is a standards body that defines Web Services as

The World Wide Web is more and more used for application to application communication.
The programmatic interfaces made available are referred to as Web services.

They provide a set of recommendations for achieving this. An interoperability organisation, WS-I, seeks to
achieve interoperability between W3C Web Services. The W3C specifications for SOAP and WSDL are
required to meet the WS-I definition. Ehcache is using Glassfish's libraries to provide it's W3C web services.
The project known as Metro follows the WS-I definition.

Finally, OASIS, defines a Web Services Security specification for SOAP: WS-Security. The current version is
1.1. It provides three main security mechanisms: ability to send security tokens as part of a message, message
integrity, and message confidentiality. Ehcache's W3C Web Services support the stricter WS-I definition and
use the SOAP and WSDL specifications. Specifically:

® The method of operation is in the entity-body of the SOAP envelope and a HTTP header. POST is
always used as the HTTP method.

® The scoping information, used to identify the resource to perform the method on, is contained in the
SOAP entity-body. The URI path is always the same for a given Web Service - it is the service
"endpoint”.

® The Web Service is described by and exposes a { WSDL} (Web Services Description Language) file.
It contains the methods, their arguments and what data types are used.

® The { WS-Security} SOAP extensions are supported.

W3C Web Services API

The Ehcache RESTFul Web Services API exposes the singleton CacheManager, which typically has been
configured in ehcache.xml or an IoC container. Multiple CacheManagers are not supported. The API
definition is as follows:

® WSDL - EhcacheWebServiceEndpointService.wsdl
® Types - EhcacheWebServiceEndpointService_schemal.xsd

Security

By default no security is configured. Because it is simply a Servlet 2.5 web application, it can be secured in all
the usual ways by configuration in the web.xml.

In addition the cache server supports the use of XWSS 3.0 to secure the Web Service. All required libraries

Cache Server 212/284

http://devcentral.f5.com/Default.aspx?tabid=63&PageID=153&ArticleID=135&articleType=ArticleView
http://www.w3.org/
http://www.w3.org/2002/ws/
http://www.ws-i.org/
http://oasis-open.org
http://ehcache.org/wsdl/EhcacheWebServiceEndpointService.wsdl
http://ehcache.org/wsdl/EhcacheWebServiceEndpointService_schema1.xsd
https://xwss.dev.java.net/

Security

are packaged in the war for XWSS 3.0. A sample, commented out server_security_config.xml is provided in
the WEB-INF directory. XWSS automatically looks for this configuration file. A simple example, based on an
XWSS example, net . sf.ehcache.server.soap.SecurityEnvironmentHandler, which looks
for a password in a System property for a given username is included. This is not recommended for
production use but is handy when you are getting started with XWSS. To use XWSS:

1. Add configuration in accordance with XWSS to the server_security_config.xmnl file.
2. Create a class which implements the CallbackHandler interface and provide its fully qualified
path in the SecurityEnvironmentHandler element.
. Use the integration test EhcacheWebServiceEndpoint to see how to use the XWSS client side.
4. On the client side, make sure configuration is provided in a file called
client_security_config.xml, which must be in the root of the classpath.
5. To add client credentials into the SOAP request do:

98]

cacheService = new EhcacheWebServiceEndpointService () .getEhcacheWebServiceEndpointPort () ;
//add security credentials

((BindingProvider) cacheService) .getRequestContext () .put (BindingProvider.USERNAME_PROPERTY,
llRonll) ;

((BindingProvider) cacheService) .getRequestContext () .put (BindingProvider.PASSWORD_PROPERTY,
"I'lOR") ;

String result = cacheService.ping();
Requirements

Java

Java 5 or 6.

Web Container (WAR packaged version only)

The standalone server comes with its own embedded Glassfish web container. The web container must
support the Servlet 2.5 specification. The following web container configuration have been tested:

e Glassfish V2/V3

e Tomcat 6
® Jetty 6

Downloading

The server is available as follows:

Sourceforge
Download here. There are two tarball archives in tar.gz format:
e chcache-server - this contains the WAR file which must be deployed in your own web container.

e chcache-standalone-server - this contains a complete standalone directory structure with an embedded
Glassfish V3 web container together with shell scripts for starting and stopping.

Cache Server 213/284

http://sourceforge.net/project/showfiles.php?group_id=93232

Maven

Maven

The Ehcache Server is in the central Maven repository packaged as type war. Use the following Maven pom
snippet:

<dependency>
<groupId>net.sf.ehcache</groupId>
<artifactId>ehcache-server</artifactId>
<version>enter_version_here</version>
<type>war</type>
</dependency>

It is also available as a jaronly version, which makes it easier to embed. This version excludes all META-INF

and WEB-INF configuration files, and also excludes the ehcache.xml. You need to provide these in your
maven project.

<dependency>
<groupId>net.sf.ehcache</groupId>
<artifactId>ehcache-server</artifactId>
<version>enter_ version_here</version>
<type>jar</type>
<classifier>jaronly</classifier>
</dependency>

Installation

Installing the WAR

Use your Web Container's instructions to install the WAR or include the WAR in your project with Maven's
war plugin. Web Container specific configuration is provided in the WAR as follows:

¢ sun-web.xml - Glassfish V2/V3 configuration
e jetty-web.xml - Jetty V5/V6 configuration

Tomcat V6 passes all integration tests. It does not require a specific configuration.

Configuring the Web Application
Expand the WAR. Edit the web.xml.

Disabling the RESTful Web Service
Comment out the RESTful web service section.
Disabling the SOAP Web Service
Comment out the RESTful web service section.
Configuring Caches

The ehcache.xml configuration file is located in WEB-INF/classes/ehcache.xml. Follow the
instructions in this config file, or the core Ehcache instructions to configure.

Cache Server 214/284

Configuring the Web Application
SOAP Web Service Security

Installing the Standalone Server

The WAR also comes packaged with a standalone server, based on Glassfish V3 Embedded. The quick start
is:

¢ Untar the download.

*bin/start.sh to start. By default it will listen on port 8080, with JMX listening on port 8081, will
have both RESTful and SOAP web services enabled, and will use a sample Ehcache configuration
from the WAR module.

*bin/stop.sh to stop.

Configuring the Standalone Server

Configuration is by editing the war/web . xml file as per the instructions for the WAR packaging.

Starting and Stopping the Standalone Server
Using Commons Daemon jsvc

jsvc creates a daemon which returns once the service is started. jsvc works on all common Unix-based
operating systems including Linux, Solaris and Mac OS X. It creates a pid file in the pid directory. This is a
Unix shell script that starts the server as a daemon. To use jsvc you must install the native binary jsvc from
the Apache Commons Daemon project. The source for this is distributed in the bin directory as
jsvc.tar.gz. Untar it and follow the instructions for building it or download a binary from the Commons
Daemon project. Convenience shell scripts are provided as follows:

® start - daemon_start.sh
® stop - daemon_stop. sh

jsvc is designed to integrate with Unix System 5 initialization scripts (/etc/rc.d). You can also send Unix
signals to it. Meaningful ones for the Ehcache Standalone Server are:

No Meaning Ehcache Standalone Server Effect
1 HUP Restarts the server.
2 INT Interrupts the server.

9 KILL The process is killed. The server is not given a chance to shutdown.

15 TERM Stops the server, giving it a chance to shutdown in an orderly way.
Executable jar

The server is also packaged as an executable jar for developer convenience which will work on all operating
systems. A convenience shell script is provided as follows:

® start - startup.sh

From the bin directory you can also invoke the following command directly:

unix - Jjava —-jar ../lib/ehcache-standalone-server-0.7.jar 8080 ../war

Cache Server 215/284

Starting and Stopping the Standalone Server

windows - Jjava —-jar ..\lib\ehcache-standalone-server-0.7.jar 8080 ..\war

Monitoring

The CacheServer registers Ehcache MBeans with the platform MBeanServer. Remote monitoring of the
MBeanServer is the responsibility of the Web Container or Application Server vendor. For example, some
instructions for Tomcat are here. See your Web Container documentation for how to do this for your web
container.

Remotely Monitoring the Standalone Server with JMX

The standalone server automatically exposes the MBeanServer on a port 1 higher than the HTTP listening
port.

To connect with JConsole simply fire up JConsole, enter the host in the Remote field and port. In the above

example thatis 192.168.1.108:8686.

Then click Connect. To see the Ehcache MBeans, click on the Mbeans tab and expand the
net.sf.ehcache tree node. You will see something like the following.

86ea J25E 5.0 Monitoring & Management Console: 3075@localhost

Connection

1

_I' Summaw Memgw Threads Classes MBeans V™ — m—

@ SimplePageCachingFilter -
i@ SimplePageCachingFilterWithBlankPageProblem

i@ SimplePageFragmentCachingFilter

i@ nersf.ehcache.constructs.asynchronous.MessageCache
i@ persistentLongExpirylntervalCache

i@ sampleCachel

@ sampleCachez2

@ sampleCacheNoldle

i@ sampleCacheMotEternalButNoldleOrExpiry

@ sampleldlingExpiringCache (Refresh)

~MBeans
Li-..-'—J Tree r . . P 2)
= - Attributes = Operations — »#
F | JMimplementation N —
P | java.lan o o
. J _Q _ AssociatedCacheName sampleCache
P | java.utl.logging CacheHits 1
¥ || netsf.ehcache CacheMisses 0
¥ | CacheStatistics InMemoryHits 1
¥ | net.sf.ehcache.CacheManager@881ch3 DbJ'E_ClCC_*Uﬂl 1
6@ CachedLogin OnDiskHits 0
@ FooterPageCache StatisticsAccuracy 1
) g StatisticsAccuracyDescription Best Effort

CacheStatistics MBeans in JConsole

Cache Server 216/284

https://wiki.internet2.edu/confluence/display/CPD/Monitoring+Tomcat+with+JMX

Remotely Monitoring the Standalone Server with JMX

Of course, from there you can hook the Cache Server up to your monitoring tool of choice. See the chapter on
JMX Management and Monitoring for more information.

Download

Download the ehcache-standalone-server from sourceforge.net.

FAQ

Does Cache Server work with WebLogic?

Yes (we have tested 10.3.2), but the SOAP libraries are not compatible. Either comment out the SOAP service
from web.xml or do the following:

1. Unzip ehcache-server.war to a folder called ehcache.
2. Remove the following jars from WEB-INF/1lib:

¢ jaxws-rt-2.1.4 jar
¢ metro-webservices-api-1.2.jar
¢ metro-webservices-rt-1.2.jar
¢ metro-webservices-tools-1.2.jar
3. Deploy the folder to WebLogic.
4. Use the soapUI GUI in WebLogic to add a project from
http://:/ehcache/soap/EhcacheWebServiceEndpoint?wsdl

Cache Server 217/284

http://sourceforge.net/projects/ehcache/files/ehcache-server

Web Caching

Introduction

Ehcache provides a set of general purpose web caching filters in the ehcache—-web module. Using these can
make an amazing difference to web application performance. A typical server can deliver 5000+ pages per
second from the page cache. With built-in gzipping, storage and network transmission is highly efficient.
Cache pages and fragments make excellent candidates for Di sk St ore storage, because the object graphs are
simple and the largest part is already a byte [].

SimplePageCachingFilter

This is a simple caching filter suitable for caching compressible HTTP responses such as HTML, XML or
JSON. It uses a Singleton CacheManager created with the default factory method. Override to use a different
CacheManager It is suitable for:

e complete responses i.e. not fragments.
® A content type suitable for gzipping. For example, text or text/html

For fragments see the SimplePageFragmentCachingFilter.

Keys

Pages are cached based on their key. The key for this cache is the URI followed by the query string. An
example is /admin/SomePage. jsp?id=1234&name=Beagle. This key technique is suitable for a
wide range of uses. It is independent of hostname and port number, so will work well in situations where there
are multiple domains which get the same content, or where users access based on different port numbers. A
problem can occur with tracking software, where unique ids are inserted into request query strings. Because
each request generates a unique key, there will never be a cache hit. For these situations it is better to parse the
request parameters and override calculateKey (javax.servlet.http.HttpServletRequest)
with an implementation that takes account of only the significant ones.

Configuring the cacheName

A cache entry in ehcache.xml should be configured with the name of the filter. Names can be set using the
init-param cacheName, or by sub-classing this class and overriding the name.

Concurrent Cache Misses

A cache miss will cause the filter chain, upstream of the caching filter to be processed. To avoid threads
requesting the same key to do useless duplicate work, these threads block behind the first thread. The thead
timeout can be set to fail after a certain wait by setting the init-param blockingTimeoutMillis. By
default threads wait indefinitely. In the event upstream processing never returns, eventually the web server
may get overwhelmed with connections it has not responded to. By setting a timeout, the waiting threads will
only block for the set time, and then throw a { @link
net.sf.ehcache.constructs.blocking.LockTimeoutException}. Under either scenario an upstream failure will
still cause a failure.

Web Caching 218/284

Gzipping
Gzipping

Significant network efficiencies, and page loading speedups, can be gained by gzipping responses. Whether a
response can be gzipped depends on:

e Whether the user agent can accept GZIP encoding. This feature is part of HTTP1.1.

If a browser accepts GZIP encoding it will advertise this by including in its HTTP header: All
common browsers except IE 5.2 on Macintosh are capable of accepting gzip encoding. Most search
engine robots do not accept gzip encoding.

e Whether the user agent has advertised its acceptance of gzip encoding. This is on a per request basis.
If they will accept a gzip response to their request they must include the following in the HTTP
request header:

Accept-Encoding: gzip

Responses are automatically gzipped and stored that way in the cache. For requests which do not accept gzip
encoding the page is retrieved from the cache, ungzipped and returned to the user agent. The ungzipping is
high performance.

Caching Headers

The SimpleCachingHeadersPageCachingFilter extends SimplePageCachingFilter to
provide the HTTP cache headers: ETag, Last-Modified and Expires. It supports conditional GET. Because
browsers and other HTTP clients have the expiry information returned in the response headers, they do not
even need to request the page again. Even once the local browser copy has expired, the browser will do a
conditional GET. So why would you ever want to use SimplePageCachingFilter, which does not set these
headers?

The answer is that in some caching scenarios you may wish to remove a page before its natural expiry.
Consider a scenario where a web page shows dynamic data. Under Ehcache the Element can be removed at
any time. However if a browser is holding expiry information, those browsers will have to wait until the
expiry time before getting updated. The caching in this scenario is more about defraying server load rather
than minimising browser calls.

Init-Params

The following init-params are supported:

® cacheName - the name in ehcache.xml used by the filter.

®blockingTimeoutMillis - the time, in milliseconds, to wait for the filter chain to return with a
response on a cache miss. This is useful to fail fast in the event of an infrastructure failure.

e varyHeader - set to true to set Vary:Accept-Encoding in the response when doing Gzip. This
header is needed to support HT'TP proxies however it is off by default.

<init-param>
<param—name>varyHeader</param-name>
<param-value>true</param-value>
</init-param>

Web Caching 219/284

Re-entrance
Re-entrance

Care should be taken not to define a filter chain such that the same CachingFilter class is reentered. The
CachingFilter uses the BlockingCache. It blocks until the thread which did a get which results in a
null does a put. If reentry happens a second get happens before the first put. The second get could wait
indefinitely. This situation is monitored and if it happens, an IllegalStateException will be thrown.

SimplePageFragmentCachingFilter

The SimplePageFragmentCachingFilter does everything that SimplePageCachingFilter does, except it never
gzips, so the fragments can be combined. There is a variant of this filter which sets browser caching headers,
because that is only applicable to the entire page.

