Il EHCACHE

aproduct from 'w° TERRAGOTTA

Ehcache
V.24
User Guide

Terracotta, Inc. 2011-05-05

Table of Contents i

Table of Contents

Table of CoNtents i
I aC .. 1
INtrOdUCTION .. 2
Getting Startedo 9
DEPENUENCIES ... 11
Cache CONCEPLS ...t 12
ConfigUIratioN 17
Storage OpPLtiONS ... 24
Cache Consistency OptioNS 31
Cache Eviction Algorithms ... 39
Big Memory:Off-Heap Store ... 42
JDBC Caching ... 52
Spring Caching with Ehcache i ... 56
Code SampPIes ... 58
Class loading and Class Loaders ..., 65
Tuning Garbage Collection i 67
CacChe DEeCOTAtOrS ...ttt 68
Hibernate Caching 71
Web Cachingo 83
Using ColdFusion with Ehcache 88
Cache Topologies ... 91
Distributed Caching ...

Replicated Caching With RMI ... e 94
Replicated Caching With JGroups ...t 100
Replicated Caching With IMS 104
Shutting Down Ehcache 115
LOggINg oot 117
Remote Network replication debugging: RMI Replicated Caches 118
JMX Management And MoNitoring ..., 120
JTA And TransacCtioNS ...t 127
SBaAICN 135
Ehcache MoNnitor 145
BUIK Loadingcoiii e

CacheManager Event Listeners ..., 151
Cache Event LiStenerso 154
Cache Exception Handlers ... 158
Cache EXTENSIONS ...t 161
Cache Loaderso 164

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

Table of Contents ii

Write-through and write-behind caching with CacheWriters 168
Cache Server with SOAP and RESTful Web Services 177
Explicit Locking APl ... 195
BlockingCache and SelfPopulatingCache 198
OpendPA CacChingoviiii 199
Grails Caching 200
JRUbY Caching ... 202
Glassfish HOWTO ..o e 206
Google App Engine Cachingot 208
Tomcat Issues and Best Practices ..., 211
JSR107 (JCACHE) SUPPOIt ..ot 212
Building From SOUICe 218
F A 220

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

1 Preface 1

Preface

1.1 Preface

Thisis abook about Ehcache, awidely used open source Java cache. Ehcache has grown in size and
scope since it was introduced in October 2003. As people used it they often noticed it was missing
afeature they wanted. Over time, the features that were repeatedly asked for, and make sense for a
Cache, have been added.

Ehcache is now used for Hibernate caching, data access object caching, security credential caching,
web caching, SOAP and RESTful server caching, application persistence and distributed caching.

In August 2009, Ehcache was acquired by Terracotta, Inc. and has been continously enhanced since
then.

1.1.1 Version
This book isfor Ehcache version 2.4.1.

1.1.2 Audience

The intended audience for this book is devel opers who use ehcache. It should be able to be used to
start from scratch, get up and running quickly, and also be useful for the more complex options.

Ehcache is about performance and load reduction of underlying resources. Another natural audienceis
performance specialists.

It isalso intended for application and enterprise architects. Some of the features of ehcache, such
as distributed caching and Java EE caching, are alternatives to be considered along with other ways
of solving those problems. This book discusses the trade-offs in Ehcache's approach to help make a
decision about appropriateness of use.

1.1.3 Acknowledgements

Ehcache has had many contributions in the form of forum discussions, feature requests, bug reports,
patches and code commits.

Rather than try and list the many hundreds of people who have contributed to Ehcache in some way it
is better to link to the web site where contributions are acknowledged in the following ways:

» Bug reports and features requests appear in the changes report here:
 Patch contributors generally end up with an author tag in the source they contributed to.
» Team members appear on the team list page here:

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://ehcache.org/changes-report.html

2 Introduction 2

2 Introduction

2.1 Introduction

Ehcache is a cache library. Before getting into ehcache, it isworth stepping back and thinking about
caching generally.

2.1.1 About Caches

Wiktionary defines a cache as A store of things that will be required in future, and can be retrieved
rapidly. That is the nub of it.

In computer science terms, a cache is a collection of temporary data which either duplicates data
located elsewhere or is the result of a computation. Once in the cache, the data can be repeatedly
accessed inexpensively.

2.1.2 Why caching works

2.1.2.1 Locality of Reference

While Ehcache concernsitself with Java objects, caching is used throughout computing, from CPU
cachesto the DNS system. Why? Because many computer systems exhibit locality of reference. Data
that is near other data or has just been used is more likely to be used again.

2.1.2.2 The Long Tall

Chris Anderson, of Wired Magazine, coined the term The Long Tail to refer to Ecommerce systems.
The ideathat a small number of items may make up the bulk of sales, a small number of blogs might
get the most hits and so on. While thereisasmall list of popular items, thereisalong tail of less
popular ones.

The Long Tail

The Long Tall isitself avernacular term for a Power Law probability distribution. They don't just
appear in ecommerce, but throughout nature. One form of a Power Law distribution is the Pareto
distribution, commonly know as the 80:20 rule.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

2 Introduction 3

This phenomenon is useful for caching. If 20% of objects are used 80% of the time and away can be
found to reduce the cost of obtaining that 20%, then the system performance will improve.

2.1.3 Will an Application Benefit from Caching?
The short answer is that it often does, due to the effects noted above.

The medium answer isthat it often depends on whether it is CPU bound or 1/0 bound. If an
application is I/0 bound then then the time taken to complete a computation depends principally on
the rate at which data can be obtained. If it is CPU bound, then the time taken principally depends on
the speed of the CPU and main memory.

While the focus for caching is on improving performance, it it also worth realizing that it reduces
load. The time it takes something to completeis usually related to the expense of it. So, caching often
reduces |oad on scarce resources.

2.1.3.1 Speeding up CPU bound Applications
CPU bound applications are often sped up by:
* improving a gorithm performance
 paralelizing the computations across multiple CPUs (SMP) or multiple machines (Clusters).
 upgrading the CPU speed.
Therole of caching, if thereis one, isto temporarily store computations that may be reused
again.
An example from Ehcache would be large web pages that have a high rendering cost. Another
caching of authentication status, where authentication requires cryptographic transforms.

2.1.3.2 Speeding up I/O bound Applications
Many applications are /O bound, either by disk or network operations. In the case of databases they
can be limited by both.

Thereisno Moore's law for hard disks. A 10,000 RPM disk was fast 10 years ago and is still fast.
Hard disks are speeding up by using their own caching of blocks into memory.

Network operations can be bound by a number of factors:

* timeto set up and tear down connections

* latency, or the minimum round trip time

* throughput limits

» marshalling and unmarhshalling overhead
The caching of data can often help alot with I/O bound applications. Some examples of Ehcache
uses are:

» Data Access Object caching for Hibernate

» Web page caching, for pages generated from databases.

2.1.3.3 Increased Application Scalability

The flip side of increased performance isincreased scalability. Say you have a database which can do
100 expensive queries per second. After that it backs up and if connections are added to it it Slowly
dies.

In this case, caching may be able to reduce the workload required. If caching can cause 90 of that 100
to be cache hits and not even get to the database, then the database can scale 10 times higher than
otherwise.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

2 Introduction 4

2.1.4 How much will an application speed up with Caching?

2.1.4.1 The short answer
The short answer is that it depends on a multitude of factors being:

» how many times a cached piece of data can and is reused by the application
» the proportion of the response time that is alleviated by caching

In applications that are 1/0 bound, which is most business applications, most of the response time
is getting data from a database. Therefore the speed up mostly depends on how much reuse a
piece of data gets.

In a system where each piece of datais used just once, it is zero. In a system where datais reused
alot, the speed up islarge.
The long answer, unfortunately, is complicated and mathematical. It is considered next.

2.1.4.2 Applying Amdahl's Law
Amdahl's law, after Gene Amdahl, is used to find the system speed up from a speed up in part of the
system.

1/ ((1 - Proportion Sped Up) + Proportion Sped Up / Speed up)

The following examples show how to apply Amdahl's law to common situations. In the interests of
simplicity, we assume:

» asingleserver
» asystem with asingle thing in it, which when cached, gets 100% cache hits and lives forever.

2.Persistent Object Relational Caching

A Hibernate Session.load() for asingle object is about 1000 times faster from cache than from a
database.

A typical Hibernate query will return alist of IDs from the database, and then attempt to load each. If
Session.iterate() is used Hibernate goes back to the database to load each object.

Imagine a scenario where we execute a query against the database which returns a hundred 1Ds and
then load each one.

The query takes 20% of the time and the roundtrip loading takes the rest (80%). The database query
itself is 75% of the time that the operation takes. The proportion being sped up is thus 60% (75% *
80%).

The expected system speedup is thus:

/ ((1- .6) + .6/ 1000)
1/ (.4 + .006)
2.5 times system speedup

=Y

2.Web Page Caching

An observed speed up from caching aweb page is 1000 times. Ehcache can retrieve a page from its
SimplePageCachingFilter in afew ms.