Example web.xml configuration

<web-app xmlns="http://Jjava.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
version="2.5">

<filter>
<filter-name>CachePagelCachingFilter</filter-name>
<filter-class>net.sf.ehcache.constructs.web.filter.SimplePageCachingFilter
</filter-class>
<init-param>
<param-name>suppressStackTrace</param—name>
<param-value>false</param-value>
</init-param>
<init-param>
<param-name>cacheName</param-name>
<param-value>CachePagelCachingFilter</param-value>
</init-param>
</filter>

<filter>
<filter-name>SimplePageFragmentCachingFilter</filter—name> <filter-class>net.sf.ehcache.constr
</filter-class>

<init-param>

<param-name>suppressStackTrace</param—name>
<param-value>false</param-value>

</init-param>

<init-param>

<param-name>cacheName</param-name>
<param-value>SimplePageFragmentCachingFilter</param-value>
</init-param>

</filter>

<filter>

<filter-name>SimpleCachingHeadersPageCachingFilter</filter-name> <filter-class>net.sf.ehcache.
</filter-class>

<init-param>

<param-name>suppressStackTrace</param—name>

<param-value>false</param-value>

</init-param>

<init-param>

<param-name>cacheName</param-name>

<param-value>CachedPage2Cache</param-value>

Web Caching 220/284

Example web.xml configuration

</init-param>

</filter>
<!-- This is a filter chain. They are executed in the order below.
Do not change the order. —-->

<filter-mapping>
<filter—-name>CachePagelCachingFilter</filter—-name>
<url-pattern>/CachedPage. jsp</url-pattern>
<dispatcher>REQUEST</dispatcher>
<dispatcher>INCLUDE</dispatcher>
<dispatcher>FORWARD</dispatcher>

</filter-mapping>

<filter-mapping>
<filter-name>SimplePageFragmentCachingFilter</filter—name>
<url-pattern>/include/Footer. jsp</url-pattern>
</filter-mapping>

<filter-mapping>
<filter-name>SimplePageFragmentCachingFilter</filter—name>
<url-pattern>/fragment/CachedFragment. jsp</url-pattern>
</filter-mapping>

<filter-mapping>
<filter-name>SimpleCachingHeadersPageCachingFilter</filter—-name>

<url-pattern>/CachedPage?2. jsp</url-pattern>
</filter-mapping>

An ehcache.xml configuration file, matching the above would then be:

<Ehcache xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:noNamespaceSchemalLocation="../../main/config/ehcache.xsd">
<diskStore path="java.io.tmpdir"/>
<defaultCache

maxEntriesLocalHeap="10"
eternal="false"
timeToIdleSeconds="5"
timeToLiveSeconds="10"
overflowToDisk="true"
/>
<!-— Page and Page Fragment Caches -->
<cache name="CachePagelCachingFilter"
maxEntriesLocalHeap="10"
eternal="false"
timeToIdleSeconds="10000"
timeToLiveSeconds="10000"
overflowToDisk="true">
</cache>
<cache name="CachedPage2Cache"
maxEntriesLocalHeap="10"
eternal="false"
timeToLiveSeconds="3600"
overflowToDisk="true">
</cache>
<cache name="SimplePageFragmentCachingFilter"
maxEntriesLocalHeap="10"
eternal="false"
timeToIdleSeconds="10000"
timeToLiveSeconds="10000"
overflowToDisk="true">
</cache>

Web Caching

221/284

CachingFilter Exceptions

<cache name="SimpleCachingHeadersTimeoutPageCachingFilter"
maxEntriesLocalHeap="10"
eternal="false"
timeToIdleSeconds="10000"
timeToLiveSeconds="10000"
overflowToDisk="true">
</cache>
</ehcache>

CachingFilter Exceptions

Additional exception types have been added to the Caching Filter.

FilterNonReentrantException

Thrown when it is detected that a caching filter's doFilter method is reentered by the same thread. Reentrant
calls will block indefinitely because the first request has not yet unblocked the cache.

ResponseHeadersNotModifiableException

Same as FilterNonReentrantException.

AlreadyGzippedException
This exception is thrown when a gzip is attempted on already gzipped content.

The web package performs gzipping operations. One cause of problems on web browsers is getting content
that is double or triple gzipped. They will either get unreadable content or a blank page.

ResponseHeadersNotModifiableException

A gzip encoding header needs to be added for gzipped content. The
HttpServletResponse#setHeader () method is used for that purpose. If the header had already been
set, the new value normally overwrites the previous one. In some cases according to the servlet specification,
setHeader silently fails. Two scenarios where this happens are:

® The response is committed.
® RequestDispatcher#include method caused the request.

Web Caching 222/284

Hibernate Overview

Accelerating Hibernate applications typically involves reducing their reliance on the database when fetching
data. Terracotta offers powerful in-memory solutions for maximizing the performance of Hibernate
applications:

® Ehcache as a plug-in second-level cache for Hibernate — Automatically cache common queries in
memory to substantially lower latency.

® BigMemory for an in-memory store — Leverage off-heap physical memory to keep more of the data
set close to your application and out of reach of Java garbage collection.

e Automatic Resource Control for intelligent caching — Pin the hot set in memory for high-speed access
and employ fine-grained sizing controls to avoid OutOfMemory errors.

The following sections provide a documentation Table of Contents and important information on using
Ehcache with Hibernate.

Hibernate Table of Contents

Topic Description

Ehcache easily integrates with the Hibernate Object/Relational persistence and query
service. This page should be your first stop for configuration information,
performance tips, and FAQs.

Hibernate
Second-Level Cache

JMX Management JMX monitoring is often used for Hibernate replicated caching. This page contains a
and Monitoring section on Hibernate Statistics.

Grails Includes recipes and code samples for using Ehcache with Hibernate and Grails.

Important Notices - PLEASE READ

Users of Ehcache and/or Terracotta Ehcache for Hibernate prior to Ehcache 2.0 should read Upgrade Notes
for Ehcache versions prior to 2.0. These instructions are for Hibernate 3.

For older instructions on how to use Hibernate 2.1, please refer to Guide for Version 1.1.

Additional Information about Hibernate

The following pages provide additional information about using Ehcache with Hibernate:

® General Ehcache FAQ
® Transactions FAQ

Hibernate Overview 223/284

Integrations Overview

The following sections provide a documentation Table of Contents and additional information sources about
integrating Ehcache.

Integrations Table of Contents

Topics
ColdFusion

Spring
Caching

Hibernate
Caching

JRuby and
Rails

Google App
Engine

Tomcat

JDBC
Caching

OpenJPA

Grails

Glassfish

JSR107
(JCACHE)

Description

ColdFusion ships with Ehcache. This page covers integrating ColdFusion versions 9, 9.0.1, and
8 with Ehcache.

Ehcache simplifies caching in Spring. This page covers integrating Spring with Ehcache.
Additional information may be found in Recipes.

Ehcache easily integrates with the Hibernate Object/Relational persistence and query service.
This page provides everything you need to configure Ehcache for Hibernate, and it includes
performance tips and FAQs.

ruby-ehcache is a JRuby Ehcache library which makes a commonly used subset of Ehcache's
API available to JRuby. All of the strength of Ehcache is there, including BigMemory and the
ability to cluster with Terracotta. It can be used directly via its own API, or as a Rails caching
provider.

The ehcache-googleappengine module combines the speed of Ehcache with the scale of
Google's memcache. This page provides setup and troubleshooting information for configuring
Google App Engine (GAE) caching.

Ehcache is probably used most commonly with Tomcat. This page documents some known
issues with Tomcat, as well as recommended practices.

Ehcache can easily be combined with your existing JDBC code. Whether you access JDBC
directly, or have a DAO/DAL layer, Ehcache can be combined with your existing data access
pattern to speed up frequently accessed data to reduce page load times, improve performance,
and reduce load from your database. This page discusses how to add caching to a JDBC
application with the commonly used DAO/DAL layer patterns.

Ehcache easily integrates with the OpenJPA persistence framework. This page provides
installation and configuration information.

Grails 1.2RC1 and higher use Ehcache as the default Hibernate second level cache, and earlier
versions of Grails ship with the Ehcache library and are very simple to enable. This page shows
how to configure Grails to use Ehcache.

The maintainer uses Ehcache in production with Glassfish. This page is a how-to for working
with Glassfish.

JSR107 is currently being drafted and will continue to change until finalised. This support page
has links to sites with information about JSR107 and its Ehcache implementation, JCACHE.

Additional Information about Integrating Ehcache

The following page provides additional information about integration:

¢ Spring Annotations

Integrations Overview 224/284

Using Coldfusion and Ehcache

Introduction

ColdFusion ships with Ehcache. This page covers integrating ColdFusion versions 9, 9.0.1, and 8 with
Ehcache.

Which version of Ehcache comes with which version of
ColdFusion?

The following versions of ColdFusion ship with Ehcache:

® ColdFusion 9.0.1 includes Ehcache 2.0 out-of-the-box

® ColdFusion 9 includes Ehcache 1.6 out-of-the-box

® ColdFusion 8 caching was not built on Ehcache, but Ehcache can easily be integrated with a CF8
application (see below).

Which version of Ehcache should | use if | want a
distributed cache?

Ehcache is designed so that applications written to use it can easily scale out. A standalone cache (the default
in ColdFusion 9) can easily be distributed. A distributed cache solves database bottleneck problems, cache
drift (where the data cached in individual application server nodes becomes out of sync), and also (when using
the recommended 2-tier Terracotta distributed cache) provides the ability to have a highly available, coherent
in-memory cache that is far larger than can fit in any single JVM heap. See Getting Started for details.

Note: Ehcache 1.7 and higher support the Terracotta distributed cache out of the box. Due to Ehcache's API
backward compatibility, it is easy to swap out older versions of ehcache with newer ones to leverage the
features of new releases.

Using Ehcache with ColdFusion 9 and 9.0.1

The ColdFusion community has actively engaged with Ehcache and have put out lots of great blogs. Here are
three to get you started. For a short introduction, see Raymond Camden's blog. For more in-depth analysis, see
Rob Brooks-Bilson's nine-part Blog Series or 14 days of ColdFusion caching, by Aaron West, covering a
different topic each day.

Switching from a local cache to a distributed cache with
ColdFusion 9.0.1

1. Download the Terracotta kit. Click the link to the open-source kit if you are using open source and get
terracotta-<version>-installer. jar.

2. Install the kit with java —jar terracotta-<version>-installer. jar. We will refer to
the directory you installed it into as TCHOME. Similarly, we will refer to the location of ColdFusion
as CFHOME. These instructions assume you are working with a standalone server install of
ColdFusion; if working with a EAR/WAR install you will need to modify the steps accordingly (file

Using Coldfusion and Ehcache 225/284

http://www.coldfusionjedi.com/index.cfm/2009/7/18/ColdFusion-9-and-Caching-Enhancements
http://www.brooks-bilson.com/blogs/rob/index.cfm/2009/7/21/Caching-Enhancements-in-ColdFusion-9--Part-1-Why-Cache
http://www.aaronwest.net/blog/index.cfm/2009/11/17/14-Days-of-ColdFusion-9-Caching-Day-1--Caching-a-Full-Page
http://www.terracotta.org/dl

Switching from a local cache to a distributed cache withColdFusion 9.0.1

locations may vary and additional steps may be needed to rebuild the EAR/WAR).

Before integrating the distributed cache with ColdFusion, you may want to follow the simple
self-contained tutorial which uses one of the samples in the kit to demonstrate distributed caching:
http://www.terracotta.org/start/distributed-cache-tutorial
. Copy TCHOME/ehcache/lib/ehcache-terracotta-\<version>.jar into CFHOME/lib
4. Edit the CFHOME/lib/ehcache.xml to add the necessary two lines of config to turn on distributed
caching

98]

<terracottaConfig url="localhost:9510"/>
<defaultCache

>
<terracotta clustered="true" />
</defaultCache>

5. Edit jvm.config (typically in CFHOME/runtime/bin) properties to ensure that coldfusion.classPath
(set with -Dcoldfusion.classPath= in java.args) DOES NOT include any relative paths (ie ../) - ie
replace the relative paths with full paths (This is to work around a known issue in
ehcache-terracotta-2.0.0.jar).

6. Start the Terracotta server in a *NIX shell or Microsoft Windows:

STCHOME/bin/start—-tc-server.sh
start-tc-server.bat

Note: In production, you would run your servers on a set of separate machines for fault tolerance and
performance.

7. Start ColdFusion, access your application, and see the distributed cache in action.

8. This is just the tip of the iceberg & you'll probably have lots of questions. Drop us an email to
info@terracottatech.com to let us know how you got on, and if you have questions you'd like answers
to.

Using Ehcache with ColdFusion 8

To integrate Ehcache with ColdFusion 8, first add the ehcache-core jar (and its dependent jars) to your web
application lib directory. The following code demonstrates how to call Ehcache from ColdFusion 8. It will
cache a CF object in Ehcache and the set expiration time to 30 seconds. If you refresh the page many times
within 30 seconds, you will see the data from cache. After 30 seconds, you will see a cache miss, then the
code will generate a new object and put in cache again.

<CFOBJECT type="JAVA" class="net.sf.ehcache.CacheManager" name="cacheManager">
<cfset cache=cacheManager.getInstance () .getCache ("MyBookCache")>
<cfset myBookElement=#cache.get ("myBook") #>
<cfif IsDefined("myBookElement")>
<cfoutput>
myBookElement: #myBookElement#

</cfoutput>
<cfif IsStruct (myBookElement.getObjectValue())>
Cache Hit<p/>
<!-- Found the object from cache —-->
<cfset myBook = #myBookElement.getObjectValue () #>
</cfif>
</cfif>
<cfif IsDefined("myBook")>
<cfelse>
Cache Miss

Using Coldfusion and Ehcache 226/284

http://www.terracotta.org/start/distributed-cache-tutorial

Using Ehcache with ColdFusion 8

<!-- object not found in cache, go ahead create it --—>

<cfset myBook = StructNew () >

<cfset a = StructlInsert (myBook, "cacheTime", LSTimeFormat (Now(), 'hh:mm:sstt'), 1)>
<cfset a = StructlInsert (myBook, "title", "EhCache Book", 1)>

<cfset a = StructlInsert (myBook, "author", "Greg Luck", 1)>

<cfset a = StructlInsert (myBook, "ISBN", "ABCD123456", 1)>

<CFOBJECT type="JAVA" class="net.sf.ehcache.Element" name="myBookElement">
<cfset myBookElement.init ("myBook", myBook)>
<cfset cache.put (myBookElement) >

</cfif>

<cfoutput>

Cache time: #myBook["cacheTime"]#

Title: #myBook["title"]#

Author: #myBook["author"]#

ISBN: #myBook["ISBN"]#

</cfoutput>

Using Coldfusion and Ehcache 227/284

Using Spring and Ehcache

Introduction

Ehcache has had excellent Spring integration for many years. This page demonstrates two new ways of using
Ehcache with Spring.

Spring 3.1

Spring Framework 3.1 added a new generic cache abstraction for transparently applying caching to Spring
applications. It adds caching support for classes and methods using two annotations:

@Cacheable

Cache a method call. In the following example, the value is the return type, a Manual. The key is extracted
from the ISBN argument using the id.

@Cacheable (value="manual", key="#isbn.id")
public Manual findManual (ISBN isbn, boolean checkWarehouse)

@CachekEvict

Clears the cache when called.

@CacheEvict (value = "manuals", allEntries=true)
public void loadManuals (InputStream batch)

Spring 3.1 includes an Ehcache implementation. See the Spring 3.1 JavaDoc.
It also does much more with SpEL expressions. See

http://blog.springsource.com/2011/02/23/spring-3-1-m1-caching/ for an excellent blog post covering this
material in more detail.

Spring 2.5 - 3.1: Ehcache Annotations For Spring

This open source, led by Eric Dalquist, predates the Spring 3.1 project. You can use it with earlier versions of
Spring or you can use it with 3.1.

@Cacheable

As with Spring 3.1 it uses an @Cacheable annotation to cache a method. In this example calls to findMessage
are stored in a cache named "messageCache". The values are of type Message. The id for each entry is the
id argument given.

@Cacheable (cacheName = "messageCache")
public Message findMessage (long id)

Using Spring and Ehcache 228/284

http://static.springsource.org/spring/docs/3.1.0.M1/javadoc-api/org/springframework/cache/ehcache/package-summary.html
http://blog.springsource.com/2011/02/23/spring-3-1-m1-caching/

@TriggersRemove

@TriggersRemove

And for cache invalidation, there is the @TriggersRemove annotation. In this example,
cache.removeAll () is called after the method is invoked.

@TriggersRemove (cacheName = "messagesCache",
when = When.AFTER_METHOD_INVOCATION, removeAll = true)
public void addMessage (Message message)

See http://blog.goyello.com/2010/07/29/quick-start-with-ehcache-annotations-for-spring/ for a blog post
explaining its use and providing further links.

Using Spring and Ehcache 229/284

http://blog.goyello.com/2010/07/29/quick-start-with-ehcache-annotations-for-spring/

Hibernate Second-Level Cache
IMPORTANT NOTICES - PLEASE READ
Users of Ehcache and/or Terracotta Ehcache for Hibernate prior to Ehcache 2.0 should read:
Upgrade Notes for Ehcache versions prior to 2.0. These instructions are for Hibernate 3.

For older instructions on how to use Hibernate 2.1, please refer to: Guide for Version 1.1

Introduction

Ehcache easily integrates with the Hibernate Object/Relational persistence and query service. Gavin King, the
maintainer of Hibernate, is also a committer to the Ehcache project. This ensures Ehcache will remain a first
class cache for Hibernate. Configuring Ehcache for Hibernate is simple. The basic steps are:

e Download and install Ehcache into your project

¢ Configure Ehcache as a cache provider in your project's Hibernate configuration.

¢ Configure second-level caching in your project's Hibernate configuration.

¢ Configure Hibernate caching for each entity, collection, or query you wish to cache.

¢ Configure ehcache.xml as necessary for each entity, collection, or query configured for caching.

For more information regarding cache configuration in Hibernate see the Hibernate documentation.

Downloading and Installing Ehcache

The Hibernate provider is in the ehcache-core module. Download the latest version of the Ehcache core
module. For Terracotta clustering, download a full Ehcache distribution.