Because the web page is the end result of a computation, it has a proportion of 100%.
The expected system speedup is thus:

/ ((1- 1) + 1/ 1000)
1/ (0 + .001)
1000 tinmes system speedup

[L

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

2 Introduction 5

2.Web Page Fragment Caching

Caching the entire page is a big win. Sometimes the liveness requirements vary in different parts of
the page. Here the SimplePageFragmentCachingFilter can be used.

Let's say we have a 1000 fold improvement on a page fragment that taking 40% of the page render
time.
The expected system speedup is thus:

/ ((1- .4) + .4/ 1000)
1/ (6 + .004)
1.6 tinmes system speedup

[L

2.1.4.3 Cache Efficiency

Inrea life cache entrie do not live forever. Some examples that come close are "static” web pages or
fragments of same, like page footers, and in the database realm, reference data, such as the currencies
in the world.

Factors which affect the efficiency of a cache are:
liveness
how live the data needs to be. The less live the more it can be cached

proportion of data cached

what proportion of the data can fit into the resource limits of the machine. For 32 bit Java
systems, there was a hard limit of 2GB of address space. While now relaxed, garbage
collection issues make it harder to go alot large. Various eviction algorithms are used to
evict excess entries.

Shape of the usage distribution

If only 300 out of 3000 entries can be cached, but the Pareto distribution applies, it may
be that 80% of the time, those 300 will be the ones requested. This drives up the average
request lifespan.

Read/Writeratio

The proportion of times datais read compared with how often it is written. Things such
as the number of rooms left in ahotel will be written to quite alot. However the details of
aroom sold are immutable once created so have a maximum write of 1 with a potentially
large number of reads.

Ehcache keeps these statistics for each Cache and each element, so they can be measured
directly rather than estimated.

2.1.4.4 Cluster Efficiency
Alsoinreal life, we generally do not find asingle server?

Assume around robin load balancer where each hit goes to the next server.

The cache has one entry which has a variable lifespan of requests, say caused by atimeto live. The
following table shows how that lifespan can affect hits and misses.

Server 1 Server 2 Server 3 Server 4
M M M M
H H H H
H H H H
H H H H

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

2 Introduction 6

H H H H

The cache hit ratios for the system as awhole are as follows:

Entry

Lifespan Hit Ratio Ht Ratio Hit Ratio Ht Ratio
in Hts 1 Server 2 Servers 3 Servers 4 Servers
2 1/ 2 0/ 2 0/ 2 0/ 2

4 3/4 2/ 4 1/ 4 0/4
10 9/ 10 8/ 10 7/ 10 6/ 10
20 19/ 20 18/ 20 17/ 20 16/ 10
50 49/ 50 48/ 50 47/ 20 46/ 50

The efficiency of acluster of standalone cachesis generally:

(Lifespan in requests - Nunber of Standal one Caches) / Lifespan in requests
Where the lifespan is large relative to the number of standalone caches, cache efficiency is not much
affected.

However when the lifespan is short, cache efficiency is dramatically affected.

(To solve this problem, Ehcache supports distributed caching, where an entry put in alocal cacheis
also propagated to other serversin the cluster.)

2.1.4.5 A cache version of Amdahl's law
From the above we now have:
1/ ((1 - Proportion Sped Up * effective cache efficiency) +
(Proportion Sped Up * effective cache efficiency)/ Speed up)
effective cache efficiency = cache efficiency * cluster efficiency

2.1.4.6 Web Page example

Applying this to the earlier web page cache example where we have cache efficiency of 35% and
average request lifespan of 10 requests and two servers:

cache efficiency = .35
cluster efficiency = .(10 - 1) / 10
=.9
ef fective cache efficiency = .35 * .9
= .315

/ ((1-1* .315) + 1 * ,315 / 1000)
1/ (.685 + .000315)
1.45 tinmes system speedup

What if, instead the cache efficiency is 70%,; a doubling of efficiency. We keep to two servers.

In i =

cache efficiency = .70
cluster efficiency = .(10 - 1) / 10
=.9
effective cache efficiency .70 * .9
. 63

/ ((1-1* .63) +1* .63/ 1000)
1/ (.37 + .00063)
2.69 tines system speedup

What if, instead the cache efficiency is 90%; a doubling of efficiency. We keep to two servers.

[L

cache efficiency = .90

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

2 Introduction

cluster efficiency = .(10 - 1) / 10
=.9

ef fective cache efficiency = .
= .81

/ ((1-1* .81 +1* .81/ 1000)

1/ (.19 + .00081)

5.24 tines system speedup

Why is the reduction so dramatic? Because Amdahl's law is most sensitive to the proportion of the
system that is sped up.

In i =

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

2 Introduction

©2011, Terracotta, Inc. » ALL RIGHTS RESERVED.

3 Getting Started 9

Getting Started

3.1 Getting Started
Firstly, if you have not downloaded Ehcache, you can download it here.

Ehcache can be used directly. It can also be used with the popular Hibernate Object/Relational tool.
Finally, it can be used for Java EE Servlet Caching.

This quick guide gets you started on each of these. The rest of the documentation can be explored for
a deeper understanding.

3.1.1 General Purpose Caching

» Make sure you are using a supported Javaversion.
» Place the Ehcache jar into your classpath.
» Ensurethat any libraries required to satisfy dependencies are also in the classpath.
 Configure ehcache.xml and placeit in your classpath.
» Optionally, configure an appropriate logging level.
See the Code Samples chapter for more information on direct interaction with ehcache.

3.1.2 Hibernate

» Perform the same steps asfor General Purpose Caching.
* Create cachesin ehcache.xml.
See the Hibernate Caching chapter for more information.

3.1.3 Distributed Caching
Ehcache supports distributed caching with two lines of configuration.

» Download the ehcache-distribution package.

» Add ehcache-core jar to your classpath

» Add ehcache-terracotta jar to your classpath

» Add a'terracotta element to your 'cache’ stanza(s) in ehcache.xml

» Add a'terracottaConfig' element to your ‘ehcache’ stanzain ehcache.xml.

» Seethe Distributed Caching With Terracotta chapter for more information.

3.1.4 Java EE Servlet Caching

» Perform the same steps asfor General Purpose Caching.
» Configure a cache for your web page in ehcache.xml.

» To cache an entire web page, either use SimplePageCachingFilter or create your own subclass of
CachingFilter

» To cache ajsp:Include or anything callable from a RequestDispatcher, either use
SimplePageFragmentCachingFilter or create a subclass of PageFragmentCachingFilter.

 Configure the web.xml. Declare the filters created above and create filter mapping associating
the filter witha URL.

See the Web Caching chapter for more information.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://www.terracotta.org/dl/ehcache-oss-sign-up
http://www.terracotta.org/dl/ehcache-oss-sign-up

3 Getting Started 10

3.1.5 RESTful and SOAP Caching with the Cache Server

» Download the ehcache-standalone-server from https://sourceforge.net/projects/ehcache/files/
ehcache-server.

 cdto the bin directory
* Typestart up. sh to start the server with the log in the foreground.

By default it will listen on port 8080, will have both RESTful and SOAP web services enabled,
and will use a sample Ehcache configuration from the WAR module.

» Seethe code samplesin the Cache Server chapter. Y ou can use Java or any other programming
language to the use the Cache Server.

See the Cache Server chapter for more information.

3.1.6 JCache style caching

Ehcache contains an early draft implementation of JCache contained in the net.sf.ehcache.jcache
package.

See the JSR107 chapter for usage.

3.1.7 Spring, Cocoon, Acegi and other frameworks
Usually, with these, you are using Ehcache without even realising it. The first stepsin getting more
control over what is happening are:

* discover the cache names used by the framework
* create your own ehcache.xml with settings for the caches and place it in the application
classpath.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

https://sourceforge.net/projects/ehcache/files/ehcache-server
https://sourceforge.net/projects/ehcache/files/ehcache-server

4 Dependencies 11

Dependencies

4.1 Java Requirements and Dependencies

4.1.1 Java Requirements
Current Ehcache releases require Java 1.5 and 1.6 at runtime.
Ehcache 1.5 requires Java 1.4.

The ehcache-monitor module, which provides management and monitoring, will work with Ehcache
1.2.3 but only for Java 1.5 or higher.

4.1.2 Mandatory Dependencies
Ehcache core 1.6 through to 1.7.0 has no dependencies.

Ehcache core 1.7.1 depends on SLF4J (http://www.slf4j.org), an increasingly commonly used
logging framework which provides a choice of concrete logging implementation. See the chapter on
Logging for configuration details.

Other modul es have dependencies as specified in their maven poms.

4.1.3 Maven Snippet
To include Ehcache in your project use:

<dependency>
<gr oupl d>net . sf . ehcache</ gr oupl d>
<artifactld>ehcache</artifactld>
<versi on>2. 3. 1</ ver si on>
<t ype>ponx/type>

</ dependency>

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://www.slf4j.org

5 Cache Concepts 12

Cache Concepts

5.1 Key Ehcache Concepts

5.1.1 Definitions

» cache-hit: When adata element is requested of the cache and the element exists for the given
key, it isreferrred to as a cache hit (or simply 'hit’).

» cache-miss: When adata element is requested of the cache and the element does not exist for the
given key, it isreferred to as a cache miss (or simply 'miss).

» system-of-record: The core premise of caching assumes that there is a source of truth for the

data. Thisis often referred to asa system-of-record (SOR). The cache acts as alocal copy of
dataretrieved from or stored to the system-of-record.

* SOR: See system-of-record.

5.1.2 Key Ehcache Classes

Ehcache consists of a CacheManager , which manages caches. Caches contain elements, which are
essentially name value pairs. Caches are physically implemented either in-memory, or on disk.

5.1.2.1 CacheManager
The CacheManager comprises Cacheswhich in turn comprise Elements.

Creation of, access to and removal of cachesis controlled by the CacheManager .

5.CacheManager Creation Modes
CacheManager supports two creation modes: singleton and instance.

5.Singleton Mode

Ehcache-1.1 supported only one CacheManager instance which was a singleton. CacheManager can
till be used in thisway using the static factory methods.

5.Instance Mode

From ehcache-1.2, CacheManager has constructors which mirror the various static create methods.
This enables multiple CacheManagers to be created and used concurrently. Each CacheM anager
requires its own configuration.

If the Caches under management use only the MemoryStore, there are no special considerations.
If Caches use the DiskStore, the diskStore path specified in each CacheManager configuration
should be unique. When anew CacheManager is created, a check is made that there are no other
CacheManagers using the same diskStore path. If there are, a CacheException isthrown. If a
CacheManager is part of acluster, there will also be listener ports which must be unique.

5.Mixed Singleton and Instance Mode

If an application creates instances of CacheManager using a constructor, and also calls a static create
method, there will exist a singleton instance of CacheManager which will be returned each time the
create method is called together with any other instances created via constructor. The two types will
coexist peacefully.

5.1.2.2 Ehcache

All cachesimplement the Ehcache interface. A cache has a name and attributes. Each cache contains
Elements.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://en.wikipedia.org/wiki/System_of_record

5 Cache Concepts 13

A Cachein Ehcache is analogous to a cache region in other caching systems.
Cache elements are stored in the Menor y St or e. Optionally they also overflow to abDi skSt or e.

5.1.2.3 Element
An element is an atomic entry in a cache. It has akey, avalue and arecord of accesses. Elements are

put into and removed from caches. They can also expire and be removed by the Cache, depending on
the Cache settings.

As of ehcache-1.2 thereisan API for Objectsin addition to the one for Serializable. Non-serializable
Objects can use all parts of Ehcache except for DiskStore and replication. If an attempt is made to
persist or replicate them they are discarded without error and with a DEBUG level 1og message.

The APIs areidentical except for the return methods from Element. Two new methods on Element:
getObjectValue and getKeyVaue are the only API differences between the Serializable and Object
APIs. This makesit very easy to start with caching Objects and then change your Objectsto
Seralizable to participate in the extra features when needed. Also alarge number of Java classes are
simply not Serializable.

5.1.3 Cache Usage Patterns

There are several common access patterns when using a cache. Ehcache supports the following
petterns:
» cache-aside (or direct manipulation)

 cache-as-sor (a combination of read-through and write-through or write-behind patterns)
* read-through

 write-through

write-behind (or write-back) []

5.1.3.1 cache-aside
Here, application code uses the cache directly.

This means that application code which accessesthe system-of-record (SOR) should consult the
cachefirst, and if the cache contains the data, then return the data directly from the cache, bypassing
the SOR.

Otherwise, the application code must fetch the data from the system-of-record, store the datain the
cache, and then return it.

When data is written, the cache must be updated with the system-of-record.
This resultsin code that often looks like the following pseudo-code:

public class MyDat aAccessd ass

{

private final Ehcache cache;
public MyDat aAccessd ass(Ehcache cache)

{
}

t his.cache = cache;

/* read sone data, check cache first, otherwi se read fromsor */
public V readSoneDat a(K key)

{

El ement el enment;
if ((element = cache.get(key)) !'=null) {

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

5 Cache Concepts 14

return el enent. get Val ue();

}

/1 note here you shoul d deci de whet her your cache

/1 will cache "nulls' or not

if (value = readDat aFronDataStore(key)) !'= null) {
cache. put (new El enent (key, val ue));

}

return val ue;

}

/* wite sone data, wite to sor, then update cache */
public void witeSoneData(K key, V val ue)

{
wri t eDat aToDat aSt or e(key, val ue);

cache. put (new El enent (key, val ue);
}

5.1.3.2 cache-as-sor

The cache-as-sor pattern implies using the cache as though it were the primary system-of-record
(SOR). The pattern delegates SOR reading and writing activies to the cache, so that application code
is absolved of this responsibility.

To implement the cache-as-sor pattern, use a combination of the following read and write patterns:

* read-through
 write-through or write-behind
Advantages of using the cache-as-sor pattern are:

* less cluttered application code (improved maintainability)

* easly choose between write-through or write-behind strategies on a per-cache basis (use only
configuration)

« alow the cache to solve the "thundering-herd" problem
Disadvantages are:

* lessdirectly visible code-path

5.1.3.3 read-through

The read-through pattern mimics the structure of the cache-aside pattern when reading data. The
differenceisthat you must implement the CacheEnt r yFact or y interface to instruct the cache
how to read objects on a cache miss, and you must wrap the Ehcache instance with an instance of
Sel f Popul at i ngCache.

Compare the appearance of the read-through pattern code to the code provided in the cache-aside
pattern. (The full exampleis provided at the end of this document that includes a read-through and
write-through implementation).

5.1.3.4 write-through

The write-through pattern mimics the structure of the cache-aside pattern when writing data. The
differenceisthat you must implement the CacheW i t er interface and configure the cache for write-
through or write-behind.

A write-through cache writes data to the system-of-record in the same thread of execution, therefore
in the common scenario of using a database transaction in context of the thread, the write to the
database is covered by the transaction in scope.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

5 Cache Concepts 15

More details (including configuration settings) can be found in the User Guide chapter on Write-
through and Write-behind Caching.

5.1.3.5 write-behind

The write-behind pattern changes the timing of the write to the system-of-record. Rather than writing
to the System of Record in the same thread of execution, write-behind queues the data for write at a
later time.

The consequences of the change from write-through to write-behind are that the data write using
write-behind will occur outside of the scope of the transaction.

This often-times means that a new transaction must be created to commit the data to the system-of-
record that is separate from the main transaction.

More details (including configuration settings) can be found in the User Guide chapter on Write-
through and Write-behind Caching.

5.1.3.6 cache-as-sor example
public class MyDat aAccessd ass

{

private final Ehcache cache;

publ i c MyDat aAccessd ass(Ehcache cache)

{
cache. regi sterCacheWiter(new MyCacheWiter());
this.cache = new Sel f Popul ati ngCache(cache);

}

/* read sone data - notice the cache is treated as an SOR

* the application code sinply assunmes the key will always be avail abl e

*/
public V readSoneDat a(K key)
{
return cache. get (key);
}

/* wite sonme data - notice the cache is treated as an SOR, it is
* the cache's responsibility to wite the data to the SOR

*/
public void witeSoneData(K key, V val ue)
{
cache. put (new El enent (key, val ue);
}
/**

* | npl enment the CacheEntryFactory that allows the cache to provide
* the read-through strategy

*/

private class MyCacheEntryFactory inpl enents CacheEntryFactory

{
public Object createEntry(Ohject key) throws Exception

{
}

return readDat aFr onDat aSt or e(key) ;

}

/**

* | nplenment the CacheWiter interface which allows the cache to provide
* the wite-through or wite-behind strategy.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

5 Cache Concepts 16

*/
private class MyCacheWiter inplenents CacheWiter
public CacheWiter clone(Ehcache cache) throws C oneNot SupportedExcepti on;

{

}
public void init() { }

voi d di spose() throws CacheException { }
void wite(El enment elenent) throws CacheException;

t hr ow new C oneNot Support edExcepti on();

{
wri t eDat aToDat aSt or e(el enent. get Key(), el enent. getVal ue());
}
void witeAll (Collection<El ement> el enents) throws CacheException
{
for (Element elenment : elenments) {
wite(el ement);
}
}
voi d del ete(CacheEntry entry) throws CacheException
{
del et eDat aFr onDat aSt or e(el enent . get Key()) ;
}
voi d del eteAll (Coll ecti on<CacheEntry> entries) throws CacheException
{
for (Element elenment : elenments) {
del et e(el ement) ;
}
}

}

5.1.3.7 Copy Cache

A Copy Cache can have two behaviors: it can copy Element instances it returns, when copy OnRead
istrue and copy elementsit stores, when copyOnW i t e to true.

A copy on read cache can be useful when you can't let multiple threads access the same Element
instance (and the value it holds) concurrently. For example, where the programming model doesn't
alow it, or you want to isolate changes done concurrently from each other.

Copy on write also lets you determine exactly what goes in the cache and when. i.e. when the value
that will bein the cache will be in state it was when it actually was put in cache. All mutations to the
value, or the element, after the put operation will not be reflected in the cache.

A concrete example of acopy cacheis a Cache configured for XA. It will always be configured
copyOnRead and copyOnW i t e to provide proper transaction isolation and clear transaction
boundaries (the state the objects are in at commit time is the state making it into the cache).