Maven

Dependency versions vary with the specific kit you intend to use. Since kits are guaranteed to contain
compatible artifacts, find the artifact versions you need by downloading a kit. Configure or add the following
repository to your build (pom.xml):

<repository>
<id>terracotta-releases</id>
<url>http://www.terracotta.org/download/reflector/releases</url>
<releases><enabled>true</enabled></releases>
<snapshots><enabled>false</enabled></snapshots>

</repository>

Configure or add the the ehcache core module defined by the following dependency to your build (pom.xml):

<dependency>
<groupId>net.sf.ehcache</groupId>
<artifactId>ehcache-core</artifactId>
<version>${ehcacheVersion}</version>
</dependency>

Hibernate Second-Level Cache 230/284

http://hibernate.org
http://www.hibernate.org/hib_docs/reference/en/html_single/
http://sourceforge.net/projects/ehcache/files/ehcache-core
http://sourceforge.net/projects/ehcache/files/ehcache-core
http://sourceforge.net/projects/ehcache/files/ehcache

Maven

If you are configuring Hibernate and Ehcache for Terracotta clustering, add the following dependencies to
your build (pom.xml):

<dependency>
<groupId>net.sf.ehcache</groupId>
<artifactId>ehcache-terracotta</artifactId>
<version>${ehcacheVersion}</version>

</dependency>

<dependency>
<groupId>org.terracotta</groupId>
<artifactId>terracotta-toolkit-${toolkitAPIversion}—-runtime</artifactId>
<version>${toolkitVersion}</version>

</dependency>

Configure Ehcache as the Second-Level Cache Provider

To configure Ehcache as a Hibernate second-level cache, set the region factory property (for Hibernate 3.3
and above) or the factory class property (Hibernate 3.2 and below) to one of the following in the Hibernate
configuration. Hibernate configuration is configured either via hibernate.cfg.xml, hibernate.properties or
Spring. The format given is for hibernate.cfg.xml.

Hibernate 3.3 and higher

ATTENTION HIBERNATE 3.2 USERS: Make sure to note the change to BOTH the property name and
value.

Use:

<property name="hibernate.cache.region.factory_class">
net.sf.ehcache.hibernate.EhCacheRegionFactory</property>

for instance creation, or

<property name="hibernate.cache.region.factory_class">
net.sf.ehcache.hibernate.SingletonEhCacheRegionFactory</property>

to force Hibernate to use a singleton of Ehcache CacheManager.

Hibernate 3.0 - 3.2

Use:

<property name="hibernate.cache.provider_class">
net.sf.ehcache.hibernate.EhCacheProvider</property>

for instance creation, or

<property name="hibernate.cache.provider_class">
net.sf.ehcache.hibernate.SingletonEhCacheProvider</property>

to force Hibernate to use a singleton Ehcache CacheManager.

Hibernate Second-Level Cache 231/284

Enable Second-Level Cache and Query Cache Settings
Enable Second-Level Cache and Query Cache Settings

In addition to configuring the second-level cache provider setting, you will need to turn on the second-level
cache (by default it is configured to off - 'false’ - by Hibernate). This is done by setting the following property
in your hibernate config:

<property name="hibernate.cache.use_second_level_cache">true</property>

You may also want to turn on the Hibernate query cache. This is done by setting the following property in
your hibernate config:

<property name="hibernate.cache.use_query_cache">true</property>

Optional
The following settings or actions are optional.

Ehcache Configuration Resource Name

The configurationResourceName property is used to specify the location of the ehcache configuration
file to be used with the given Hibernate instance and cache provider/region-factory. The resource is searched
for in the root of the classpath. It is used to support multiple CacheManagers in the same VM. It tells
Hibernate which configuration to use. An example might be "ehcache-2.xml". When using multiple Hibernate
instances it is therefore recommended to use multiple non-singleton providers or region factories, each with a
dedicated Ehcache configuration resource.

net.sf.ehcache.configurationResourceName=/name_of_ehcache.xml

Set the Hibernate cache provider programmatically

The provider can also be set programmatically in Hibernate by adding necessary Hibernate property settings
to the configuration before creating the SessionFactory:

Configuration.setProperty ("hibernate.cache.region.factory_class",
"net.sf.ehcache.hibernate.EhCacheRegionFactory")

Putting it all together

If you are using Hibernate 3.3 and enabling both second-level caching and query caching, then your hibernate
config file should contain the following:

<property name="hibernate.cache.use_second_level_cache">true</property>
<property name="hibernate.cache.use_query_cache">true</property>
<property name="hibernate.cache.region.factory_class">net.sf.ehcache.hibernate.EhCacheRegionFactc

An equivalent Spring configuration file would contain:

<prop key="hibernate.cache.use_second_level_cache">true</prop>
<prop key="hibernate.cache.use_query_cache">true</prop>
<prop key="hibernate.cache.region.factory_class">net.sf.ehcache.hibernate.EhCacheRegionFactory</p

Hibernate Second-Level Cache 232/284

Configure Hibernate Entities to use Second-Level Caching
Configure Hibernate Entities to use Second-Level Caching

In addition to configuring the Hibernate second-level cache provider, Hibernate must also be told to enable
caching for entities, collections, and queries. For example, to enable cache entries for the domain object
com.somecompany.someproject.domain.Country there would be a mapping file something like the following:

<hibernate-mapping>

<class

name="com. somecompany.someproject.domain.Country"
table="ut_Countries"

dynamic-update="false"

dynamic-insert="false"

>

</class>
</hibernate-mapping>
To enable caching, add the following element.

<cache usage="read-write|nonstrict-read-write|read-only" />

For example:

<hibernate-mapping>
<class
name="com. somecompany.someproject.domain.Country"
table="ut_Countries"
dynamic-update="false"
dynamic-insert="false"
>
<cache usage="read-write" />

</class>
</hibernate-mapping>

This can also be achieved using the @Cache annotation, e.g.

@Entity
@Cache (usage = CacheConcurrencyStrategy.READ_WRITE)
public class Country {

Definition of the different cache strategies

read-only

Caches data that is never updated.

nonstrict-read-write

Caches data that is sometimes updated without ever locking the cache. If concurrent access to an item is

possible, this concurrency strategy makes no guarantee that the item returned from the cache is the latest
version available in the database. Configure your cache timeout accordingly!

Hibernate Second-Level Cache 233/284

Definition of the different cache strategies

read-write

Caches data that is sometimes updated while maintaining the semantics of "read committed" isolation level. If
the database is set to "repeatable read", this concurrency strategy almost maintains the semantics. Repeatable
read isolation is compromised in the case of concurrent writes.

Configure

Because ehcache.xml has a defaultCache, caches will always be created when required by Hibernate.
However more control can be exerted by specifying a configuration per cache, based on its name. In
particular, because Hibernate caches are populated from databases, there is potential for them to get very
large. This can be controlled by capping their maxEntriesLocalHeap and specifying whether to
overflowToDisk beyond that. Hibernate uses a specific convention for the naming of caches of Domain
Objects, Collections, and Queries.

Domain Objects

Hibernate creates caches named after the fully qualified name of Domain Objects. So, for example to create a
cache for com.somecompany.someproject.domain.Country create a cache configuration entry similar to the
following in ehcache.xml.

<?xml version="1.0" encoding="UTF-8"?>

<ehcache>

<cache
name="com. somecompany.someproject.domain.Country"
maxEntriesLocalHeap="10000"
eternal="false"
timeToIdleSeconds="300"
timeToLiveSeconds="600"
overflowToDisk="true"

/>

</ehcache>
Hibernate CacheConcurrencyStrategy

read-write, nonstrict-read-write and read-only policies apply to Domain Objects.

Collections

nn

Hibernate creates collection caches named after the fully qualified name of the Domain Object followed by ".
followed by the collection field name. For example, a Country domain object has a set of
advancedSearchFacilities. The Hibernate doclet for the accessor looks like:

/**

* Returns the advanced search facilities that should appear for this country.

* @hibernate.set cascade="all" inverse="true"

* @hibernate.collection-key column="COUNTRY_ID"

* @hibernate.collection-one-to-many class="com.wotif.jaguar.domain.AdvancedSearchFacility"
* @hibernate.cache usage="read-write"

*/

public Set getAdvancedSearchFacilities() {

return advancedSearchFacilities;

}

Hibernate Second-Level Cache 234/284

Collections

You need an additional cache configured for the set. The ehcache.xml configuration looks like:

<?xml version="1.0" encoding="UTF-8"?>

<ehcache>

<cache name="com.somecompany.someproject.domain.Country"
maxEntriesLocalHeap="50"
eternal="false"
timeToLiveSeconds="600"
overflowToDisk="true"

/>

<cache
name="com. somecompany.someproject.domain.Country.advancedSearchFacilities"
maxEntriesLocalHeap="450"
eternal="false"
timeToLiveSeconds="600"
overflowToDisk="true"

/>

</ehcache>
Hibernate CacheConcurrencyStrategy

read-write, nonstrict-read-write and read-only policies apply to Domain Object collections.

Queries

Hibernate allows the caching of query results using two caches. "net.sf.hibernate.cache.StandardQueryCache"
and "net.sf.hibernate.cache.UpdateTimestampsCache" in versions 2.1 to 3.1 and
"org.hibernate.cache.StandardQueryCache" and "org.hibernate.cache.UpdateTimestampsCache" in version
3.2 are always used.

StandardQueryCache

This cache is used if you use a query cache without setting a name. A typical ehcache.xml configuration is:

<cache
name="org.hibernate.cache.StandardQueryCache"
maxEntriesLocalHeap="5"

eternal="false"

timeToLiveSeconds="120"
overflowToDisk="true"/>

UpdateTimestampsCache

Tracks the timestamps of the most recent updates to particular tables. It is important that the cache timeout of
the underlying cache implementation be set to a higher value than the timeouts of any of the query caches. In
fact, it is recommend that the the underlying cache not be configured for expiry at all. A typical ehcache.xml

configuration is:

<cache
name="org.hibernate.cache.UpdateTimestampsCache"
maxEntriesLocalHeap="5000"

eternal="true"

overflowToDisk="true"/>

Hibernate Second-Level Cache 235/284

Queries

Named Query Caches

In addition, a QueryCache can be given a specific name in Hibernate using Query.setCacheRegion(String
name). The name of the cache in ehcache.xml is then the name given in that method. The name can be
whatever you want, but by convention you should use "query." followed by a descriptive name. E.g.

<cache name="query.AdministrativeAreasPerCountry"
maxEntriesLocalHeap="5"

eternal="false"

timeToLiveSeconds="86400"

overflowToDisk="true"/>

Using Query Caches

For example, let's say we have a common query running against the Country Domain. Code to use a query
cache follows:

public List getStreetTypes (final Country country) throws HibernateException {
final Session session = createSession();
try {
final Query query = session.createQuery (
"select st.id, st.name"
+ " from StreetType st "
+ " where st.country.id = :countryId "
+ " order by st.sortOrder desc, st.name");
query.setLong ("countryId", country.getId().longValue());
query.setCacheable (true);
query.setCacheRegion ("query.StreetTypes");
return query.list ();
} finally {
session.close();
}
}

The query.setCacheable (true) line caches the query. The
query.setCacheRegion ("query.StreetTypes") line sets the name of the Query Cache. Alex
Miller has a good article on the query cache here.

Hibernate CacheConcurrencyStrategy

None of read-write, nonstrict-read-write and read-only policies apply to Domain Objects. Cache policies are
not configurable for query cache. They act like a non-locking read only cache.

Demo Apps

We have demo applications showing how to use the Hibernate 3.3 CacheRegionFactory.

Hibernate Tutorial

Check out from the Terracotta Forge.

Hibernate Second-Level Cache 236/284

http://tech.puredanger.com/2009/07/10/hibernate-query-cache/
http://svn.terracotta.org/svn/forge/projects/hibernate-tutorial-web/trunk

Examinator

Examinator

Examinator is our complete application that shows many aspects of caching, all using the Terracotta Server
Array. Check out from the Terracotta Forge.

Performance Tips

Session.load

Session.load will always try to use the cache.

Session.find and Query.find

Session.find does not use the cache for the primary object. Hibernate will try to use the cache for any
associated objects. Session. find does however cause the cache to be populated. Query . £ind works in
exactly the same way. Use these where the chance of getting a cache hit is low.

Session.iterate and Query.iterate

Session.iterate always uses the cache for the primary object and any associated objects.
Query.iterate works in exactly the same way. Use these where the chance of getting a cache hit is high.

How to Scale

Configuring each Hibernate instance with a standalone ehcache will dramatically improve performance. With
an application deployed on multiple nodes, using standalone Ehcache means that each instance holds its own
(unshared) data. When data is written in one node, the other nodes are unaware of the data write, and thus
subsequent reads of this data on other nodes will result in stale reads. On a cache miss on any node, Hibernate
will read from the database, which generally results in N reads where N is the number of nodes in the cluster.
With each new node, the database's workload goes up.

Most production applications use multiple application instances for redundancy and for scalability, which
requires applications to be horizontally scalable because adding more application instances linearly improves
throughput. The solution is to turn on distributed caching or replicated caching.
Ehcache comes with native cache distribution using the following mechanism:

¢ Terracotta Server Array
Ehcache supports the following methods of cache replication:

e RMI

¢ JGroups

® JMS replication
Selection of the distributed cache or replication mechanism may be made or changed at any time. There are no

changes to the application. Only changes to ehcache.xml file are required. This allows an application to easily
scale as it grows without expensive re-architecting.

Hibernate Second-Level Cache 237/284

http://svn.terracotta.org/svn/forge/projects/exam/trunk

Using Distributed Ehcache
Using Distributed Ehcache

Ehcache provides built-in support for Terracotta distributed caching, providing the following advantages:

¢ Simple snap-in configuration with one line of configuration

® Practically unlimited scale with BigMemory and the Terracotta Server Array

e Wealth of "CAP" configuration options allow you to configure your cache for whatever it needs —
speed, consistency, availability, asynchronous updates, dirty reads, and more

¢ Automatic Resource Control (ARC) for automatically maintaining cache sizes

Configuring Terracotta distributed caching for Hibernate is described in the Terracotta Documentation. A
sample cache configuration is provided here:

<?xml version="1.0" encoding="UTF-8"?>

<ehcache>

<terracottaConfig url="localhost:9510" />

<cache
name="com. somecompany.someproject.domain.Country"
maxEntriesLocalHeap="10000"
maxBytesLocalOffHeap="10G"
eternal="false"
timeToIdleSeconds="300"
timeToLiveSeconds="600"
overflowToDisk="true">
<terracotta/>

</cache>
</ehcache>

Configuring Replicated Caching using RMI, JGroups, or
JMS

Ehcache can use JMS, JGroups or RMI as a cache replication scheme. The following are the key
considerations when selecting this option:

¢ The consistency is weak. Nodes might be stale, have different versions or be missing an element that
other nodes have. Your application should be tolerant of weak consistency.

® session.refresh () should be used to check the cache against the database before performing a
write that must be correct. This can have a performance impact on the database.

¢ Each node in the cluster stores all data, thus the cache size is limited to memory size, or disk if disk
overflow is selected.

Configuring for RMI Replication

RMI configuration is described in the Ehcache User Guide - RMI Distributed Caching. A sample cache
configuration (using automatic discovery) is provided here:

<?xml version="1.0" encoding="UTF-8"?>
<ehcache>
<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"
properties="peerDiscovery=automatic, multicastGroupAddress=230.0.0.1,
multicastGroupPort=4446, timeToLive=32"/>
<cache

Hibernate Second-Level Cache 238/284

http://www.terracotta.org/documentation/enterprise-ehcache/get-started-hibernate

Configuring for RMI Replication

name="com. somecompany.someproject.domain.Country"

maxEntriesLocalHeap="10000"

eternal="false"

timeToIdleSeconds="300"

timeToLiveSeconds="600"

overflowToDisk="true">

<cacheEventListenerFactory

class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"/>

</cache>

</ehcache>

Configuring for JGroups Replication

Configruing JGroups replication is described in the Ehcache User Guide - Distributed Caching with JGroups.
A sample cache configuration is provided here:

<?xml version="1.0" encoding="UTF-8"?>

<ehcache>

<cacheManagerPeerProviderFactory class="net.sf.ehcache.distribution. jgroups
.JGroupsCacheManagerPeerProviderFactory"
properties="connect=UDP (mcast_addr=231.12.21.132;mcast_port=45566; ip_ttl=32;
mcast_send_buf_size=150000;mcast_recv_buf_size=80000) :
PING (timeout=2000; num_initial_members=6) :
MERGE2 (min_interval=5000;max_interval=10000) :
FD_SOCK:VERIFY_SUSPECT (timeout=1500) :
pbcast .NAKACK (gc_lag=10; retransmit_timeout=3000) :
UNICAST (timeout=5000) :
pbcast.STABLE (desired_avg_gossip=20000) :
FRAG:
pbcast.GMS (join_timeout=5000; join_retry_timeout=2000;
shun=false;print_local_addr=true)"
propertySeparator="::"

/>

<cache
name="com. somecompany.someproject.domain.Country"
maxEntriesLocalHeap="10000"
eternal="false"
timeToIdleSeconds="300"
timeToLiveSeconds="600"
overflowToDisk="true">
<cacheEventListenerFactory
class="net.sf.ehcache.distribution. jgroups.JGroupsCacheReplicatorFactory"
properties="replicateAsynchronously=true, replicatePuts=true,
replicateUpdates=true, replicateUpdatesViaCopy=false,
replicateRemovals=true" />

</cache>
</ehcache>

Configuring for JMS Replication

Configuring JMS replication is described in the Ehcache User Guide - JMS Distributed Caching. A sample
cache configuration (for ActiveMQ) is provided here:

<?xml version="1.0" encoding="UTF-8"?>
<ehcache>
<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution. jms.JMSCacheManagerPeerProviderFactory"
properties="initialContextFactoryName=ExampleActiveMQInitialContextFactory,
providerURL=tcp://localhost:61616,

Hibernate Second-Level Cache 239/284

Configuring for JMS Replication

topicConnectionFactoryBindingName=topicConnectionFactory,
topicBindingName=ehcache"
propertySeparator=","
/>
<cache

name="com. somecompany.someproject.domain.Country"

maxEntriesLocalHeap="10000"

eternal="false"

timeToIdleSeconds="300"

timeToLiveSeconds="600"

overflowToDisk="true">

<cacheEventListenerFactory

class="net.sf.ehcache.distribution. jms.JMSCacheReplicatorFactory"
properties="replicateAsynchronously=true,
replicatePuts=true,
replicateUpdates=true,
replicateUpdatesViaCopy=true,
replicateRemovals=true,
asynchronousReplicationIntervalMillis=1000"
propertySeparator=","/>
</cache>
</ehcache>

FAQ

If I'm using Ehcache with my app and with Hibernate for second-level
caching, should I try to use the CacheManager created by Hibernate for
my app's caches?