By default, the copy operation will be performed using standard Java object serialization. We
do recognize though that for some applications this might not be good (or fast) enough. Y ou can
configure your own Copy St r at egy which will be used to perform these copy operations. For
example, you could easily implement use cloning rather than Serialization.

More information on configuration can be found here: copyOnRead and copyOnWrite cache
configuration.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

6 Configuration 17

Configuration

6.1 Cache Configuration

Caches can be configured in Ehcache either declaratively, in xml, or by creating them
programmatically and specifying their parametersin the constructor.

While both approaches are fully supported it is generally a good ideato separate the cache
configuration from runtime use. There are also these benefits:

* ltiseasy if you have al of your configuration in one place. Caches consume memory, and disk
space. They need to be carefully tuned. Y ou can see the total effect in aconfiguration file. You
could do this code, but it would not as visible.

» Cache configuration can be changed at deployment time.
» Configuration errors can be checked for at start-up, rather than causing a runtime error.
This chapter covers XML declarative configuration.
Ehcache is redistributed by lots of projects. They may or may not provide a sample Ehcache XML

configuration file. If oneis not provided, download Ehcache from http://ehcache.org. It, and the
ehcache.xsd is provided in the distibution.

6.1.1 Dynamically Changing Cache Configuration
After a Cache has been started its configuration is not generally changeable. However, since Ehcache
2.0, certain aspects of cache configuration can modified dynamically at runtime, namely:

» timeToLive

» timeToldle

» maxElementsinMemory

» maxElementsOnDisk

* memory store eviciton policy

» CacheEventListeners can be added and removed dynamically []
Note that the et er nal attribute, when set to "true", overridest i neToLi ve andti meTol dl e so that
no expiration can take place.
This example shows how to dynamically modify the cache configuration of an already running cache:

Cache cache = manager. get Cache("sampl eCache");
CacheConfiguration config = cache. get CacheConfi guration();
confi g. set Ti neTol dl eSeconds(60) ;

confi g. set Ti neTolLi veSeconds(120) ;

confi g. set MaxEl enment sl nMenor y(10000) ;

confi g. set MaxEl ement sOnDi sk(1000000) ;

Dynamic cache configurations can a so be frozen to prevent future changes:

Cache cache = manager. get Cache("sanpl eCache");
cache. di sabl eDynam cFeat ures();

6.1.2 Memory Based Cache Sizing (Ehcache 2.5 and higher)

Historically Ehcache has only permitted sizing of caches by maxElementsinMemory for the the
OnHeap Store and maxElementsOnDisk for the DiskStore. The OffHeap Store introduced sizing in
terms of memory use.

From Ehcache 2.5, we are extending sizing based on bytes consumed to all stores.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://ehcache.org

6 Configuration

The new cache attributes are:
* maxBytesOnHeap
» maxBytesOffHeap (formerly maxMemoryOffHeap)
» maxBytesOnDisk
Size may be expressed in bytes using the convention for specifying -Xmx (e.g. 200k, 30m, 5g

etc.)

18

For added simplicity you can also specify these attributes at the ehcache level, which then
applies them to the whole CacheManager, leaving each cache to share in one large pool of
memory.

If you specify a CacheManager wide sizes, you can also use percentages at the cache level. e.g
maxBytesOnHeap="20%".

For compl eteness we also add cache pinning and rules for cache-level configuration to override
CacheManager level configuration.

6.1.2.1 Example Configuration
An exampleis shown below. It allocates 1GB on heap and 4GB off heap at the CacheManager level.

It also demonstrates some finer points which we will conver in the following sections.

<ehcache maxByt esOnHeap="1g"

<cache nane="explicitlyAllocatedCachel"
max Byt esOnHeap="50n{
maxByt esOf f Heap="200nt
ti meToLi veSeconds="100"

</ cache>

<cache nane="explicitlyAll ocatedCache2"
maxByt esOnHeap="10%
maxByt esOf f Heap="200nt
ti meToLi veSeconds="100"

</ cache>

<cache nane="autonati cal | yAl | ocat edCachel"
ti meToLi veSeconds="100"
overfl owToDi sk="true"

</ cache>

<cache nane="autonati cal | yAl | ocat edCache2"
ti meToLi veSeconds="100"

</ cache>

<cache nane="pi nnedCache"
ti meToLi veSeconds="100"
<pi nni ng storage="i nMenory"/>

</ cache>

</ ehcache>

6.1.2.2 CacheManager versus Cache level configuration

Caches without specific configuration participate in the general storage pools. And caches with
specific configuration take either a fixed amount (e.g. 200m) or a percentage (e.g. 5%).

maxByt esOf f Heap="4g"

maxByt esOnDi sk="100g" >

When managing storage out of CacheManager level pools, element are evicted across all caches using
an LRU (possibly clock based) algorithm.

The CacheManager level storage pool attributes are:
* maxBytesOnHeap="size"

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

6 Configuration 19

» maxBytesOff Heap="size"
* maxBytesOnDisk="size"
where size isthe Java-Xmx syntax. e.g. 49

If astoreis configured using a CacheManager level pool, the maxElements form of configuration
cannot be used.

6.Cache level overrides

There will be times when the developer knows more about the tuning of each cache than and can
outperform CacheManager level tuning. In this case it is recommended to provide cache specific
configuration.

Cache specific configuration always overrides CacheManager alocations.
The Cache level storage pool attributes are:

* maxBytesOnHeap="size | %"

» maxBytesOffHeap="size | %"

* maxBytesOnDisk="size | %"

where size isthe Java-Xmx syntax. e.g. 4g and % is simply a positive number between 0 and
100. e.g. 5%

6.Overallocation Rules

To prevent overallocation of CacheManager level pools by cache level overrdies we perform a
number of checks on startup:
» We convert percentages to fixed amounts

» We then add the those to any other fixed allocations

* If the sum exceeds the CacheManager allocation, we throw an
I nval i dConfi gurati onExcepti on.

* |f the sum equals the CacheManager allocation, we issue a warning, as there will not be memory
left for caches without overrides

Overallocations can only be detected at configuration time. For this reason we do not permit
the use of max element count (e.g. maxElementsinMemory) configuration with CacheManager
storage pools.

6.1.2.3 Pinning of Caches and Elements in Memory

6.Pinning of Caches
Caches may be pinned using the new pinning sub-element:
<cache nane="pi nnedCache"
ti meToLi veSeconds="100"
<pi nni ng storage="onHeap | inMenory | inCache" />
</ cache>
Pinning means that cache Elements are never evicted due to space. They cache will continue to grow
as elements are added to it. Elements will only be evicted unless the Element has expired.
Pinning is possible at three different levels:
» onHeap - retain the elementsin the Java heap

* inMemory - retain the elementsin either the OnHeap or the Off Heap stores, depending on what
stores there are and how much is space is available in each.

* inCache - retain the elements in the cache. This allows further off loading to either the DiskStore
in a standalone cache, or the L2 in a Terracotta backed Distributed Ehcache.

The recommended use is reference data, where you always want the whole dataset in memory.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

6 Configuration 20

Pinning cannot be used with either maxElementsinMemory or maxBytesOnHeap - it is
unbounded.

Caution: It is possible to cause an OutOfMemory error with pinned caches. They may even look
like amemory leak in the application. They are meant to be a convenience. They should not be
used with potentially unbounded data sets.

6.Pinning of Elements
Some APIslike OpenJPA and Hibernate require pinning of specific Elements.
A new method on Element, Element.setPinned(truelfal se, onHeap|inMemory|inCache) has been

added. When a pinned Element is placed in the cache it will not be evicted from the On-Heap store.
Element level pinning is a noop when the whole cache is pinned.

6.1.3 Cache Warming for multi-tier Caches (Ehcache 2.5 and higher)

When a cache starts up, the On-Heap and Off-Heap stores are always empty. Ehcache provides
a BootstrapCachel.oader mechanism to overcome this. The BootstrapCachel oader is run before
the cacheis set to aive. If synchronous, loading compl etes before the CacheManager starts, or if
asynchronous, the CacheManager starts but loading continues agressively rather than waiting for
elements to be requested, which is alazy loading approach.

Replicated caches provide a boot strap mechanism which popul ates them. For example following is
the JGroups bootstrap cache loader:

<boot st rapCachelLoader Fact ory
cl ass="net. sf. ehcache. di stri bution.jgroups. JG oupsBoot st rapCachelLoader Fact ory"
properti es="boot strapAsynchronousl y=true"/>

We have two new bootstrapCachel oaderFactory implementations: one for standalone caches with
DiskStores, and one for Terracotta Distributed caches.

6.1.3.1 DiskStoreBootstrapCachelLoaderFactory
The DiskStoreBootstrapCachel oaderFactory |oads elements from the DiskStore to the On-Heap Store
and the Off-Heap store until either:

* the memory stores are full

« the DiskStore has been completely loaded

6.Configuration
The DiskStoreBootstrapCachel oaderFactory is configured as follows:
<boot st rapCachelLoader Fact ory

cl ass="net . sf. ehcache. st ore. Di skSt or eBoot st rapCachelLoader Fact ory"
properti es="boot strapAsynchronousl y=true"/>

6.1.3.2 TerracottaBootstrapCachelLoaderFactory
The TerracottaBootstrapCachel oaderFactory |oads el ements from the Terracotta L2 to the On-Heap
Store and the Off-Heap store until either:

* the memory stores are full

* the L2 has been completely |oaded

The TerracottaBootstrapCachel oader uses knowledge of what Elements other L1sin the cluster
have to predict the likely hot set for thisL1. If thisL1 isthefirst L1 in the cluster, then thereis
no guidance. The loader will then only load Elements from the L2 if the combined capacity of the
memory stores exceeds 50% of the size in memory of the cacheinthe L2.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

6 Configuration 21

6.Configuration
The TerracottaStoreBootstrapCachel oaderFactory is configured as follows:
<boot st rapCachelLoader Fact ory

cl ass="net. sf. ehcache. store. Terracott aSt or eBoot st r apCacheLoader Fact ory"
properti es="boot strapAsynchronousl y=true"/>

6.1.4 copyOnRead and copyOnWrite cache configuration

A cache can be configured to copy the data, rather than return referenceto it on get or put. Thisis
configured using the copyOnRead and copyOnW i t e attributes of cache and defaultCache elements
in your configuration or programmeatically as follows:

CacheConfiguration config = new CacheConfi guration("copyCache", 1000).copyOnRead(tr
Cache copyCache = new Cache(config);

The default configuration will be false for both options.

In order to copy elements on put()-like and/or get()-like operations, a CopyStrategy is being

used. The default implementation uses serialization to copy elements. Y ou can provide your own
implementation of net . sf. ehcache. st or e. conpound. CopySt r at egy likethis:

<cache nane="copyCache"

maxEl enment sl nMenor y="10"

eternal ="f al se"

ti meTol dl eSeconds="5"

ti meToLi veSeconds="10"

over fl owToDi sk="f al se"

copyOnRead="t rue"

copyOnWite="true">

<copyStrategy class="com conpany. ehcache. M\yCopyStr at egy"/ >

</ cache>

Per cache, asingle instance of your Copy St r at egy will be use, hence your implementation of
CopyStrategy.copy(T): T hasto be thread-safe.

6.1.5 Special System Properties

6.1.5.1 net.sf.ehcache.disabled

Setting this System Property to t r ue disables caching in ehcache. If disabled no elements will be
added to acache. i.e. puts are silently discarded.

e.g.java -Dnet. sf. ehcache. di sabl ed=t r ue in the Java command line.

6.1.5.2 net.sf.ehcache.use.classic.lru

Set this System property to t r ue to use the older LruMemoryStore implementation when LRU is
selected as the eviction policy.

Thisis provided for ease of migration.

e.g.java -Dnet. sf.ehcache. use. cl assi c. | ru=true inthe Javacommand line.

6.1.6 ehcache.xsd
Ehcache configuration files must be comply with the Ehcache XML schema, ehcache.xsd.
It can be downloaded from http://ehcache.org/ehcache.xsd.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://ehcache.org/ehcache.xsd

6 Configuration 22

6.1.7 ehcache-failsafe.xml

If the CacheManager default constructor or factory method is called, Ehcache looks for afile called
ehcache.xml in the top level of the classpath. Failing that it looks for ehcache-failsafe.xml in the
classpath. ehcache-failsafe.xml is packaged in the Ehcache jar and should always be found.

ehcache-failsafe.xml provides an extremely simple default configuration to enable usersto get started
before they create their own ehcache.xml.

If it used Ehcache will emit awarning, reminding the user to set up a proper configuration.
The meaning of the elements and attributes are explained in the section on ehcache.xml.

<ehcache>
<di skStore path="java.io.tnmpdir"/>
<def aul t Cache
maxEl enment s| nMenor y="10000"
eternal ="fal se"
ti meTol dl eSeconds="120"
ti meToLi veSeconds="120"
over f | owToDi sk="true"
maxEl enent sOnDi sk="10000000"
di skPersi stent="fal se"
di skExpi ryThr eadl nt er val Seconds="120"
menor ySt or eEvi cti onPol i cy="LRU'
/>
</ ehcache>

6.1.8 Update Checker

The update checker is used to see if you have the latest version of Ehcache. It is aso used to get non-
identifying feedback on the OS architectures using Ehcache.

To disable the check, do one of the following:

6.1.8.1 By System Property
- Dnet . sf. ehcache. ski pUpdat eCheck=t r ue

6.1.8.2 By Configuration

The outer ehcache element takes an updat eCheck attribute, which is set to false as in the following
example.

-->

<ehcache xm ns: xsi="http://ww. w3. org/ 2001/ XM_Schena-i nst ance"
xsi : noNanmespaceSchenalLocati on="ehcache. xsd"
updat eCheck="f al se" nonitoring="aut odetect"
dynam cConfig="true">

6.1.9 ehcache.xml and other configuration files

Prior to ehcache-1.6, Ehcache only supported ASCII ehcache.xml configuration files. Since
ehcache-1.6, UTF8 is supported, so that configuration can use Unicode. As UTF8 is backwardly
compatible with ASCII, no conversion is necessary.

If the CacheManager default constructor or factory method is called, Ehcache looks for afile called
ehcache.xml in the top level of the classpath.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

6 Configuration 23

The non-default creation methods allow a configuration file to be specified which can be called
anything.

One XML configuration is required for each CacheManager that is created. It is an error to use the
same configuration, because things like directory paths and listener ports will conflict. Ehcache
will attempt to resolve conflicts and will emit awarning reminding the user to configure a separate
configuration for multiple CacheManagers with conflicting settings.

The sample ehcache.xml isincluded in the Ehcache distribution. It contains full commentary required
to configure each element. Further information can be found in specific chaptersin the Guide.

It can also be downloaded from http://ehcache.org/ehcache.xml.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://ehcache.org/ehcache.xml

7 Storage Options 24

Storage Options

7.1 Storage Options
Ehcache has three stores:

* aMemoryStore
» an OffHeapStore (BigMemory, Enterprise Ehcache only) and
» aDiskStore (two versions: open source and Ehcache Enterprise)

7.1.1 Memory Store

The Menor y St or e isaways enabled. It is not directly manipulated, but is a component of every
cache.
 Suitable Element Types
All Elements are suitable for placement in the MemoryStore.

It has the following characteristics:

o Safety
Thread safe for use by multiple concurrent threads.

Tested for memory leaks. See MemoryCacheT est#testMemoryL eak. This test passes for
Ehcache but exploits a number of memory leaksin JCS. JCS will give an OutOfMemory
error with adefault 64M in 10 seconds.

» Backed By JDK
LinkedHashMap The Menor y St or e for JDK 1.4 and JDK 5 it is backed by an extended
LinkedHashMap. This provides a combined linked list and a hash map, and isideally suited
for caching. Using this standard Java class simplifies the implementation of the memory
cache. It directly supports obtaining the least recently used element.

» Fast
The memory store, being all in memory, is the fastest caching option.

7.1.1.1 Memory Use, Spooling and Expiry Strategy

All caches specify their maximum in-memory size, in terms of the number of elements, at
configuration time.

When an element is added to a cache and it goes beyond its maximum memory size, an existing
element is either deleted, if overflowToDisk isfalse, or evaluated for spooling to disk, if
overflowToDisk istrue. In the latter case, acheck for expiry iscarried out. If it is expired it

is deleted; if not it is spooled. The eviction of an item from the memory storeis based on the
MemoryStoreEvictionPolicy setting specified in the configuration file.

memoryStoreEvictionPolicy is an optional attribute in ehcache.xml introduced since 1.2. Legal values
are LRU (default), LFU and FIFO.

LRU, LFU and FIFO eviction policies are supported. LRU isthe default, consistent with all earlier
releases of ehcache.
» Least Recently Used (LRU) - Default

The eldest element, isthe Least Recently Used (LRU). The last used timestamp is updated when
an element is put into the cache or an element is retrieved from the cache with a get call.

» LessFrequently Used (LFU)

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://java.sun.com/j2se/1.4.2/docs/api/
http://java.sun.com/j2se/1.4.2/docs/api/

7 Storage Options 25

For each get call on the element the number of hitsis updated. When aput call is made for a new
element (and assuming that the max limit is reached for the memory store) the element with least
number of hits, the Less Frequently Used element, is evicted.

« First In First Out (FIFO)

Elements are evicted in the same order as they comein. When a put call is made for a new
element (and assuming that the max limit is reached for the memory store) the element that was
placed first (First-In) in the store is the candidate for eviction (First-Out).

For all the eviction policiesthere are d'so put Qui et and get Qui et methods which do not
update the last used timestamp.

When thereisaget or aget Qui et on an element, it is checked for expiry. If expired, itis
removed and null is returned.

Note that at any point in time there will usually be some expired elements in the cache. Memory
sizing of an application must always take into account the maximum size of each cache. Thereis
a convenience method which can provide an estimate of the size in bytes of the Menor ySt or e.
See calculatelnMemorySize(). It returns the serialized size of the cache. Do not use this method
in production. It isvery slow. It is only meant to provide a rough estimate.