While you could share the resource file between the two CacheManagers, a clear separation between the two

is recommended. Your app may have a different lifecycle than Hibernate, and in each case your
CacheManager ARC settings may need to be different.

Should | use the provider in the Hibernate distribution or in Ehcache?
Since Hibernate 2.1, Hibernate has included an Ehcache CacheProvider. That provider is periodically

synced up with the provider in the Ehcache Core distribution. New features are generally added in to the
Ehcache Core provider and then the Hibernate one.

What is the relationship between the Hibernate and Ehcache projects?

Gavin King and Greg Luck cooperated to create Ehcache and include it in Hibernate. Since 2009 Greg Luck
has been a committer on the Hibernate project so as to ensure Ehcache remains a first-class 2nd level cache
for Hibernate.

Does Ehcache support the new Hibernate 3.3 2nd level caching SPI?

Yes. Ehcache 2.0 supports this new APIL.

Does Ehcache support the transactional strategy?

Yes. It was introduced in Ehcache 2.1.

Hibernate Second-Level Cache 240/284

Why do certain caches sometimes get automatically cleared by Hibernate?

Why do certain caches sometimes get automatically cleared by
Hibernate?

Whenever a Query .executeUpdate () is run, for example, Hibernate invalidates affected cache regions
(those corresponding to affected database tables) to ensure that no data stale data is cached. This should also
happen whenever stored procedures are executed.

For more information, see this Hibernate bug report.

Is Ehcache Cluster Safe?

hibernate.org maintains a table listing the providers. While ehcache works as a distributed cache for
Hibernate, it is not listed as "Cluster Safe". What this means is that “Hibernate's lock and unlock methods are
not implemented. Changes in one node will be applied without locking. This may or may not be a noticeable
problem. In Ehcache 1.7 when using Terracotta, this cannot happen as access to the clustered cache itself is
controlled with read locks and write locks. In Ehcache 2.0 when using Terracotta, the lock and unlock
methods tie-in to the underlying clustered cache locks. We expect Ehcache 2.0 to be marked as cluster safe in
new versions of the Hibernate documentation.

How are Hibernate Entities keyed?

Hibernate identifies cached Entities via an object id. This is normally the primary key of a database row.

Can you use Identity mode with the Terracotta Server Array

You cannot use identity mode clustered cache with Hibernate. If the cache is exclusively used by Hibernate
we will convert identity mode caches to serialization mode. If the cache cannot be determined to be
exclusively used by Hibernate (i.e. generated from a singleton cache manager) then an exception will be
thrown indicating the misconfigured cache. Serialization mode is in any case the default for Terracotta
clustered caches.

| get org.hibernate.cache.ReadWriteCache - An item was
expired by the cache while it was locked error messages. What
is it?

Soft locks are implemented by replacing a value with a special type that marks the element as locked, thus
indicating to other threads to treat it differently to a normal element. This is used in the Hibernate Read/Write
strategy to force fall-through to the database during the two-phase commit - since we don't know exactly what
should be returned by the cache while the commit is in process (but the db does). If a soft-locked Element is
evicted by the cache during the 2 phase commit, then once the 2 phase commit completes the cache will fail to
update (since the soft-locked Element was evicted) and the cache entry will be reloaded from the database on
the next read of that object. This is obviously non-fatal (we're a cache failure here so it should not be a
problem). The only problem it really causes would I imagine be a small rise in db load. So, in summary the
Hibernate messages are not problematic. The underlying cause is the probabilistic evictor can theoretically
evict recently loaded items. This evictor has been tuned over successive ehcache releases. As a result this
warning will happen most often in 1.6, less often in 1.7 and very rarely in 1.8. You can also use the
deterministic evictor to avoid this problem. Specify the java
-Dnet.sf.ehcache.use.classic.lru=true system property to turn on classic LRU which
contains a deterministic evictor.

Hibernate Second-Level Cache 241/284

https://hibernate.onjira.com/browse/HHH-2224

| get java.lang.ClassCastException: org.hibernate.cache.ReadWriteCache$ltem incompatible with net.sf.ehc

| get java.lang.ClassCastException:
org.hibernate.cache.ReadWriteCache$ltem incompatible with
net.sf.ehcache.hibernate.strategy.AbstractReadWriteEhcacheAccessStrategy$

This is the tell-tale error you get if you are:

¢ using a Terracotta cluster with Ehcache

¢ you have upgraded part of the cluster to use net.sf.ehcache.hibernate. EhCacheRegionFactory but part
of it is still using the old SPI of EhCacheProvider.

¢ you are upgrading a Hibernate version Ensure you have changed all nodes and that you clear any
caches during the upgrade.

Are compound keys supported?

For standalone caching yes. With Terracotta a larger amount of memory is used.

Why do | not see replicated data when using nonstrict mode?

You may think that Hibernate's <nonstrict> mode is just like <read-write> but with dirty reads. The truth is far
more complex than that. Suffice to say, in <nonstrict> mode, Hibernate puts the object in the appropriate
cache but then IMMEDIATELY removes it. The PUT and the REMOVE are BOTH replicated by ehcache so
the net effect of that is the new object is copied to remote cache but then it's immediately followed by a
replicated remove so the next time you try get the object it's not in cache and hibernate goes back to the DB.
So, practically there is no point using nonstrict mode with replicated or distributed caches. If you want the
updated entry to be replicated or distributed use <readwrite> or <transactional>.

Hibernate Second-Level Cache 242/284

JRuby and Rails Caching

Introduction

jruby-ehcache is a JRuby Ehcache library which makes a commonly used subset of Ehcache's API available to
JRuby. All of the strength of Ehcache is there, including BigMemory and the ability to cluster with Terracotta.
It can be used directly via its own API, or as a Rails caching provider.

Installation

Installation for JRuby
Ehcache JRuby integration is provided by the jruby-ehcache gem. To install it, simply execute:
jgem install jruby-ehcache

Note that you may need to use "sudo" to install gems on your system.

Installation for Rails

If you want Rails caching support, you should also install the correct gem for your Rails version:

jgem install jruby-ehcache-rails2 # for Rails 2
jgem install Jjruby-ehcache-rails3 # for Rails 3

An alternative installation is to simply add the appropriate jruby-ehcache-rails dependency to your Gemfile,
and then run a Bundle Install. This will pull in the latest jruby-ehcache gem.

Dependencies

¢ JRuby 1.5 and higher

e Rails 2 for the jruby-ehcache-rails2

e Rails 3 for the jruby-ehcache-rails3

® Ehcache 2.4.6 is the declared dependency, although any version of Ehcache will work.

The jruby-ehcache gem comes bundled with the ehcache-core.jar. To use a different version of Ehcache, place
the Ehcache jar in the same Classpath as JRuby (for standalone JRuby) or in the Rails lib directory (for Rails).

Configuring Ehcache

Configuring Ehcache for JRuby is done using the same ehcache.xml file as used for native Java Ehcache. The
ehcache.xml file can be placed either in your Classpath or, alternatively, can be placed in the same directory
as the Ruby file in which you create the CacheManager object from your Ruby code. For a Rails application,
the ehcache.xml file should reside in the config directory of the Rails application.

JRuby and Rails Caching 243/284

Using the jruby-ehcache API directly

Using the jruby-ehcache API directly

Basic Operations

To make Ehcache available to JRuby:

require 'ehcache'

Note that, because jruby-ehcache is provided as a Ruby Gem, you must make your Ruby interpreter aware of
Ruby Gems in order to load it. You can do this by either including -rubygems on your jruby command line, or
you can make Ruby Gems available to JRuby globally by setting the RUBYOPT environment variable as
follows:

export RUBYOPT=rubygems

To create a CacheManager, which you do once when the application starts:
manager = Ehcache::CacheManager.new

To access an existing cache (call it "sampleCachel"):

cache = manager.cache ("sampleCachel")

To create a new cache from the defaultCache:

cache = manager.cache

To put into a cache:

cache.put ("key", "value", {:ttl => 120})

To get from a cache:

cache.get ("key") # Returns the Ehcache Element object
cache["key"] # Returns the value of the element directly

To shut down the CacheManager: This is only when you shut your application down. It is only necessary to
call this if the cache is diskPersistent or is clustered with Terracotta, but it is always a good idea to do
it.

manager.shutdown

Supported Properties

The following caching options are supported in JRuby:
PropertyArgument TypeDescription unlessExist, ifAbsentboolean

If true, use the putlfAbsent method. elementEvictionDataElementEvictionData

Sets this elementdi— s eviction data instance.

JRuby and Rails Caching 244/284

Supported Properties

eternalboolean

Sets whether the element is eternal.
timeToldle, ttiint

Sets time to idle.

timeToLive, ttl, expiresInint

Sets time to Live.

versionlong

Sets the version attribute of the ElementAttributes object.

Example Configuration

class SimpleEhcache

#Code here

require 'ehcache'

manager = Ehcache::CacheManager.new
cache = manager.cache

cache.put ("answer", "42", {:ttl => 120})
answer = cache.get ("answer")

puts "Answer: #{answer.value}"

question = cache["question"] || 'unknown'

puts "Question: #{question}"
manager.shutdown
end

As you can see from the example, you create a cache using CacheManager.new, and you can control the "time
to live" value of a cache entry using the :ttl option in cache.put.

Using Ehcache from within Rails

General Overview
The ehcache.xml file

Configuration of Ehcache is still done with the ehcache.xml file, but for Rails applications you must place this
file in the config directory of your Rails app. Also note that you must use JRuby to execute your Rails
application, as these gems utilize JRuby's Java integration to call the Ehcache API. With this configuration out
of the way, you can now use the Ehcache API directly from your Rails controllers and/or models. You could
of course create a new Cache object everywhere you want to use it, but it is better to create a single instance
and make it globally accessible by creating the Cache object in your Rails environment.rb file. For example,
you could add the following lines to config/environment.rb:

require 'ehcache'
EHCACHE = Ehcache: :CacheManager.new.cache

JRuby and Rails Caching 245/284

General Overview

By doing so, you make the EHCACHE constant available to all Rails-managed objects in your application.
Using the Ehcache API is now just like the above JRuby example. If you are using Rails 3 then you have a
better option at your disposal: the built-in Rails 3 caching API. This API provides an abstraction layer for
caching underneath which you can plug in any one of a number of caching providers. The most common
provider to date has been the memcached provider, but now you can also use the Ehcache provider. Switching
to the Ehcache provider requires only one line of code in your Rails environment file (e.g. development.rb or
production.rb):

config.cache_store = :ehcache_store, {
:cache_name => 'rails_cache',
:ehcache_config => 'ehcache.xml'

This configuration will cause the Rails.cache API to use Ehcache as its cache store. The :cache_name and
:ehcache_config are both optional parameters, the default values for which are shown in the above example.
The value of the :ehcache_config parameter can be either an absolute path or a relative path, in which case it
is interpreted relative to the Rails app's config directory. A very simple example of the Rails caching APl is as
follows:

Rails.cache.write ("answer", "42")
Rails.cache.read ("answer") # => '42"'

Using this API, your code can be agnostic about the underlying provider, or even switch providers based on
the current environment (e.g. memcached in development mode, Ehcache in production). The write method
also supports options in the form of a Hash passed as the final parameter.

See the Supported Properties table above for the options that are supported. These options are passed to the
write method as Hash options using either camelCase or underscore notation, as in the following example:

Rails.cache.write('key', 'value', :time_to_idle => 60.seconds, :timeToLive => 600.seconds)
caches_action :index, :expires_in => 60.seconds, :unless_exist => true

Turn on caching in your controllers

You can also configure Rails to use Ehcache for its automatic action caching and fragment caching, which is
the most common method for caching at the controller level. To enable this, you must configure Rails to
perform controller caching, and then set Ehcache as the provider in the same way as for the Rails cache API:

config.action_controller.perform_caching = true
config.action_controller.cache_store = :ehcache_store

Setting up a Rails Application with Ehcache
Here are the basic steps for configuring a Rails application to use Ehcache:

1. For this example, we will create a new Rails application with the custom template from JRuby.org.
The following command creates a "rails-bigmemory" application:

jruby —-S rails new rails-bigmemory -m http://jruby.org/rails3.rb
2. The example application will be a simple address book. Generate a scaffold for the address book
application, which will create contacts including a first name, last name, and email address.

jruby -S rails generate scaffold Contact first_name: string last_name: string email_addres

JRuby and Rails Caching 246/284

Setting up a Rails Application with Ehcache

3. Add support for caching with Ehcache. There are several ways to do this, but for this example, we
will use the Action Controller caching mechanism. Open the ContactsController.rb. Add a call to the
Action method to tell it to cache the results of our index and show pages.

caches_action :index, :show

To expire items from the cache as appropriate, add calls to expire the results of the caching calls.
Under create, add the following:

expire_action :action => 'index'

Under update, add the following:

expire_action :action => 'show', :id => params|[:id]
expire_action :action => 'index'

Under destroy, add the following:

expire_action :action => 'index'
4. Now that the application is configured to support caching, specify Ehcache as its caching provider.
Open the Gemfile and declare a dependency on the ehcache-jruby gem. Add the following line:

gem 'ehcache-jruby-rails3'

5. In the development.rb file, enable caching for the Rails Action Controller mechanism, which is
disabled by default in developement mode. (Note that caching must be configured for each
environment in which you want to use it.) This file also needs a specification for using Ehcache as the
cache store provider. Add the following two lines to the .rb file:

config.action_controller.perform_caching = true
config.cache_store = :ehcache_store

6. Run the Bundle Install command.

jruby -S bundle install
7. Run the Rake command to create the database and populate the initial schema.

jruby -S rake db:create db:migrate
8. (Optional) Set up the Ehcache monitor. This involves the following four steps:

¢ Install the Ehcache Monitor from Downloads.

¢ Start the Ehcache Monitor server.

¢ Connect the application to the monitor server by copying the ehcache-probe JAR (bundled
with the Ehcache Monitor) to your Rails lib directory.

¢ Create an ehcache.xml file in the Rails application config directory. In the ehcache.xml file,
add the following:

<cacheManagerPeerListenerFactory
class="org.terracotta.ehcachedx.monitor.probe.ProbePeerlListenerFactory"
properties="monitorAddress=localhost, monitorPort=9889, memoryMeasurement=true",

Now you are ready to start the application with the following command:

jruby -S rails server

JRuby and Rails Caching 247/284

Adding BigMemory under Rails

Once the application is started, populate the cache by adding, editing, and deleting contacts. To see the
Contacts address book, enter the following in your browser:

http://localhost:3000/contacts

To view cache activity and statistics in the Ehcache monitor, enter the following in your browser:

http://localhost:9889/monitor

For more information about how to use the monitor, refer to the Ehcache Monitor page.

Adding BigMemory under Rails

BigMemory provides in-memory data management with a large additional cache located right at the node
where your application runs. To upgrade your Ehcache to use BigMemory with your Rails application, follow
these steps.

1. Add the ehcache-core-ee.jar to your Rails application lib directory.
2. Modity the ehcache.xml file (in the config directory of your Rails application) by adding the
following to each cache where you want to enable BigMemory:

overflowToOffHeap="true"
maxBytesLocalOffHeap="1G"

When overflowToOf fHeap is set to true, it enables the cache to utilize off-heap memory storage
to improve performance. Off-heap memory is not subject to Java GC cycles and has a size limit set by
the Java property MaxDirectMemorySize.

maxBytesLocalOf fHeap sets the amount of off-heap memory available to the cache, and is in
effect only if overflowToOffHeap is true. For more information about sizing caches, refer to How To
Size Caches.