The aternative would have been to have an expiry thread. Thisis atrade-off between lower
memory use and short locking periods and cpu utilisation. The design isin favour of the latter.
For those concerned with memory use, simply reduce the maxEl enent sl nMenory.

7.1.2 Off-Heap Store

Terracotta BigMemory is an add-on to Enterprise Ehcache that permits caches to use an additional
type of memory store outside the object heap.

This off-heap store, which is not subject to Java GC, is 100 times faster than the DiskStore and allows
very large caches to be created (we have tested this up to 350GB).

Because off-heap datais stored in bytes, there are two implications:

» Only Serializable cache keys and values can be placed in the store, similar to DiskStore.

 Seridization and deserialization take place on putting and getting from the store. This means that
the off-heap store is slower in an absolute sense (around 10 times slower than the MemoryStore),
but this theoretical difference disappears due to two effects:

 the MemoryStore holds the hottest subset of data from the off-heap store, already in
deserialized form

« when the GC involved with larger heaps is taken into account, the off-heap store is faster on
average

7.1.2.1 Suitable Element Types

Only El ement swhich are Seri al i zabl e can be placed in the Of f HeapMenor y St or e. Any hon
serializable EI ement s which attempt to overflow to the Of f HeapMenor y St or e will be removed
instead, and a WARNING level log message emitted.

See the Off-Heap Store chapter for more details.

7.1.3 DiskStore
The Di skSt or e provides adisk spooling facility.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://ehcache.org/apidocs/net/sf/ehcache/Cache.html#calculateInMemorySize%28%29
http://www.terracotta.org/bigmemory?src=ehcache_off_heap_store

7 Storage Options 26

7.1.3.1 Di skSt or es are Optional

The diskStore element in ehcache.xml is now optional (as of 1.5). If al caches use only

Menor y St or es, then thereis no need to configure a diskStore. This simplifies configuration, and uses
less threads. It is also good where where multiple CacheManagers are being used, and multiple disk
store paths would need to be configured.

If one or more caches requires a DiskStore, and none is configured, java.io.tmpdir will be used and a
warning message will be logged to encourage explicity configuration of the diskStore path.

7.Turning off disk stores
To turn off disk store path creation, comment out the diskStore element in ehcache.xml.
Theehcache- f ai | saf e. xnl configuration uses adisk store. Thiswill remain the case so asto not

affect existing Ehcache deployments. So, if you do not wish to use a disk store make sure you specify
your own ehcache.xml and comment out the diskStore element.

7.1.3.2 Suitable Element Types

Only El enent swhich are Seri al i zabl e can be placed in the DiskStore. Any non serializable
El ement swhich attempt to overflow to the Di skSt or e will be removed instead, and a WARNING
level log message emitted.

7.1.3.3 Enterprise DiskStore
The commercial version of Ehcache 2.4 introduced an upgraded disk store. Improvements include:

» Upgraded fragmentation control/management to be the same as offheap
» No Heap used for fragmentation management or keys

» Much more predictable write latency up to caches over half aterabyte.
e SSD aware and optimised.

Throughput is approximately 110,000 operations/s which trang ates to around 60M B/sec on a
10k rpm hard drive with even higher rates on SSD drives, for which the Disk

7.1.3.4 Storage

7.Files

The disk store creates adata file for each cache on startup called " cache name.data’. If the
Di skSt or e is configured to be persistent, an index file called " cache name.index" is created on
flushing of the Di skSt or e either explicitly using Cache. f | ush or on CacheManager shutdown.

7.Storage Location

Files are created in the directory specified by the diskStore configuration element. The diskStore
configuration for the ehcache-failsafe.xml and bundled sample configuration file ehcache.xml is
"javaio.tmpdir", which causes files to be created in the system's temporary directory.

7. diskStore Element

Thedi skSt or e element is has one attribute called pat h. --- diskSore path="java.io.tmpdir"/ ---
Legal vauesfor the path attibute are legal file system paths. e.g.for Unix

/ hone/ appl i cati on/ cache
The following system properties are al'so legal, in which case they are translated:

* user.home - User's home directory
e user.dir - User's current working directory
* javaio.tmpdir - Default temp file path

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

7 Storage Options 27

» ehcache.disk.store.dir - A system property you would normally specify on the command line e.g.
java-Dehcache.disk.store.dir=/u0l/myapp/diskdir ...

Subdirectories can be specified below the system property e.g.
java.io.tnpdir/one

becomes, on a Unix system
[t mp/ one

7.1.3.5 Expiry

One thread per cache is used to remove expired elements. The optional attribute

di skExpi ryThr eadl nt er val Seconds setsthe interval between runs of the expiry thread.
Warning: setting thisto alow value is not recommended. It can cause excessive Di skSt or e locking
and high cpu utilisation. The default value is 120 seconds.

7.1.3.6 Eviction

If the maxEl ement sOnDi sk attribute is set, elements will be evicted from the Di skSt or e when
it exceeds that amount. The LFU algorithm is used for these evictions. It is not configurable to use
another algorithm.

7.1.3.7 Serializable Objects

Only Serializable objects can be stored inaDi skSt or e. A NotSerializableException will be thrown
if the object isnot serializable.

7.1.3.8 Safety
Di skSt or esarethread safe.

7.1.3.9 Persistence

Di skSt or e persistenceis controlled by the diskPersistent configuration element. If false or omitted,
Di skSt or eswill not persist between CacheManager restarts. The data file for each cache will be
deleted, if it exists, both on shutdown and startup. No data from a previous instance CacheManager
isavailable.

If diskPersistent istrue, the datafile, and an index file, are saved. Cache Elements are available to a
new CacheManager . This CacheManager may bein the same VM instance, or a new one.

The datafile is updated continuously during operation of the Disk Storeif over f | owToDi sk istrue.
Otherwise it is not updated until either cache. f | ush() iscalled or the cache is disposed.

In all casestheindex fileis only written when dispose is called on the Di skSt or e. This happens
when the CacheManager is shut down, a Cache is disposed, or the VM is being shut down. Itis
recommended that the CacheManager shutdown() method be used. See Virtual Machine Shutdown
Considerations for guidance on how to safely shut the Virtual Machine down.

When aDi skSt or e is persisted, the following steps take place:

* Any non-expired Elements of the Menor y St or e are flushed to the DiskStore
» Elements awaiting spooling are spooled to the datafile
» Thefreelist and element list are serialized to the index file

On startup the following steps take place:

» An attempt is made to read the index file. If it does not exist or cannot be read successfully, due
to disk corruption, upgrade of ehcache, change in JDK version etc, then the datafile is deleted
and the Di skSt or e starts with no Elementsin it.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://java.sun.com/j2se/1.4.2/docs/api/java/io/NotSerializableException.html
http://ehcache.org/apidocs/net/sf/ehcache/CacheManager.html#shutdown%28%29

7 Storage Options 28

 If theindex fileis read successfully, the freelist and element list are loaded into memory. Once
thisis done, the index file contents are removed. Thisway, if there is a dirty shutdown, when
restarted, Ehcache will delete the dirt index and datafiles.
* TheDi skSt or e starts. All datais available.
» Theexpiry thread starts. It will delete Elements which have expired.
These actions favour safety over persistence. Ehcache is a cache, not a database. If afile gets dirty,
all datais deleted. Once started there is further checking for corruption. When a get is done, if the
Element cannot be successfully derserialized, it is deleted, and null is returned. These measures
prevent corrupt and inconsistent data being returned.

» Fragmentation
Expiring an element frees its space on the file. This spaceis available for reuse by new elements.
The element is also removed from the in-memory index of elements.

» Serialization
Writes to and from the disk use ObjectlnputStream and the Java serialization mechanism.
Thisis not required for the MemoryStore. As aresult the DiskStore can never be asfast as the
MemoryStore.

Serialization speed is affected by the size of the objects being serialized and their type. It has
been found in the ElementTest test that:

» The serialization time for a Java object being alarge Map of String arrays was 126ms,

where the a serialized size was 349,225 bytes.

* The serialization time for a byte[] was 7ms, where the serialized size was 310,232 bytes
Byte arrays are 20 times faster to serialize. Make use of byte arrays to increase DiskStore
performance.

* RAMFS
One option to speed up disk storesisto use aRAM file system. On some operating systems there
are aplethora of file systems to choose from. For example, the Disk Cache has been successfully
used with Linux' RAMFS file system. Thisfile system simply consists of memory. Linux
presentsit as afile system. The Disk Cache treatsit like anormal disk - it isjust way faster. With
thistype of file system, object serialization becomes the limiting factor to performance.

» Operation of a Cache where overflowToDisk isfalse and diskPersistent istrue
In this configuration case, the disk will be written on f | ush or shut down.

The next time the cache is started, the disk store will initialise but will not permit overflow
from the MemoryStore. In all other respectsit acts like anormal disk store.

In practice this means that persistent in-memory cache will start up with al of its elements
on disk. As gets cause cache hits, they will be loaded up into the Menor y St or e. The oher
thing that may happen is that the elements will expire, in which case the Di skSt or e expiry
thread will reap them, (or they will get removed on a get if they are expired).

So, the Ehcache design does not |oad them all into memory on start up, but lazily loads
them as required.

7.1.4 Some Configuration Examples

These examples show how to allocate 8GB of machine memory to different stores. It assumes a data
set of 7GB - say for acache of 7M items (each 1kb in size).

Those who want minimal application response time variance (ie minimizing GC pause times), will
likely want all the cache to be off-heap.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://java.sun.com/j2se/1.4.2/docs/api/java/io/ObjectOutputStream.html

7 Storage Options 29

Assuming that 1GB of heap is heeded for the rest of the app, they will set their Java config as follows:

java - XnslG - Xmx1G - XX: naxDi r ect MenorySi ze=7G
And their Ehcache config as

<cache

maxEl emrent s| nMenor y=100

over fl owToOf f Heap="t rue"

maxMenor yOf f Heap="7G'

/>

Those who want best possible performance for a hot set of datawhile still reducing overall application
repsonse time variance will likely want a combination of on-heap and off-heap. The heap will be used
for the hot set, the offheap for the rest. So, for example if the hot set is 1M items (or 1GB) of the 7GB
data. They will set their Java config as follows

java - Xns2G - Xmx2G - XX: naxDi r ect MenorySi ze=6G
And their Ehcache config as

<cache

maxEl ement s| nMenor y=1M

over fl owToOf f Heap="t rue"

maxMenor yOf f Heap="6G'
>

This configuration will compare VERY favorably against the alternative of keeping the less-hot set in
a database (100x slower) or caching on local disk (20x slower).

Where pauses are not a problem, the whole data set can be kept on heap:

<cache
maxEl enent sl nMenory=1

over fl owToOXf f Heap="f al se"
>

Where latency isn't an issue overflow to disk can be used:
cache maxElementslnMemory=1M overflowToOffDisk="true" ... ---

7.1.5 Performance Considerations

7.1.5.1 Relative Speeds

Ehcache comeswith aMenor ySt or e and aDi skSt or e. The Menor y St or e iS approximately
an order of magnitude faster than the Di skSt or e. Thereason isthat the Di skSt or e incursthe
following extra overhead:

» Seridization of the key and value
 Eviction from the Menor y St or e using an eviction agorithm
* Reading from disk

Note that writing to disk is not a synchronous performance overhead becauseit is handled by a
separate thread.

7.1.5.2 Always use some amount of Heap

A Cache should alway have its maxi munsi ze attribute set to 1 or higher. A Cache with a maximum
size of 1 has twice the performance of adisk only cache, i.e. one where the maxi mnunsi ze isset to 0.
For this reason awarning will beissued if a Cache is created with a0 maxi nunsi ze.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

7 Storage Options 30

And when using the Offheap Store, frequently accessed elements can be held in heap in derserialized
form if an Onheap (configured with maxElementsinMemory) storeis used

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

8 Cache Consistency Options 31

Cache Consistency Options

8.1 Cache Consistency Options

The purpose of this chapter is to explain Distributed Ehcache's consistency models in terms of
standard distributed systems theory.

8.1.1 Ehcache Topologies

Ehcache is available with the following clustered caching topol ogies:

» Standalone - the cached data set is held in the application node. Any other application nodes
are independent with no communication between them. If standalone caching is being used
where there are multiple application nodes running the same application, then thereis Weak
Consistency between them. Indeed they will only reflect the same values for immutabl e data or
after the time to live on an Element has completed and the Element needs to be rel oaded.

* Replicated - the cached data set is held in each application node and datais copied or invalidated
across the cluster without locking. Replication can be either asynchronous or synchronous, where
the writing thread blocks while progagation occurs. The only consistency mode available in this
topology is Weak Consistency.

 Didtributed Ehcache - the datais held in a Terracotta Server Array ("SA") with a subset of
recently used data held in each application cache node.

The distributed topology supports avery rich set of consistency modes which will be explored in this
chapter.

8.1.2 Server Side Consistency

L eaving aside the issue of data also held in the Ehcache nodes, let us look at the server side
consistency of the Terracotta Server Array.

8.1.2.1 Server Deployment Topology

Large datasets are handled with partitions which are managed automatically using a consistent
hashing algorithm once a set of "stripes’ are defined in the tcconfig. Thereis no dynamic resizing of
clusters, so the consistenct hash always resolves to the same stripe.

The TSA istypically deployed with a pair of servers per partition of data, which is known in the
tcconfig as a Mirror Group.

A mirror group has an active server which handles all requests for that partition and a passive or warm
standby which does not service any requests. The active server propagates changes to the passive
server.

In the language of consistency protocols, the active and passive are replicas - they should contain the
same data.

8.1.2.2 How writes are written
Regardless of the consistency model being used, data is written to the TSA the same way.

» Within an Ehcache node, awrite is done to an in-process Transaction Buffer (a
LinkedBlockingQueue). Within the Java process the write is thread-safe. Any local threadsin
Ehcache A will have immediate visibility of the change.

» When awrite hits the Transaction Buffer, a notify occurs, and the Transaction Buffer initiates
sending the write asynchronously to the Terracotta Server Array. The write staysin the
Transaction Buffer until an acknowledgement from the TSA has been received.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

8 Cache Consistency Options 32

» Consistent hashing is used to identify which stripe in the TSA to write to. The client maintains
knowledge of which replicaisthe Active server using an election protocol. The write is doneto
the Active server. The Active server has knowledge of the tcconfig and knows to replicate the
change to the passive. The write is then written to the Passive. The passive then acknowledges
the write to the Active, the Active then acknowledges the write to the Ehcache node. Once
received, the write is removed from the Transaction Buffer.

8.1.2.3 Restating in terms of Quorum based replicated-write protocols
To use the terminology from Gifford (1979) a storage system has N storage replicas. A writeisaW.
Areadisan R.

The server side storage system will be strongly consistent if:

« R+W>N.
« W>N/2
In Terracotta, there is one Active and one Passive. The acknowledgement is not sent until al
have been written to. We always read from only one replica, the Active.
SO, R=1,W=2,N=2.
Substituing thetermsof R+ W > N, weget 1 + 2> 2, which isclearly true.
Andfor W > N/2weget 2> 2/2 =>2>1whichisclearly true.

Therefore we are strongly consistent server side.

8.1.3 Client-Side Consistency

Because datais aso held in Ehcache nodes, and Ehcache nodes are what application code interact
with, there is more to the story than consistency in the TSA.

Werner Vogel's seminal Eventually Consistent paper presented standard terms for client-side
consistency and away of reasoning about whether that consistency can be achieved in a distributed
system. This paper in turn referenced Tannenbaum's Distributed Systems: Principles and Paradigms
(2nd Edition).

He was popularising research work done on Bayou, a database system. See Page 290 of Distributed
Systems, Principles and Paradigms by Tannenbaum and VVan Steen for detailed coverage of this
material.

8.1.3.1 Model Components

Before explaining our consistency modes, we need to expain the standard components of the the
reference model which is an abstract model of adistributed system that can be used for studying
interactions.

» A storage system. The storage system consists of data stored durably in one server or multiple
servers connected via a network. In Ehcache durability is optional and the storage system might
simply be in memory.

» Client Process A. Thisis aprocess that writes to and reads from the storage system.

» Client Processes B and C. These two processes are independent of process A and write to and
read from the storage system. It isirrelevant whether these are really processes or threads within
the same process; what isimportant is that they are independent and need to communicate to
share information. Client-side consistency has to do with how and when observers (in this case
the processes A, B, or C) see updates made to a data object in the storage systems.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://www.amazon.com/Distributed-Systems-Principles-Paradigms-2nd/dp/0132392275/ref=dp_ob_title_bk
http://www.amazon.com/Distributed-Systems-Principles-Paradigms-2nd/dp/0132392275/ref=dp_ob_title_bk

8 Cache Consistency Options 33

8.1.3.2 Mapping the Model to Distributed Ehcache
The model maps to Distributed Ehcache as follows:

 thereisaTerracotta Server Array ("TSA") which isthe 'storage system'

* there are three nodes connected to the TSA: Ehcache A, B and C, mapping to the processesin the
standard model

e a"write" in the standard model isa"put" or "remove" in Ehcache.

8.1.3.3 Standard Client Side Consistency Modes

It then goes on to define the following consistencies where process A has made an update to a data
object:

» Strong consistency. After the update completes, any subsequent access (by A, B, or C) will
return the updated value.

» Weak consistency. The system does not guarantee that subsequent accesses will return the
updated value.

» Eventual consistency. Thisis a specific form of weak consistency; the storage system guarantees
that if no new updates are made to the object, eventually all accesses will return the last updated
value. If no failures occur, the maximum size of the inconsistency window can be determined
based on factors such as communication delays, the load on the system, and the number of
replicas involved in the replication scheme.

Within eventual consistency there are anumber of desirable properties:

» Read-your-writes consistency. Thisis an important model where process A, after it has updated
adataitem, always accesses the updated value and will never see an older value. Thisis a special
case of the causal consistency model.