3. Also in the ehcache.xml file, set maxEntriesLocalHeap to at least 100 elements when using an
off-heap store to avoid performance degradation. Lower values for maxEntriesLocalHeap
trigger a warning to be logged.

4. Now that your application is configured to use BigMemory, start it with the following commands:

jruby —-J-Dcom.tc.productkey.path=/path/to/key -J-XX:MaxDirectMemorySize=2G —-S rails server

This will configure a system property that points to the location of the license key, and it will set the
direct memory size. The maxDirectMemorySize must be at least 256M larger than total off-heap
memory (the unused portion will still be available for other uses).

For additional configuration options, refer to the BigMemory page.
Note that only Serializable cache keys and values can be placed in the store, similar to DiskStore.

Serialization and deserialization take place on putting and getting from the store. This is handled
automatically by the jruby-ehcache gem.

JRuby and Rails Caching 248/284

Google App Engine (GAE) Caching

Introduction

The ehcache-googleappengine module combines the speed of Ehcache with the scale of Google's memcache
and provide the best of both worlds:

¢ Speed - Ehcache cache operations take a few microseconds, versus around 60ms for Google's
provided client-server cache, memcacheg.

¢ Cost - Because it uses way less resources, it is also cheaper.

® Object Storage - Ehcache in-process cache works with Objects that are not Serializable.

Compatibility

Ehcache is compatible and works with Google App Engine. Google App Engine provides a constrained
runtime which restricts networking, threading and file system access.

Limitations

All features of Ehcache can be used except for the DiskStore and replication. Having said that, there are
workarounds for these limitations. See the Recipes section below. As of June 2009, Google App Engine
appears to be limited to a heap size of 100MB. (See this blog for the evidence of this).

Dependencies

Version 2.3 and higher of Ehcache are compatible with Google App Engine. Older versions will not work.

Configuring ehcache.xml

Make sure the following elements are commented out:

e <diskStore path="java.io.tmpdir"/>
e <cacheManagerPeerProviderFactory class=../>
e <cacheManagerPeerListenerFactory class= ../>

Within each cache element, ensure that:

¢ overFlowToDisk=false or overFlowToDisk is omitted
e diskPersistent=false or diskPersistent is omitted

® no replicators are added

e there is no bootstrapCachelLoaderFactory

e there is no Terracotta configuration

Use following Ehcache configuration to get started.

<?xml version="1.0" encoding="UTF-8"?>
<Ehcache xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="ehcache.xsd" >

Google App Engine (GAE) Caching 249/284

http://gregluck.com/blog/?s=limitations

Configuring ehcache.xml

<cacheManagerEventListenerFactory class="" properties=""/>
<defaultCache
maxEntriesOnHeap="10000"
eternal="false"
timeToIdleSeconds="120"
timeToLiveSeconds="120"
overflowToDisk="false"
diskPersistent="false"
memoryStoreEvictionPolicy="LRU"
/>
<!--Example sample cache-—>
<cache name="sampleCachel"
maxEntriesOnHeap="10000"
maxEntriesLocalDisk="1000"
eternal="false"
timeToIdleSeconds="300"
timeToLiveSeconds="600"
memoryStoreEvictionPolicy="LFU"
/>

</ehcache>

Recipes

Setting up Ehcache as a local cache in front of memcacheg

The idea here is that your caches are set up in a cache hierarchy. Ehcache sits in front and memcacheg behind.
Combining the two lets you elegantly work around limitations imposed by Google App Engine. You get the
benefits of the speed of Ehcache together with the umlimited size of memcached. Ehcache contains the hooks
to easily do this. To update memcached, use a CacheEventListener. To search against memcacheg on a
local cache miss, use cache.getWithLoader () together with a CacheLoader for memcacheg.

Using memcacheg in place of a DiskStore

In the CacheEventListener, ensure that when notifyElementEvicted () is called, which it will
be when a put exceeds the MemoryStore's capacity, that the key and value are put into memcacheg.

Distributed Caching

Configure all notifications in CacheEventListener to proxy throught to memcacheg. Any work done by
one node can then be shared by all others, with the benefit of local caching of frequently used data.

Dynamic Web Content Caching
Google App Engine provides acceleration for files declared static in appengine-web.xml.

For example:

<static-files>
<include path="/**.png" />
<exclude path="/data/**.png" />
</static-files>

You can get acceleration for dynamic files using Ehcache's caching filters as you usually would. See Web

Google App Engine (GAE) Caching 250/284

Dynamic Web Content Caching

Caching for more information.

Troubleshooting

NoClassDefFoundError

If you get the error java.lang.NoClassDefFoundError: Jjava.rmi.server.UID is a
restricted class then you are using a version of Ehcache prior to 1.6.

Sample application

The easiest way to get started is to play with a simple sample app. We provide a simple Rails application
which stores an integer value in a cache along with increment and decrement operations. The sample app
shows you how to use ehcache as a caching plugin and how to use it directly from the Rails caching API.

Google App Engine (GAE) Caching 251/284

http://svn.terracotta.org/svn/forge/projects/ehcache-rails-demo/

Tomcat Issues and Best Practices

Introduction

Ehcache is probably used most commonly with Tomcat. This page documents some known issues with
Tomcat and recommended practices. Ehcache's own caching and gzip filter integration tests run against
Tomcat 5.5 and Tomcat 6. Tomcat will continue to be tested against Ehcache. Accordingly, Tomcat is tier one
for Ehcache.

Problem rejoining a cluster after a reload

If I restart/reload a web application in Tomcat that has a CacheManager that is part of a cluster, the
CacheManager is unable to rejoin the cluster. If I set logging for net . sf.ehcache.distributionto
FINE I see the following exception:

FINE: Unable to lookup remote cache peer for Removing from peer list. Cause was: error unmar

The Tomcat and RMI class loaders do not get along that well. Move ehcache.jar to
$TOMCAT_HOME/common/1ib. This fixes the problem. This issue happens with anything that uses RMI,
not just Ehcache.

Class-loader memory leak

In development, there appears to be class loader memory leak as I continually redeploy my web application.
There are lots of causes of memory leaks on redeploy. Moving Ehcache out of the WAR and into
$TOMCAT/common/lib fixes this leak.

RMI CacheException - problem starting listener for
RMICachePeer

I get the following error:

net.sf.ehcache.CacheException: Problem starting listener for RMICachePeer ... java.rmi.UnmarshalF

What is going on? This issue occurs to any RMI listener started on Tomcat whenever Tomcat has spaces in its
installation path. It is is a JDK bug which can be worked around in Tomcat. See this explanation. The
workaround is to remove the spaces in your Tomcat installation path.

Multiple host entries in Tomcat's server.xml stops
replication from occurring

The presence of multiple <Host> entries in Tomcat's server.xml prevents replication from occuring. The issue
is with adding multiple hosts on a single Tomcat connector. If one of the hosts is localhost and another starts
with v, then the caching between machines when hitting localhost stops working correctly. The workaround is
to use a single <Host> entry or to make sure they don't start with "v". Why this issue occurs is presently
unknown, but it is Tomcat-specific.

Tomcat Issues and Best Practices 252/284

http://archives.java.sun.com/cgi-bin/wa?A2=ind0205&L=rmi-users&P=797

JDBC Caching

Introduction

Ehcache can easily be combined with your existing JDBC code. Whether you access JDBC directly, or have a
DAO/DAL layer, Ehcache can be combined with your existing data access pattern to speed up frequently
accessed data to reduce page load times, improve performance, and reduce load from your database.

This page discusses how to add caching to a JDBC application using the commonly used DAO/DAL layer
patterns.

Adding JDBC caching to a DAO/DAL layer

If your application already has a DAO/DAL layer, this is a natural place to add caching. To add caching,
follow these steps:

¢ identify methods which can be cached

e instantiate a cache and add a member variable to your DAO to hold a reference to it
¢ Put and get values from the cache

Identifying methods which can be cached
Normally, you will want to cache the following kinds of method calls:

* Any method which retrieves entities by an Id
® Any queries which can be tolerate some inconsistent or out of date data

Example methods that are commonly cacheable:

public V getById(final K id);
public Collection findXXX(...);

Instantiate a cache and add a member variable

Your DAO is probably already being managed by Spring or Guice, so simply add a setter method to your
DAO layer such as setCache (Cache cache). Configure the cache as a bean in your Spring or Guice
config, and then use the the frameworks injection methodology to inject an instance of the cache.

If you are not using a DI framework such as Spring or Guice, then you will need to instantiate the cache

during the bootstrap of your application. As your DAQO layer is being instantiated, pass the cache instance to
it.

Put and get values from the cache

Now that your DAO layer has a cache reference, you can start to use it. You will want to consider using the
cache using one of two standard cache access patterns:

e cache-aside

JDBC Caching 253/284

Put and get values from the cache

e cache-as-sor

You can read more about these in the Concepts cache-as-sor and Concepts cache-aside sections.

Putting it all together - an example

Here is some example code that demonstrates a DAO based cache using a cache aside methodology wiring it
together with Spring.

This code implements a PetDao modeled after the Spring Framework PetClinic sample application.

It implements a standard pattern of creating an abstract GenericDao implementation which all Dao
implementations will extend.

It also uses Spring's SimpleJdbcTemplate to make the job of accessing the database easier.

Finally, to make Ehcache easier to work with in Spring, it implements a wrapper that holds the cache name.

The example files
The following are relevant snippets from the example files. A full project will be available shortly.
CacheWrapper.java

Simple get/put wrapper interface.

public interface CacheWrapper<K, V>
{

void put (K key, V value);

V get (K key);

}

EhcacheWrapper.java

The wrapper implementation. Holds the name so caches can be named.

public class EhCacheWrapper<K, V> implements CacheWrapper<K, V>
{

private final String cacheName;

private final CacheManager cacheManager;

public EhCacheWrapper (final String cacheName, final CacheManager cacheManager)

{

this.cacheName = cacheName;

this.cacheManager = cacheManager;

}

public void put (final K key, final V value)

{

getCache () .put (new Element (key, value));

}

public V get(final K key, CacheEntryAdapter<V> adapter)

{

Element element = getCache () .get (key);

if (element != null) {

return (V) element.getValue();

JDBC Caching 254/284

The example files

}

return null;

}

public Ehcache getCache ()

{

return cacheManager.getEhcache (cacheName) ;

}

GenericDao.java

The Generic Dao. It implements most of the work.

public abstract class GenericDao<K, V extends BaseEntity> implements Dao<K, V>
{
protected DataSource datasource;
protected SimpleddbcTemplate jdbcTemplate;
/* Here is the cache reference */
protected CacheWrapper<K, V> cache;
public void setJdbcTemplate (final SimpleJdbcTemplate JjdbcTemplate) {
this.jdbcTemplate = jdbcTemplate;
}
public void setDatasource (final DataSource datasource) {
this.datasource = datasource;
}
public void setCache(final CacheWrapper<K, V> cache) {
this.cache = cache;
}
/* the cacheable method */
public V getById(final K id) {

V value;

if ((value = cache.get (id)) == null) {
value = this.jdbcTemplate.queryForObject (findById, mapper, id);
if (value != null) {

cache.put (id, value);
}

}

return value;

}

/** rest of GenericDao implementation here **/

VA LV
VR LV
VA LV

PetDaolmpl.java

The Pet Dao implementation, really it doesn't need to do anything unless specific methods not available via
GenericDao are cacheable.

public class PetDaoImpl extends GenericDao<Integer, Pet> implements PetDao

{
VA
}

We need to configure the JdbcTemplate, Datasource, CacheManager, PetDao, and the Pet cache using the
spring configuration file.

JDBC Caching 255/284

The example files

application.xml

The Spring configuration file.

<!-- datasource and friends -->

<bean id="dataSource" class="org.springframework. jdbc.datasource.FasterLazyConnectionDataSourcePr

<property name="targetDataSource" ref="dataSourceTarget"/>
</bean>

<bean id="dataSourceTarget" class="com.mchange.v2.c3p0.ComboPooledDataSource"

destroy-method="close">
<property name="user" value="${jdbc.username}"/>
<property name="password" value="${jdbc.password}"/>

<property name="driverClass" value="${]jdbc.driverClassName}"/>

<property name="jdbcUrl" value="${jdbc.url}"/>
<property name="initialPoolSize" value="50"/>
<property name="maxPoolSize" value="300"/>
<property name="minPoolSize" value="30"/>
<property name="acquirelIncrement" value="2"/>
<property name="acquireRetryAttempts" value="0"/>

</bean>

<!-— jdbctemplate —--—>

<bean id="jdbcTemplate" class="org.springframework. jdbc.core.simple.SimpleddbcTemplate">

<constructor-arg ref="dataSource"/>
</bean>
<!-- the cache manager —--—>
<bean id="cacheManager" class="EhCacheManagerFactoryBean">

<property name="configLocation" value="classpath:${ehcache.config}"/>

</bean>

<!-— the pet cache to be injected into the pet dao —--—>

<bean name="petCache" class="EhCacheWrapper">
<constructor-arg value="pets"/>

<constructor-arg ref="cacheManager"/>
</bean>
<!-— the pet dao --—>

<bean id="petDao" class="PetDaoImpl">
<property name="cache" ref="petCache"/>
<property name="jdbcTemplate" ref="jdbcTemplate"/>
<property name="datasource" ref="dataSource"/>
</bean>

JDBC Caching

256/284

OpendPA Caching Provider

Introduction

Ehcache easily integrates with the OpenJPA persistence framework. This page provides installation and

configuration information.

Installation

To use OpenJPA, add a Maven dependency for ehcache-openjpa.

<groupId>net.sf.ehcache</groupId>
<artifactId>ehcache-openjpa</artifactId>
<version>0.1</version>

Or, download from Downloads.

For enabling Ehcache as second level cache, the persistence.xml file should include the following
configurations:

<property name="openjpa.Log" value="SQL=TRACE" />

<property name="openjpa.QueryCache" value="ehcache" />

<property name="openjpa.DataCache" value="true"/>

<property name="openjpa.RemoteCommitProvider" value="sjvm"/>

<property name="openjpa.DataCacheManager" value="ehcache" />

The ehcache.xml file can be configured like this example:

<ehcache xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
dynamicConfig="true" name="TestCache">
<diskStore path="java.io.tmpdir"/>

<defaultCache maxEntriesLocalHeap="10000"
eternal="false"
timeToIdleSeconds="120"
timeToLiveSeconds="120"
overflowToDisk="true"
diskPersistent="false"
memoryStoreEvictionPolicy="LRU" />
<cache name="com.terracotta.domain.DataTest"
maxEntriesLocalHeap="200"
eternal="false"
timeToIdleSeconds="2400"
timeToLiveSeconds="2400"
memoryStoreEvictionPolicy="LRU">
</cache>

<cache name="openijpa"
maxEntriesLocalHeap="20000"
eternal="true"
memoryStoreEvictionPolicy="LRU">

OpendPA Caching Provider

xsi:noNamespaceSchemaLocation="ehc

257/284

http://openjpa.apache.org/
http://ehcache.org/downloads/catalog

Configuration

</cache>
<cache name="openjpa-querycache"
maxEntriesLocalHeap="20000"
eternal="true"
memoryStoreEvictionPolicy="LRU">
</cache>
<cacheManagerPeerListenerFactory
class="org.terracotta.ehcachedx.monitor.probe.ProbePeerlListenerFactory"

properties="monitorAddress=localhost, monitorPort=9889, memoryMeasurement=true" />
</ehcache>

Default Cache

As with Hibernate, Ehcache's OpenJPA module (from 0.2) uses the defaultCache configured in
ehcache.xml to create caches. For production, we recommend configuring a cache configuration in
ehcache.xml for each cache, so that it may be correctly tuned.

Troubleshooting

To verify that that OpenJPA is using Ehcache:

¢ Jook for hits/misses in the Ehcache monitor
¢ view the SQL Trace to find out whether it queries the database

If there are still problems, verify in the logs and that your ehcache.xml file is being used. (It could be that if
the ehcache.xml file is not found, ehcache-failsafe.xml is used by default.)

For Further Information

For more on caching in OpenJPA, refer to the Apache OpenJPA project.

OpendPA Caching Provider 258/284

http://openjpa.apache.org/builds/1.0.2/apache-openjpa-1.0.2/docs/manual/ref_guide_caching.html

Using Grails and Ehcache

Introduction

Grails 1.2RC1 and higher use Ehcache as the default Hibernate second level cache. However earlier versions
of Grails ship with the Ehcache library and are very simple to enable. The following steps show how to
configure Grails to use Ehcache. For 1.2RC1 and higher some of these steps are already done for you.

Configuring Ehcache As the Second Level Hibernate Cache

Edit DataSource.groovy as follows:

hibernate {

cache.use_second_level_cache=true
cache.use_qguery_cache=true
cache.provider_class='org.hibernate.cache.EhCacheProvider'

}

Overriding Defaults

As is usual with Hibernate, it will use the defaultCache configuration as a template to create new caches
as required. For production use you often want to customise the cache configuration. To do so, add an
ehcache.xml configuration file to the conf directory (the same directory that contains
DataSource.groovy). A sample ehcache.xml which works with the Book demo app and is good as a
starter configuration for Grails is shown below:

<?xml version="1.0" encoding="UTF-8"?>
<ehcache xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="ehcache.xsd" >
<diskStore path="java.io.tmpdir"/>
<cacheManagerEventListenerFactory class="" properties=""/>
<defaultCache
maxEntriesLocalHeap="10000"
eternal="false"
timeToLiveSeconds="120"
overflowToDisk="false"
diskPersistent="false"
/>
<cache name="Book"
maxEntriesLocalHeap="10000"
timeToIdleSeconds="300"
/>
<cache name="org.hibernate.cache.UpdateTimestampsCache"
maxEntriesLocalHeap="10000"
timeToIdleSeconds="300"
/>
cache name="org.hibernate.cache.StandardQueryCache"
maxEntriesLocalHeap="10000"
timeToIdleSeconds="300"
/>

</ehcache>

Using Grails and Ehcache 259/284

Springcache Plugin

Springcache Plugin

The Springcache plugin allows you to easily add the following functionality to your Grails project:
® Caching of Spring bean methods (typically Grails service methods).
¢ Caching of page fragments generated by Grails controllers.

® Cache flushing when Spring bean methods or controller actions are invoked.

The plugin depends on the EhCache and EhCache-Web libraries. See Springcache Plugin, a part of the Grails
project, for more information.

Clustering Web Sessions

This is handled by Terracotta Web Sessions. See this blog for a great intro on getting this going with Grails
and Tomcat.

Using Grails and Ehcache 260/284

http://grails.org/plugin/springcache
http://gquick.blogspot.com/2010/03/clustering-grails-app-with-terracotta.html

Glassfish How To & FAQ

Introduction

The maintainer uses Ehcache in production with Glassfish. This page explains how to package a sample
application using Ehcache and deploy to Glassfish.

Versions
Ehcache has been tested with and is used in production with Glassfish V1, V2 and V3. In particular:

e Ehcache 1.4 - 1.7 has been tested with Glassfish 1 and 2.
e Ehcache 2.0 has been tested with Glassfish 3.

Deployment

Ehcache comes with a sample web application which is used to test the page caching. The page caching is the
only area that is sensitive to the Application Server. For Hibernate and general caching, it is only dependent
on your Java version.

You need:

¢ An Ehcache core installation

e A Glassfish installation

e A GLASSFISH_HOME environment variable defined.
® SGLASSFISH_HOME/bin added to your PATH

Run the following from the Ehcache core directory:

To package and deploy to domainl:
ant deploy-default-web-app-glassfish

Start domainl:
asadmin start-domain domainl

Stop domainl:
asadmin stop-domain domainl

Overwrite the config with our own which changes the port to 9080:
ant glassfish-configuration

Start domainl:
asadmin start-domain domainl

You can then run the web tests in the web package or point your browser at http://localhost:9080.
See this page for a quickstart to Glassfish.

Troubleshooting

Glassfish How To & FAQ 261/284

https://glassfish.dev.java.net/downloads/quickstart/index.html

How to get around the EJB Container restrictions on thread creation

How to get around the EJB Container restrictions on thread creation

When Ehcache is running in the EJB Container, for example for Hibernate caching, it is in technical breach of
the EJB rules. Some app servers let you override this restriction. I am not exactly sure how this in done in
Glassfish. For a number of reasons we run Glassfish without the Security Manager, and we do not have any
issues. In domain.xml ensure that the following is not included.

<jvm-options>-Djava.security.manager</jvm-options>

Ehcache throws an lllegalStateException in Glassfish

Ehcache page caching versions below Ehcache 1.3 get an IllegalStateException in Glassfish. This issue was
fixed in Ehcache 1.3.

PayloadUtil reports Could not ungzip. Heartbeat will not be
working. Not in GZIP format

This exception is thrown when using Ehcache with my Glassfish cluster, but Ehcache and Glassfish clustering
have nothing to do with each other. The error is caused because Ehcache has received a multicast message
from the Glassfish cluster. Ensure that Ehcache clustering has its own unique multicast address (different from
Glassfish).

Glassfish How To & FAQ 262/284

JSR107 (JCACHE) Support

{#jsr107-implementation} JSR107 is being currently being drafted, with the Ehcache maintainer as Co Spec
Lead. This package will continue to change until JSR107 is finalised. No attempt will be made to maintain
backward compatibility between versions of the package.

Information on the Ehcache implementation of JSR107, JCACHE, is available on github.

You can also find out more about the JSR effort on github.

JSR107 (JCACHE) Support 263/284

https://github.com/jsr107/ehcache-jcache
https://github.com/jsr107/jsr107spec

Recipes Overview

The recipes here are concise examples for specific use cases that will help you get started with Ehcache.

The following sections provide a documentation Table of Contents and additional information about Recipes.

Recipes Table of Contents

Recipe

Web Page and Fragment
Caching

Configure a Grails App for
Clustering

Data Freshness and
Expiration

Enable Terracotta
Programmatically

WAN Replication

Caching Empty Values

Database Read Overload

Database Write Overload

Caching methods with
Spring Annotations

Cache Wrapper

Let's Add More

Description

How to use the included Servlet Filters to cache web pages and web page
fragments.

How to configure a Grails Application for clustered Hibernate 2nd Level Cache.
How to maintain cache "freshness" by configuring TTL and data expiration
properly.

How to enable Terracotta support for Ehcache programmatically.

Three strategies for configuring WAN replication.
Why caching empty values can be desirable to deflect load from the database.

When many readers simultaneously request the same data element, it is called
the "Thundering Herd" problem. How to prevent it in a single JVM or a
clustered configuration.

Writing to the database is a bottleneck. Configure the Ehcach Write-behind
feature to offload database writes.

Adding caching to methods using the Ehcache Annotations for Spring project.

A simple class to make accessing Ehcache easier for simple use cases.

If you have suggestions or ideas for more recipes, please tell us about them using the forums or mailing list.

Recipes Overview

264/284

http://forums.terracotta.org/forums/forums/show/16.page
http://lists.terracotta.org/mailman/listinfo/ehcache-list

Web Page and Web Page Fragment Caching

Introduction

This page provides an example of how to use the included Servlet Filters to cache web pages and web page
fragments.

Problem

You'd like to improve the time it takes to return a page from your web application. Many of the pages in your
application are not time or user specific and can be cached for a period of time.

Solution

Cache the entirety of the web page, or a fragment of the web page for a period of time. Rather than having to
generate the page on each page hit, it will be served out of the cache.

Modern application hardware should be able to server as many as 5,000 pages per second, affording a
significant speedup in your application for pages that are frequently read but infrequently change.

Discussion

There are no code changes required for this - your application server should support servlet filtering already.
Simply update your web.xml file, re-deploy and you should see the speedup right away.

The basic steps you'll need to follow to configure Ehcache for web page caching are (note that these steps
assume you already have Ehcache installed in your application):

1. Configure a servlet page filter in web.xml
2. Configure an appropriate cache in ehcache.xml
3. Start (or re-start) your application

The following settings should help you setup web caching for your application.

Step 1 - Add a filter to your web.xml
The first thing you'll need to do is add a filter to enable page caching.

The following web.xml settings will enable a servlet filter for page caching:

<web—-app xmlns="http://Jjava.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd "
version="2.5">

<filter>

<filter-name>SimplePageCachingFilter</filter-name>
<filter-class>net.sf.ehcache.constructs.web.filter.SimplePageCachingFilter

Web Page and Web Page Fragment Caching 265/284

Step 1 - Add a filter to your web.xml

</filter—-class>
</filter>

<filter-mapping>
<filter-name>SimplePageCachingFilter</filter-name>
<url-pattern>/*</url-pattern>
</filter—-mapping>
</web-app>

Step 2 - Configure an ehcache.xml
The second step to enabling web page caching is to configure ehcache with an appropriate ehcache.xml.

The following ehcache.xml file should configure a reasonable default ehcache:

<ehcache xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../../main/config/ehcache.xsd">
<cache name="SimplePageCachingFilter"
maxEntriesLocalHeap="10000"
maxElementsOnDisk="1000"
eternal="false"
overflowToDisk="true"
timeToIdleSeconds="300"
timeToLiveSeconds="600"
memoryStoreEvictionPolicy="LFU"
/>

</ehcache>

Step 3 - Start your application server

Now start your application server. Pages should be cached.

More details

For more details and configuration options pertaining to web page and web page fragment caching, see the
Web Caching page in the user documentation.

Web Page and Web Page Fragment Caching 266/284

Using Grails and Ehcache

Introduction

Grails 1.2RC1 and higher use Ehcache as the default Hibernate second level cache. However earlier versions
of Grails ship with the Ehcache library and are very simple to enable. The following steps show how to
configure Grails to use Ehcache. For 1.2RC1 and higher, some of these steps are already done for you.

Configuring Ehcache As the Second Level Hibernate Cache

Edit DataSource.groovy as follows:

hibernate {

cache.use_second_level_cache=true
cache.use_qguery_cache=true
cache.provider_class='org.hibernate.cache.EhCacheProvider'

}

Overriding Defaults

As is usual with Hibernate, it will use the defaultCache configuration as a template to create new caches
as required. For production use you often want to customise the cache configuration. To do so, add an
ehcache.xml configuration file to the conf directory (the same directory that contains
DataSource.groovy). A sample ehcache.xml which works with the Book demo app and is good as a
starter configuration for Grails is shown below:

<?xml version="1.0" encoding="UTF-8"?>
<ehcache xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="ehcache.xsd" >
<diskStore path="java.io.tmpdir"/>
<cacheManagerEventListenerFactory class="" properties=""/>
<defaultCache
maxEntriesLocalHeap="10000"
eternal="false"
timeToLiveSeconds="120"
overflowToDisk="false"
diskPersistent="false"
/>
<cache name="Book"
maxEntriesLocalHeap="10000"
timeToIdleSeconds="300"
/>
<cache name="org.hibernate.cache.UpdateTimestampsCache"
maxEntriesLocalHeap="10000"
timeToIdleSeconds="300"
/>
cache name="org.hibernate.cache.StandardQueryCache"
maxEntriesLocalHeap="10000"
timeToIdleSeconds="300"
/>

</ehcache>

Using Grails and Ehcache 267/284

Springcache Plugin

Springcache Plugin

The Springcache plugin allows you to easily add the following functionality to your Grails project:
® Caching of Spring bean methods (typically Grails service methods).
¢ Caching of page fragments generated by Grails controllers.

® Cache flushing when Spring bean methods or controller actions are invoked.

The plugin depends on the EhCache and EhCache-Web libraries. See Springcache Plugin, a part of the Grails
project, for more information.

Clustering Web Sessions

This is handled by Terracotta Web Sessions. See this blog for a great intro on getting this going with Grails
and Tomcat.

Using Grails and Ehcache 268/284

http://grails.org/plugin/springcache
http://gquick.blogspot.com/2010/03/clustering-grails-app-with-terracotta.html

Data Freshness and Expiration

Introduction

This page addresses how to maintain cache "freshness" by configuring TTL and data expiration properly.

Problem

Data in the cache is out of sync with the SOR (the database).

Solution

Databases (and other SORs) weren't built with caching outside of the database in mind, and therefore don't
normally come with any default mechanism for notifying external processes when data has been updated or
modified.

Use one of the following strategies to keep the data in the cache in sync:

¢ data expiration: use the eviction algorithms included with Ehcache along with the
timeToldleSeconds and timetoLiveSeconds setting to enforce a maximum time for elements to live in
the cache (forcing a re-load from the database or SOR).

* message bus: use an application to make all updates to the database. When updates are made, post a
message onto a message queue with a key to the item that was updated. All application instances can
subscribe to the message bus and receive messages about data that is updated, and can synchronize
their local copy of the data accordingly (for example by invalidating the cache entry for updated data)

e triggers: Using a database trigger can accomplish a similar task as the message bus approach. Use the
database trigger to execute code that can publish a message to a message bus. The advantage to this
approach is that updates to the database do not have to be made only through a special application.
The downside is that not all database triggers support full execution environments and it is often
unadvisable to execute heavy-weight processing such as publishing messages on a queue during a
database trigger.

Discussion

The data expiration method is the simplest and most straightforward.

It gives you the programmer the most control over the data synchronization, and doesn't require cooperation
from any external systems, you simply set a data expiration policy and let Ehcache expire data from the cache,
thus allowing fresh reads to re-populate and re-synchronize the cache.

If you choose the data expiration method, you can read more about the cache configuration settings at cache
eviction algorithms and timeToldle and timeToLive configuration settings. The most important concern to
consider when using the expiration method is balancing data-freshness with database load. The shorter you
make the expiration settings - meaning the more "fresh" you try to make the data - the more load you will
incur on the database.

Try out some numbers and see what kind of load your application generates. Even modestly short values such
as 5 or 10 minutes will afford significant load reductions.

Data Freshness and Expiration 269/284

Enable Terracotta Support Programmatically

Introduction

This page covers how to enable Terracotta support for Ehcache programmatically.

Problem

You configure and use Ehcache programmatically. You'd like to enable Terracotta support.

Solution

You can create a Terracotta configuration programmatically and configure it in your CacheManager.

Discussion

Here is some code that you can use to create a Terracotta Configuration and add it to your Ehcache
configuration:

import net.sf.ehcache.Cache;

import net.sf.ehcache.CacheManager;

import net.sf.ehcache.config.Configuration;

import net.sf.ehcache.config.CacheConfiguration;

import net.sf.ehcache.config.TerracottaConfiguration;
import net.sf.ehcache.config.TerracottaClientConfiguration;

public class Main

{
private static final String CACHE_NAME = "myCache";

public static void main(String args[]) throws Exception
{

// The main configuration bean

Configuration configuration = new Configuration();

// Setup the Terracotta cluster config
TerracottaClientConfiguration terracottaConfig
= new TerracottaClientConfiguration();

// If you want to point to a different URL, do it here, otherwise the
// default will point to a local Terracotta server array

// terracottaConfig.setUrl(...);
configuration.addTerracottaConfig(terracottaConfiqg);

// Setup a default cache and add to the configuration

CacheConfiguration defaultCache = new CacheConfiguration ("default", 1000)
.eternal (false);

configuration.addDefaultCache (defaultCache);

// Setup "myCache", make it clustered and add to the configuration
CacheConfiguration myCache = new CacheConfiguration (CACHE_NAME, 10000)
.eternal (false)
.terracotta (new TerracottaConfiguration());

Enable Terracotta Support Programmatically 270/284

Discussion

configuration.addCache (myCache);
CacheManager mgr = new CacheManager (configuration);

Cache exampleCache = mgr.getCache (CACHE_NAME) ;
assert (exampleCache != null);

Enable Terracotta Support Programmatically 271/284

Strategies For Setting Up WAN Replication

Introduction

This page provides three strategies for configuring WAN replication.

Problem

You have two sites for high availability and/or disaster recovery that remain in sync with one another. The
two sites are located in geographically separate areas connected by a WAN link.

Solutions

There are three mechanisms offered by Terracotta to replicate your Ehcache. This recipe highlights the
general approach taken by each of these three solutions. It begins with the simplest but least reliable, and
concludes with the most robust and comprehensive mechanism.

Solution 1: Terracotta Active/Mirror Replication

This is the simplest configuration of the three solutions. In this solution, the approach is to simply use the
built-in replication capabilities of the Terracotta Server Array. In this solution, one Terracotta Server Array
Instance is positioned in each data center. At any one moment only one Terracotta Server Instance is active.
This solution is ideal for data centers that are connected by a high-speed WAN link and maximum simplicity
is required.

Diagram of solution:

Characteristics

This solution has the following characteristics.

Reads

All reads are done from just the one active Terracotta Server Array Instance. This means that clients in
data-center will read from the Terracotta Server Array using a LAN connection, and clients in the other

data-center will read from the Terracotta Server Array using a WAN connection.

Writes

All writes are performed against just the one active Terracotta Server Array Instance. This means that one
clients in one data-center will write to the Terracotta Server Array using a LAN connection, and clients in the
other data-center will write to the Terracotta Server Array using a WAN connection.

Summary

Pros:

Strategies For Setting Up WAN Replication 272/284

Solution 1: Terracotta Active/Mirror Replication

e Simple
¢ Easy to manage

Cons:
¢ Completely dependent on an ideal network connection.
® Even with a fast WAN connection (both high throughput and low-latency), latency issues are not
unlikely as unexpected slowdowns in the network or within the cluster occur.

e Split-brain scenarios may occur due to interruptions in the network between the two servers.
¢ Slowdowns lead to stale data or long pauses for clients in Datacenter B.

Solution 2: Transactional Cache Manager Replication

This solution relies on Ehcache Transaction (JTA) support. In this configuration, two separate caches are
created, each one is 'homed' to a specific data-center.

When a write is generated, it is written under a JTA transaction to ensure data integrity. The write is written to
both caches, so that when the write completes, each data-center specific cache will have a copy of the write.

This solution trades off some write performance for high read performance. Executing a client level JTA
transaction can result in slower performance than Terracotta's built-in replication scheme. The trade-off

however results in the ability for both data-centers to read from a local cache for all reads.

This solution is ideal for applications where writes are infrequent and high read throughput and or low
read-latency is required.

Diagram of solution:

Characteristics

This solution has the following characteristics.

Reads

All reads are done against a local cache / Terracotta Server Array

Writes

All writes are performed against both caches (one in the local LAN and one across the remote WAN)
simultaneously transactionally using JTA.

Summary
Pros:

¢ High read throughput (all reads are executed against local cache)
¢ Low read latency (all reads are executed against local cache)

Cons:

Strategies For Setting Up WAN Replication 273/284

Solution 2: Transactional Cache Manager Replication

® An XA transaction manager is required

® Write cost may be higher

e Some of the same latency and throughput issues that occur in Solution 1 can occur here if writes are
delayed.

Solution 3: Messaging based (AMQ) replication

This solution relies on a message bus to send replication events. The advantage of this solution over the
previous two solutions is the ability to configure - and fine-tune - the characteristics and behavior of the
replication. Using a custom replicator that reads updates from a local cache combined with the ability to

schedule and/or batch replication can make replication across the WAN significantly more efficient.

See Terracotta Distributed Ehcache WAN Replication to learn more about the Terracotta version of this
solution.

Diagram of solution:
Characteristics

This solution has the following characteristics.

Reads

All reads are done against a local cache / Terracotta Server Array

Writes

All writes are done against a local cache for reliable updates. Write updates are collected and sent at a
configurable frequency across the message bus.

This approach allows for batch scheduling and tuning of batch size so that updates can utilize the WAN link
efficiently.

Summary
Pros:
¢ High read throughput (all reads are executed against local cache)
¢ Low read latency (all reads are executed against local cache)
® Write replication is highly efficient and tunable
e Available as a fully featured solution, Terracotta Distributed Ehcache WAN Replication, which
includes persistence, delivery guaranty, conflict resolution, and more.

Cons:

® A message bus is required

Strategies For Setting Up WAN Replication 274/284

Caching Empty Values

Introduction

This page discusses why caching empty values can be desirable to deflect load from the database.

Problem

Your application is querying the database excessively only to find that there is no result. Since there is no

result, there is nothing to cache.

How do you prevent the query from being executed unneccesarily?

Solution

Cache a null value, signalling that a particular key doesn't exist.

Discussion

Ehcache supports caching null values. Simply cache a "null" value instead of a real value.

Use a maximum time to live setting in your cache settings to force a re-load every once in a while.

In code, checking for intentional nulls versus non-existent cache entries may look like:

// cache an explicit null value:

cache.put (new Element ("key", null));

Element element = cache.get ("key");
if (element == null) {

// nothing in the cache for "key" (or expired)
} else {

// there is a valid element in the cache, however getObjectValue() may be null:

Object value = element.getObjectValue();
if (value == null) {

// a null value is in the cache ...
} else {

// a non-null value is in the cache ...

Caching Empty Values

275/284

Discussion
And the ehcache.xml file may look like this (making sure to set the maximum time to live setting:

<cache
name="some.cache.name"
maxEntriesLocalHeap="10000"
eternal="false"
timeToIdleSeconds="300"
timeToLiveSeconds="600"

/>

Caching Empty Values 276/284

Thundering Herd

Introduction

When many readers simultaneously request the same data element, there can be a database read overload,
sometimes called the "Thundering Herd" problem. This page addresses how to prevent it in a single JVM or a
clustered configuration.

Problem

Many readers read an empty value from the cache and subseqeuntly try to load it from the database. The result
is unnecessary database load as all readers simultaneously execute the same query against the database.

Solution

Implement the cache-as-sor pattern by using a BlockingCache or SelfPopulatingCache included with Ehcache.

Using the BlockingCache Ehcache will automatically block all threads that are simultaneously requesting a
particular value and let one and only one thread through to the database. Once that thread has populated the
cache, the other threads will be allowed to read the cached value.

Even better, when used in a cluster with Terracotta, Ehcache will automatically coordinate access to the cache
across the cluster, and no matter how many application servers are deployed, still only one user request will be
serviced by the database on cache misses.

Discussion

The "thundering herd" problem occurs in a highly concurrent environment (typically, many users). When
many users make a request to the same piece of data at the same time, and there is a cache miss (the data for
the cached element is not present in the cache) the thundering herd problem is triggered.

Imagine that a popular news story has just surfaced on the front page of a news site. The news story has not
yet been loaded in to the cache.

The application is using a cache using a read-through pattern with code that looks approximately like:

/* read some data, check cache first, otherwise read from sor */
public V readSomeData (K key)
{
Element element;
if ((element = cache.get (key)) != null) {
return element.getValue();

}

// note here you should decide whether your cache

// will cache 'nulls' or not

if (value = readDataFromDataStore (key)) != null) {
cache.put (new Element (key, value));

}

return value;

Thundering Herd 277/284

Discussion

}

Upon publication to the front page of a website, a news story will then likely be clicked on by many users all
at approximately the same time.

Since the application server is processing all of the user requests simultaneously, the application code will
execute the above code all at approximately the same time. This is especially important to consider, because
all user requests will be evaluating the cache (line 105) contents at approximately the same time, and reach the
same conclusion: the cache request is a miss!

Therefore all of the user request threads will then move on to read the data from the SOR. So, even though the
application designer was careful to implement caching in the application, the database is still subject to spikes
of activity.

The thundering herd problem is made even worse when there are many application servers to one database

server, as the number of simultaneous hits the database server may receive increases as a function of the
number of application servers deployed.

Thundering Herd 278/284

Ehcache Write-Behind

Introduction

This page addresses the problem of database write overload and explains how the Ehcache Write-behind
feature can be the solution.

Problem

It's easy to understand how a cache can help reduce database loads and improve application performance in a
read-mostly scenario. In read-mostly use-cases, every time the application needs to access data, instead of
going to the database, data can be loaded from in-memory cache, which can be hundreds, or even thousands,
of times faster than database.

However, for scenarios that require frequent updates to the stored data, to keep the data in cache and database
in sync, every update to the cached data must invoke a simultaneous update to the database at the same time.
Updates to the database are almost always slower, so this slows the effective update rate to the cache and thus
the performance in general. When many write requests come in at the same time, the database can easily
become a bottleneck or, even worse, be killed by heavy writes in a short period of time.

Solution

The Write-behind feature provided by Ehcache allows quick cache writes with ensured consistency between
cache data and database.

The idea is that when writing data into the cache, instead of writing the data into database at the same time,
the write-behind cache saves the changed data into a queue and lets a backend thread to do the writing later.
Therefore, the cache-write process can proceed without waiting for the database-write and, thus, be finished
much faster. Any data that has been changed can be persisted into database eventually. In the mean time, any
read from cache will still get the latest data.
A cache configured to perform asynchronous persistence, such as this, is called a Write-behind Cache.
There are many benefits of a Write-behind Cache. For example:

¢ Offload database writes

e Spread writes out to flatten peaks
¢ Consolidate multiple writes into fewer database writes

Discussion

To implement a Write-Behind using Ehcache, one needs to register a CacheWriterFactory for Write-behind
Cache and set the writeMode property of the cache to "write_behind".

CacheWriterFactory can create a writer for any data source(s), such as file, email, JMS or database. Typically,
the database is the most common example of a data source.

Ehcache Write-Behind 279/284

Discussion

Once a cache is configured as a Write-Behind cache, whenever a Cache.put is called to add or modify data,
the cache will first update the cache data, just like a normal cache does, then it will save the change into a
queue. A backend thread should be started when the cache is initialized and it will keep pulling data from the
queue and it will call a Writer instance created by the CacheWriterFactory to persist the new data
asynchronously.

In an un-clustered cache, the write-behind queue is stored in local memory. If the JVM dies, any data still in
the queue will be lost.

In a clustered cache, the write-behind queue is managed by Terracotta Server Array. The background thread
on each JVM will check the shared queue and save each data change left in the queue. With clustered
Ehcache, this background process is scaled across the cluster for both performance and high availability
reasons. If one client JVM were to go down, any changes it put into the write-behind queue can always be
loaded by threads in other clustered JVMs, therefore will be applied to the database without any data loss.

There are many advanced configurations for Write-behind Cache. Because of the nature of asynchronous

writing, there are also restrictions on when Write-Behind Cache can be used. For more information, see
write-through caching.

Ehcache Write-Behind 280/284

Caching Methods with Spring 3 Annotations

Introduction

This page explains adding caching to methods using the Ehcache Annotations for Spring project.

Problem

You'd like to cache methods of your application with minimal code changes and use configuration to control
the cache settings.

Solution

Use the Ehcache Annotations for Spring project at code.google.com to dynamically configure caching of
method return values.

Discussion

The Ehcache Annotations for Spring project is a successor to the Spring-Modules project. This project will
allow you to configure caching of method calls dynamically using just configuration.

The way it works is that the parameter values of the method will be used as a composite key into the cache,
caching the return value of the method.

For example, suppose you have a method: Dog getDog (String name).

Once caching is added to this method, all calls to the method will be cached using the "name" parameter as a
key.

So, assume at time t0 the application calls this method with the name equal to "fido". Since "fido" doesn't
exist, the method is allowed to run, generating the "fido" Dog object, and returning it. This object is then put

into the cache using the key "fido".

Then assume at time t1 the application calls this method with the name equal to "spot". The same process is
repeated, and the cache is now populated with the Dog object named "spot".

Finally, at time t2 the application again calls the method with the name "fido". Since "fido" exists in the
cache, the "fido" Dog object is returned from the cache instead of calling the method.

To implement this in your application, follow these steps:
Step 1:
Add the jars to your application as listed on the Ehcache Annotations for Spring project site.

Step 2:

Caching Methods with Spring 3 Annotations 281/284

http://code.google.com/p/ehcache-spring-annotations/
http://code.google.com/p/ehcache-spring-annotations

Discussion

Add the Annotation to methods you would like to cache. Lets assume you are using the Dog getDog(String
name) method from above:

@Cacheable (name="getDog")
Dog getDog (String name)
{

}
Step 3:

Configure Spring. You must add the following to your Spring configuration file in the beans declaration
section:

<ehcache:annotation-driven cache-manager="ehCacheManager" />
More details can be found at:
¢ Ehcache Annotations for Spring project

¢ the project getting started page
e this blog

Caching Methods with Spring 3 Annotations 282/284

http://code.google.com/p/ehcache-spring-annotations
http://code.google.com/p/ehcache-spring-annotations/wiki/UsingCacheable
http://www.jeviathon.com/2010/04/caching-java-methods-with-spring-3.html

Echache Wrapper

Introduction

This page provides an example of a simple class to make accessing Ehcache easier for simple use cases.

Problem

Using the full Ehcache API can be more tedious than using just a simple, value-based cache (like a HashMap)
because of the Element class that holds values.

Solution

Implement a simple cache wrapper to hide the use of the Element class.

Discussion

Here's a simple class you can use to simplify using Ehcache in certain simple use cases.

You can still get the Ehcache cache in case you want access to the full APIL.

public interface CacheWrapper<K, V>

{
void put (K key, V value);

V get (K key);

import net.sf.ehcache.CacheManager;
import net.sf.ehcache.Ehcache;
import net.sf.ehcache.Element;

public class EhcacheWrapper<K, V> implements CacheWrapper<K, V>
{

private final String cacheName;
private final CacheManager cacheManager;

public EhcacheWrapper (final String cacheName, final CacheManager cacheManager)

{
this.cacheName = cacheNamne;
this.cacheManager = cacheManager;

public void put (final K key, final V value)

{
getCache () .put (new Element (key, value));

public V get (final K key)
{
Element element = getCache () .get (key);
if (element != null) {
return (V) element.getValue();

Echache Wrapper 283/284

Discussion

return null;

}

public Ehcache getCache ()
{

return cacheManager.getEhcache (cacheName) ;

}

Echache Wrapper 284/284

	Ehcache 2.5.x Documentation
	Getting Started Overview
	"Getting Started" Table of Contents
	Getting Started in Theory and Practice

	Hello, Ehcache
	Introduction
	Definitions
	Why caching works
	Locality of Reference
	The Long Tail

	Will an Application Benefit from Caching?
	Speeding up CPU-bound Applications
	Speeding up I/O-bound Applications
	Increased Application Scalability

	How much will an application speed up with Caching?
	The short answer
	Applying Amdahl's Law
	Cache Efficiency
	Cluster Efficiency
	A cache version of Amdahl's law
	Web Page example

	Cache Topologies
	Introduction
	Distributed Caching (Distributed Ehcache)
	Replicated Caching
	Using a Cache Server
	Notification Strategies
	Potential Issues with Replicated Caching

	Key Classes and Methods
	Introduction
	CacheManager
	Ehcache
	Element

	About Distributed Cache
	Introduction
	Architecture
	Logical View
	Network View
	Memory Hierarchy View

	Differences Between Terracotta Distributed Cache and Standalone or Replicated Cache
	Code Samples
	Development with Maven and Ant
	Setting up for Integration Testing
	Interactive Testing

	Cache Consistency Options
	Introduction
	Server-Side Consistency
	Server Deployment Topology
	Restating in terms of Quorum based replicated-write protocols

	Client-Side Consistency
	Model Components
	Mapping the Model to Distributed Ehcache
	Standard Client-Side Consistency Modes

	Consistency Modes in Distributed Ehcache
	Strong Consistency
	Eventual Consistency

	Other Safety Features
	CAS Cache Operations

	Use Cases And Recommended Practices
	Shopping Cart - optimistic inventory
	Shopping Cart with Inventory Decrementing
	Financial Order Processing - write to cache and database
	Immutable Data
	Financial Order Processing - write to cache as SOR
	E-commerce web app with Non-sticky sessions
	E-commerce web app with sticky sessions
	E-commerce Catalog

	Storage Options
	Introduction
	Memory Store
	Suitable Element Types
	Memory Use, Spooling, and Expiry Strategy

	BigMemory (Off-Heap Store)
	Suitable Element Types

	DiskStore
	DiskStores are Optional
	Suitable Element Types
	Enterprise DiskStore
	Storage
	Expiry
	Eviction
	Serializable Objects
	Safety
	Persistence
	Fragmentation
	Serialization
	RAMFS

	Some Configuration Examples
	Performance Considerations
	Relative Speeds
	Always use some amount of Heap

	Using Ehcache
	Introduction
	General-Purpose Caching
	Cache Usage Patterns
	cache-aside
	cache-as-sor
	read-through
	write-through
	write-behind
	cache-as-sor example
	Copy Cache

	Specific Technologies
	Distributed Caching
	Hibernate
	Java EE Servlet Caching
	RESTful and SOAP Caching with the Cache Server
	JCache style caching
	Spring, Cocoon, Acegi and other frameworks

	Building and Testing Ehcache
	Introduction
	Building from Source
	Building an Ehcache distribution from source
	Running Tests for Ehcache

	Java Requirements and Dependencies
	Java Requirements
	Mandatory Dependencies
	Maven Snippet

	Distributed Cache Development with Maven and Ant
	Setting up for Integration Testing

	Configuration Overview
	Configuration Table of Contents
	Hit the Ground Running
	Additional Information about Configuration

	Cache Configuration
	Introduction
	Dynamically Changing Cache Configuration
	Dynamic Configuration Changes for Distributed Cache

	Memory-Based Cache Sizing (Ehcache 2.5 and higher)
	Pinning of Caches and Elements in Memory (2.5 and higher)

	Cache Warming for multi-tier Caches
	DiskStoreBootstrapCacheLoaderFactory
	TerracottaBootstrapCacheLoaderFactory

	copyOnRead and copyOnWrite cache configuration
	Special System Properties
	net.sf.ehcache.disabled
	net.sf.ehcache.use.classic.lru

	ehcache.xsd
	ehcache-failsafe.xml
	Update Checker
	By System Property
	By Configuration

	ehcache.xml and Other Configuration Files
	Ehcache Configuration With Terracotta Clustering

	BigMemory
	Introduction
	Configuration
	Configuring Caches to Overflow to Off-heap
	Adding The License
	Allocating Direct Memory in the JVM

	Advanced Configuration Options
	-XX:+UseLargePages
	Increasing the Maximum Serialized Size of an Element that can be Stored in the OffHeapStore
	Avoiding OS Swapping
	Compressed References
	Controlling Over-allocation of Memory to the OffHeapStore

	Sample Application
	Performance Comparisons
	Largest Full GC
	Latency
	Throughput

	Storage
	Storage Hierarchy
	Memory Use in Each Store

	Handling JVM Startup and Shutdown
	Using OffHeapStore with 32-bit JVMs
	Slow Off-Heap Allocation
	Reducing Cache Misses
	FAQ
	What Eviction Algorithms are supported?
	Why do I see performance slow down and speed up in a cyclical pattern when I am filling a cache?
	What is the maximum serialized size of an object when using OffHeapStore?
	Why is my application startup slower?
	How can I do Maven testing with BigMemory?

	How to Size Caches
	Introduction
	Cache Configuration Sizing Attributes
	Pooling Resources Versus Sizing Individual Caches
	Local Heap
	BigMemory (Local Off-Heap)
	Local Disk

	Cache Sizing Examples
	Pooled Resources
	Explicitly Sizing Caches
	Mixed Sizing Configurations
	Using Percents
	Sizing Caches Without a Pool
	Overflows

	Sizing Distributed Caches
	Sizing the Terracotta Server Array

	Overriding Size Limitations
	Built-In Sizing Computation and Enforcement
	Sizing of cached entries
	Eviction When Using CacheManager-Level Storage

	Pinning, Expiration, and Eviction
	Introduction
	Setting Expiration
	Pinning Data
	Pinning Individual Cache Entries
	Pinning a Cache
	Scope of Pinning

	How Configuration Affects Element Flushing and Eviction
	Pinning Overrides Cache Sizing

	Nonstop (Non-Blocking) Cache
	Introduction
	Configuring Nonstop Cache
	Nonstop Timeouts and Behaviors
	Tuning Nonstop Timeouts and Behaviors

	Nonstop Exceptions
	When is NonStopCacheException Thrown?
	Handling Nonstop Exceptions

	UnlockedReadsView
	Introduction
	Creating an UnlockedReadsView
	Programmatically
	By Configuration

	Download
	File
	Maven

	FAQ
	Why is this a CacheDecorator?
	Why do I see stale values in certain Ehcache nodes for up to 5 minutes?

	Distributed Ehcache Configuration Guide
	Introduction
	CacheManager Configuration
	Via ehcache.xml
	Programmatic Configuration

	Terracotta Clustering Configuration Elements
	terracotta
	terracottaConfig

	Controlling Cache Size
	Setting Cache Eviction
	Cache-Configuration File Properties
	Cache Events Configuration
	Copy On Read
	Configuring Robust Distributed Caches
	Incompatible Configuration
	Exporting Configuration from the Developer Console

	Default Settings for Terracotta Distributed Ehcache
	Introduction
	Terracotta Server Array
	Reconnection and Logging Properties
	HealthChecker Tolerances

	Ehcache
	General Cache Settings
	NonStop Cache
	Bulk Operations

	BigMemory Overview
	BigMemory Table of Contents
	BigMemory Resources

	Automatic Resource Control Overview
	ARC Table of Contents
	Additional Information about ARC

	APIs Overview
	APIs Table of Contents
	Additional Information about APIs

	Ehcache Search API
	Introduction
	What is Searchable?
	How to Make a Cache Searchable
	By Configuration
	Programmatically

	Attribute Extractors
	Well-known Attributes
	ReflectionAttributeExtractor
	Custom AttributeExtractor

	Query API
	Using Attributes in Queries
	Expressions
	List of Operators
	Making Queries Immutable

	Search Results
	Aggregators
	Ordering Results
	Limiting the Size of Results
	Interrogating Results

	Sample Application
	Scripting Environments
	Concurrency Considerations
	Index Updating
	Query Results
	Recommendations

	Implementations
	Standalone Ehcache
	Ehcache Backed by the Terracotta Server Array

	Bulk Loading in Ehcache
	Introduction
	API
	Speed Improvement
	FAQ
	Are there any alternatives to putting the cache into bulk-load mode?
	Why does the bulk loading mode only apply to Terracotta clusters?
	How does bulk load with RMI distributed caching work?

	Performance Tips
	When to use Multiple Put Threads
	Bulk Loading on Multiple Nodes
	Why not run in bulk load mode all the time

	Download
	Further Information

	Transactions in Ehcache
	Introduction
	All or nothing
	Change Visibility

	When to use transactional modes
	Requirements
	Configuration
	Transactional Caches with Terracotta Clustering
	Transactional Caches with Spring

	Global Transactions
	Implementation

	Failure Recovery
	Recovery

	Sample Apps
	XA Sample App
	XA Banking Application
	Examinator

	Transaction Managers
	Automatically Detected Transaction Managers
	Configuring a Transaction Manager

	Local Transactions
	Introduction Video
	Configuration
	Isolation Level
	Transaction Timeouts
	Sample Code
	What can go wrong

	Performance
	Managing Contention
	What granularity of locking is used?
	Performance Comparisons

	FAQ
	Why do some threads regularly time out and throw an excption?
	Is IBM Websphere Transaction Manager supported?
	How do transactions interact with Write-behind and Write-through caches?
	Are Hibernate Transactions supported?
	How do I make WebLogic 10 work with Ehcache JTA?
	How do I make Atomikos work with Ehcache JTA's xa mode?

	Explicit Locking
	Introduction
	The API
	Example
	Supported Topologies
	How it works

	Write-through and Write-behind Caching with the CacheWriter
	Introduction
	Potential Benefits of Write-Behind
	Limitations & Constraints of Write-Behind
	Transaction Boundaries
	Time delay
	Applications Tolerant of Inconsistency
	Node time synchronisation
	No ordering guarantees

	Using a combined Read-Through and Write-Behind Cache
	Lazy Loading
	Caching of a Partial Dataset

	Introductory Video
	Sample Application
	Ehcache Versions
	Ehcache DX (Standalone Ehcache)
	Ehcache EX and FX

	Configuration
	Configuration Attributes

	API
	SPI
	FAQ
	Is there a way to monitor the write-behind queue size?
	What happens if an exception occurs when the writer is called?

	BlockingCache and SelfPopulatingCache
	Introduction
	Blocking Cache
	SelfPopulatingCache

	Terracotta Cluster Events
	Introduction
	Cluster Topology
	Listening For Cluster Events
	Example Code
	Uses for Cluster Events

	Cache Decorators
	Introduction
	Creating a Decorator
	Programmatically
	By Configuration

	Adding decorated caches to the CacheManager
	Using CacheManager.replaceCacheWithDecoratedCache()
	Using CacheManager.addDecoratedCache()

	Built-in Decorators
	BlockingCache
	SelfPopulatingCache
	Caches with Exception Handling

	CacheManager Event Listeners
	Introduction
	Configuration
	Implementing a CacheManagerEventListenerFactory and CacheManagerEventListener

	Cache Event Listeners
	Introduction
	Configuration
	Implementing a CacheEventListenerFactory and CacheEventListener
	Adding a Listener Programmatically

	Cache Exception Handlers
	Introduction
	Declarative Configuration
	Implementing a CacheExceptionHandlerFactory and CacheExceptionHandler
	Programmatic Configuration

	Cache Extensions
	Introduction
	Declarative Configuration
	Implementing a CacheExtensionFactory and CacheExtension
	Programmatic Configuration

	Cache Eviction Algorithms
	Introduction
	Provided MemoryStore Eviction Algorithms
	Least Recently Used (LRU)
	Least Frequently Used (LFU)
	First In First Out (FIFO)

	Plugging in your own Eviction Algorithm
	DiskStore Eviction Algorithms

	Class loading and Class Loaders
	Introduction
	Plugin class loading
	Loading of ehcache.xml resources
	Classloading with Terracotta clustering

	Operations Overview
	Operations Table of Contents
	Additional Information about Operations

	Tuning Garbage Collection
	Introduction
	Detecting Garbage Collection Problems
	Garbage Collection Tuning
	Distributed Caching Garbage Collection Tuning

	Ehcache Monitor
	Introduction
	Installation And Configuration
	Recommended Deployment Topology
	Probe

	Starting the Monitor
	Securing the Monitor
	Using the Web GUI
	Cache Managers
	Statistics
	Configuration
	Contents
	Charts
	API

	Using the API
	Licensing
	Limitations
	History not Implemented
	Memory Measurement limitations

	JMX Management and Monitoring
	Introduction
	Terracotta Monitoring Products
	JMX Overview
	MBeans
	JMX Remoting
	ObjectName naming scheme
	The Management Service
	JConsole Example
	Hibernate statistics
	JMX Tutorial
	Performance

	Logging
	Introduction
	SLF4J Logging
	Concrete Logging Implementation Use in Maven
	Concrete Logging Implemenation Use in the Download Kit

	Recommended Logging Levels

	Shutting Down Ehcache
	Introduction
	ServletContextListener
	The Shutdown Hook
	When to use the shutdown hook
	What the shutdown hook does
	When a shutdown hook will run, and when it will not

	Dirty Shutdown

	Remote Network debugging and monitoring for Distributed Caches
	Introduction
	Packaging
	Limitations
	Usage
	Output
	Providing more Detailed Logging
	Yes, but I still have a cluster problem

	Replication Overview
	Replication Table of Contents
	Additional Information about Replication

	RMI Replicated Caching
	Introduction
	Suitable Element Types
	Configuring the Peer Provider
	Peer Discovery
	Automatic Peer Discovery
	Manual Peer Discovery {#Manual Peer Discovery}

	Configuring the CacheManagerPeerListener
	Configuring Cache Replicators
	Configuring Bootstrap from a Cache Peer
	Full Example
	Common Problems
	Tomcat on Windows
	Multicast Blocking
	Multicast Not Propagating Far Enough or Propagating Too Far

	Replicated Caching using JGroups
	Introduction
	Suitable Element Types
	Peer Discovery
	Configuration
	Example configuration using UDP Multicast
	Configuration
	Example configuration using UDP Multicast
	Example configuration using TCP Unicast
	Protocol considerations.
	Configuring CacheReplicators
	Complete Sample configuration
	Common Problems

	Replicated Caching using JMS
	Introduction
	Ehcache Replication and External Publishers
	Configuration
	External JMS Publishers

	Using the JMSCacheLoader
	Example Configuration Using Active MQ
	Example Configuration Using Open MQ

	Configuring Clients for Message Queue Reliability
	Tested Message Queues
	Sun Open MQ
	Active MQ
	Oracle AQ
	JBoss Queue

	Known JMS Issues
	Active MQ Temporary Destinatons
	WebSphere 5 and 6

	Modules Overview
	Modules Table of Contents
	Additional Information about the Modules

	Cache Server
	Introduction
	RESTful Web Services
	RESTFul Web Services API
	CacheManager Resource Operations
	Cache Resource Operations
	Element Resource Operations
	Cache Resource Operations
	Element Resource Operations
	Resource Representations
	{RESTful Code Samples}

	Creating Massive Caches with Load Balancers and Partitioning
	Non-redundant, Scalable with client hash-based routing
	Redundant, Scalable with client hash-based routing
	Redundant, Scalable with load balancer hash-based routing

	W3C (SOAP) Web Services
	W3C Web Services API
	Security

	Requirements
	Java
	Web Container (WAR packaged version only)

	Downloading
	Sourceforge
	Maven

	Installation
	Installing the WAR
	Configuring the Web Application

	Installing the Standalone Server
	Configuring the Standalone Server
	Starting and Stopping the Standalone Server

	Monitoring
	Remotely Monitoring the Standalone Server with JMX

	Download
	FAQ
	Does Cache Server work with WebLogic?

	Web Caching
	Introduction
	SimplePageCachingFilter
	Keys
	Configuring the cacheName
	Concurrent Cache Misses
	Gzipping
	Caching Headers
	Init-Params
	Re-entrance
	SimplePageFragmentCachingFilter
	Example web.xml configuration
	CachingFilter Exceptions
	FilterNonReentrantException
	ResponseHeadersNotModifiableException
	AlreadyGzippedException
	ResponseHeadersNotModifiableException

	Hibernate Overview
	Hibernate Table of Contents
	Important Notices - PLEASE READ
	Additional Information about Hibernate

	Integrations Overview
	Integrations Table of Contents
	Additional Information about Integrating Ehcache

	Using Coldfusion and Ehcache
	Introduction
	Which version of Ehcache comes with which version of ColdFusion?
	Which version of Ehcache should I use if I want a distributed cache?
	Using Ehcache with ColdFusion 9 and 9.0.1
	Switching from a local cache to a distributed cache with ColdFusion 9.0.1
	Using Ehcache with ColdFusion 8

	Using Spring and Ehcache
	Introduction
	Spring 3.1
	@Cacheable
	@CacheEvict

	Spring 2.5 - 3.1: Ehcache Annotations For Spring
	@Cacheable
	@TriggersRemove

	Hibernate Second-Level Cache
	Introduction
	Downloading and Installing Ehcache
	Maven
	Configure Ehcache as the Second-Level Cache Provider
	Hibernate 3.3 and higher
	Hibernate 3.0 - 3.2

	Enable Second-Level Cache and Query Cache Settings
	Optional
	Ehcache Configuration Resource Name
	Set the Hibernate cache provider programmatically

	Putting it all together
	Configure Hibernate Entities to use Second-Level Caching
	Definition of the different cache strategies

	Configure
	Domain Objects
	Collections
	Queries

	Demo Apps
	Hibernate Tutorial
	Examinator

	Performance Tips
	Session.load
	Session.find and Query.find
	Session.iterate and Query.iterate

	How to Scale
	Using Distributed Ehcache

	Configuring Replicated Caching using RMI, JGroups, or JMS
	Configuring for RMI Replication
	Configuring for JGroups Replication
	Configuring for JMS Replication

	FAQ
	If I'm using Ehcache with my app and with Hibernate for second-level caching, should I try to use the CacheManager created by Hibernate for my app's caches?
	Should I use the provider in the Hibernate distribution or in Ehcache?
	What is the relationship between the Hibernate and Ehcache projects?
	Does Ehcache support the new Hibernate 3.3 2nd level caching SPI?
	Does Ehcache support the transactional strategy?
	Why do certain caches sometimes get automatically cleared by Hibernate?
	Is Ehcache Cluster Safe?
	How are Hibernate Entities keyed?
	Can you use Identity mode with the Terracotta Server Array
	I get org.hibernate.cache.ReadWriteCache - An item was expired by the cache while it was locked error messages. What is it?
	I get java.lang.ClassCastException: org.hibernate.cache.ReadWriteCache$Item incompatible with net.sf.ehcache.hibernate.strategy.AbstractReadWriteEhcacheAccessStrategy$Lockable
	Are compound keys supported?
	Why do I not see replicated data when using nonstrict mode?

	JRuby and Rails Caching
	Introduction
	Installation
	Installation for JRuby
	Installation for Rails
	Dependencies

	Configuring Ehcache
	Using the jruby-ehcache API directly
	Basic Operations
	Supported Properties
	Example Configuration

	Using Ehcache from within Rails
	General Overview
	Setting up a Rails Application with Ehcache
	Adding BigMemory under Rails

	Google App Engine (GAE) Caching
	Introduction
	Compatibility
	Limitations
	Dependencies
	Configuring ehcache.xml
	Recipes
	Setting up Ehcache as a local cache in front of memcacheg
	Using memcacheg in place of a DiskStore
	Distributed Caching
	Dynamic Web Content Caching

	Troubleshooting
	NoClassDefFoundError

	Sample application

	Tomcat Issues and Best Practices
	Introduction
	Problem rejoining a cluster after a reload
	Class-loader memory leak
	RMI CacheException - problem starting listener for RMICachePeer
	Multiple host entries in Tomcat's server.xml stops replication from occurring

	JDBC Caching
	Introduction
	Adding JDBC caching to a DAO/DAL layer
	Identifying methods which can be cached
	Instantiate a cache and add a member variable
	Put and get values from the cache

	Putting it all together - an example
	The example files

	OpenJPA Caching Provider
	Introduction
	Installation
	Configuration
	Default Cache
	Troubleshooting
	For Further Information

	Using Grails and Ehcache
	Introduction
	Configuring Ehcache As the Second Level Hibernate Cache
	Overriding Defaults
	Springcache Plugin
	Clustering Web Sessions

	Glassfish How To & FAQ
	Introduction
	Versions
	Deployment
	Troubleshooting
	How to get around the EJB Container restrictions on thread creation
	Ehcache throws an IllegalStateException in Glassfish
	PayloadUtil reports Could not ungzip. Heartbeat will not be working. Not in GZIP format

	JSR107 (JCACHE) Support
	Recipes Overview
	Recipes Table of Contents
	Let's Add More

	Web Page and Web Page Fragment Caching
	Introduction
	Problem
	Solution
	Discussion
	Step 1 - Add a filter to your web.xml
	Step 2 - Configure an ehcache.xml
	Step 3 - Start your application server

	More details

	Using Grails and Ehcache
	Introduction
	Configuring Ehcache As the Second Level Hibernate Cache
	Overriding Defaults
	Springcache Plugin
	Clustering Web Sessions

	Data Freshness and Expiration
	Introduction
	Problem
	Solution
	Discussion

	Enable Terracotta Support Programmatically
	Introduction
	Problem
	Solution
	Discussion

	Strategies For Setting Up WAN Replication
	Introduction
	Problem
	Solutions
	Solution 1: Terracotta Active/Mirror Replication
	Solution 2: Transactional Cache Manager Replication
	Solution 3: Messaging based (AMQ) replication

	Caching Empty Values
	Introduction
	Problem
	Solution
	Discussion

	Thundering Herd
	Introduction
	Problem
	Solution
	Discussion

	Ehcache Write-Behind
	Introduction
	Problem
	Solution
	Discussion

	Caching Methods with Spring 3 Annotations
	Introduction
	Problem
	Solution
	Discussion

	Echache Wrapper
	Introduction
	Problem
	Solution
	Discussion