» Session consistency. Thisisa practical version of the previous model, where a process
accesses the storage system in the context of a session. Aslong as the session exists, the system
guarantees read-your-writes consistency. If the session terminates because of a certain failure
scenario, a new session needs to be created and the guarantees do not overlap the sessions.

» Monotonic read consistency. If a process has seen a particular value for the object, any
subsequent accesses will never return any previous values.

» Monotonic write consistency. In this case the system guarantees to serialize the writes by the
same process. Systems that do not guarantee this level of consistency are notoriously hard to
program.

Finaly, in eventual consistency, the period between the update and the moment when it is
guaranteed that any observer will always see the updated value is dubbed the inconsistency
window.

8.1.4 Consistency Modes in Distributed Ehcache

8.1.4.1 Strong Consistency
In the distributed cache, strong consistency is configured as follows:

<cache nane="sanpl eCachel"

/>

<terracotta consistency="strong" />
</ cache>

We will walk through how awrite is done and show that it is strongly consistent.

1 A thread in Ehcache A performs awrite.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

8 Cache Consistency Options 34

2 Beforethewriteis done, awrite lock is obtained from the Terracotta Server (storage system).
The write lock is granted only after all read locks have been surrendered.

3 Thewrite is done to an in-process Transaction Buffer. Within the Java process the writeis
thread-safe. Any local threadsin Ehcache A will have immediate visibility of the change.

4 Once the change has hit the Transaction Buffer which is a LinkedBlockingQueue, a notify
occurs, and the Transaction Buffer initiates sending the write (update) asynchronously to the
Terracotta Server Array (storage system).

5 The Terracotta Server is generally configured with multiple replicas forming a Mirror Group.
Within the mirror group there is an Active server, and one or more Passive servers. The write
isto the Active server. The Active server does not acknowledge the write until it has written it
to each of the passive serversin the Mirror Group. It then sends back an acknowledgement to
Ehcache A which then del etes the write from the Transaction Buffer.

6 A read or write request from Ehcache A isimmediately available because aread lock is
automatically granted when awrite lock has already been acquired. A read or write request in
Ehcache B or C requires the acquisition of aread or write lock respectively which will block
until step 5 has occurred, and in addition, if you have a stale copy localy it is updated first.
When the lock is granted the writeis present in all replicas. Because Ehcache also maintains
copies of Elements in-process in potentially each node, if any of Ehcache A, B or C have a copy
they are also updated before Step 5 completes.

Note: Thisanalysis assumesthat if the nonst op isbeing used, it is configured with the default of
Exception, so that onacl ust er O f | i ne event no cache operations happen locally. (Nonstop allows
fine-grained tradeoffs to be made in the event of a network partition, including dropping consistency)

8.1.4.2 Eventual Consistency

Distributed Ehcache may be configured with consi st ency="event ual ". There

isalso abulk loading mode which may additionally be set programmatically with

set NodeBul kLoadEnabl ed(bool ean) . Finaly thereis UnlockedReadsView, a CacheDecor at or
that can be created like a view on a cache which shows the latest write visible to the local Ehcache
node without respect for any locks.

Regardless, Ehcache B and C will eventually see the change made by Ehcache A. This occurs as
follows:

» With no partitions or interruptions, B and C will see the change generally within 5ms. The
inconsi stency window is therefore usually less than 5ms.

» If aGC happens on a Terracotta Server Array node, or Ehcache A or B, the inconsistency
window isincreased by the length of the GC.

» set NodeBul kLoadEnabl ed(true) changesthings so that the Terracotta Server Array does
not update Ehcache B and C. Instead they are set to a5 minute fixed TTL. The inconsistency
window thus increases to 5 minutes plus the above.

If anetwork partition occurs, the only configurable option isto discard on rejoin, so once this happens
Ehcache A or B gets the write.

From the perspective of other threadsin Ehcache A, all writes are thread-safe.

In al modes the happens-before requirement of the Java Memory Model is honored. As aresult the
following istrue:

» A thread in Ehcache A will see any writes made by another thread. => Read your writes
consistency.

» Monotonic Read Consistency in Ehcache A istrue.
» Monotonic Write Consistency is Ehcache A istrue.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

8 Cache Consistency Options 35

It should be noted that desirable characteristics of eventual consistency are from the point of view of
Ehcache A. From the context of aweb application, if order for an end user interacting with awhole
application to see this behaviour, either:

* sticky sessions should be used, so that the use interacts with the same node (i.e. Ehcache A) for
each step. If an application node falls over, a new session will be established. The time between
the last write, failure, detection by the load balancer and allocation to a new application node will
take longer than the 5ms plusthat it takes for all Ehcache nodes in the cluster to get the write. So
when the new application node is switched to, eventual consistency has occurred and no |oss of
consistency is observed by the user.

* do not use sticky sessions but rely on the time gap between aclick or submit and the next one
in aclick path being much larger than the 5ms plus that it takes for other nodes to become
eventually consistent. In an Internet context the user is sufficiently distant from the server so
that the response timeis at least an order of magnitude greater than the inconsistency window.
Probabilistically it istherefore unlikely that a user would see inconsistency.

8.1.5 Other Safety Features

Ehcache offers arich set of data safety features. In this section we look at some of the others and how
they interact with the st r ong and event ual consistency.

8.1.5.1 CAS Cache Operations
We support three CAS (#Compare and Swap#) operations:

e cache.replace(El emrent old, Element new)

e cache. put| f Absent (El enent)

* cache.renove(El enent)
In each case the Terracotta Server Array will only perform the write if the old value is the same as
that presented. Thisis guaranteed to be done atomically as required by the CAS pattern.

CAS achieves strong consistency between A, B and C. The key differenceisthat it achievesit with
optimistic locking rather than pessimistic locking. Aswith all optimistic locking approaches, the
operations are not guaranteed to succeed. If someone else got in and changed the Element ahead of
you, the methods will return f al se. You should read the new value, take that into account in your
business logic and then retry your mutation.

CAS will work with both st r ong and event ual consistency modes, but because it does not use the
locksit does not need st r ong.

8.1.6 Use Cases And Recommended Practices

In this section we look at some common use cases and give advice on what consistency and safety
options should be used. These serve as a useful starting point for your own analysis.

We welcome commentary and further discussion on these use cases. Please post to the ehcache
mailing list or post your questions on the forums.

8.1.6.1 Shopping Cart - optimistic inventory

8.Problem
A user adds itemsto a shopping cart. Do not decrement inventory until checkout.

8.Solution
Use eventual consistency.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

8 Cache Consistency Options 36

8.1.6.2 Shopping Cart with Inventory Decrementing

8.Problem

A user adds items to a shopping cart. Thereis limited inventory and the business policy isthat the first
user to add the inventory to their shopping cart can buy it. If the user does not proceed to checkout a
timer will release the inventory back. As aresult, inventory must be decremented at the time the item
is added to the shopping cart.

8.Solution
Use strong consistency with one of:

+ explicit locking
* |oca transactions
e XA transactions

The key thing here is that two resources have to be updated: the shopping cart, which is only visible to
one user, and on it's own has low consistency requirements, and an inventory which is transactiional
in nature.

8.1.6.3 Financial Order Processing - write to cache and database

8.Problem

An order processing system sends a series of messages in aworkflow, perhaps using Business Process
Management software. The system involves multiple servers and the next step in the processing of an
order may occur on any server. Let's say there are 5 steps in the process.

To avoid continual re-reading from a database, the processing results are also written to a distributed
cache. The next step could execute in afew ms to minutes depending on what other orders are going
through and how busy the hardwareiis.

8.Solution
Use strong consistency plus XA transactions.

Because the execution step cannot be replayed once completed, and may be under the control of a
BPM, it is very important that the change in state gets to the cache cluster. Synchronous writes can
also be used (at a high performance cost) so that the put to the cache does not return until the data has
been applied. If an executing node failed before the data was transferred, the locks would still bein
place preventing readers from reading stale data, but that will not help the next step in the process.

XA transactions are needed because we want to keep the database and the cache in sync.

8.1.6.4 Immutable Data

8.Problem

The application uses data that once it comes into existence isimmutable. Nothing isimmutable
forever. The key point isthat it isimmutable up until the time of the next software release.

Some examples are:
* application constants

 reference data - zip and post codes, countries etc.
If you analyse database traffic commonly used reference data turns out to be a big hitter.

Asthey are immutable they can only be appended or read, never updated.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

8 Cache Consistency Options 37

8.Solution

In concurrent programming, immutable data never needs further concurrency protection. So we
simply want to use the fastest mode.

Here we would aways use eventual consistency.

8.1.6.5 Financial Order Processing - write to cache as SOR

8.Problem

An order processing system sends a series of messages in aworkflow, perhaps using Business Process
Management software. The system involves multiple servers and the next step in the processing of an
order may occur on any server. Let's say there are 50 steps in the process.

To avoid overloading a database the processing results at each step only written to a distributed cache.
The next step could execute in afew ms to minutes depending on what other orders are going through
and how busy the hardwareis.

8.Solution
Use one of:

» strong consistency and local transactions (if changes are needed to be applied to multiple caches
or entries).

Because the execution step, once completed cannot be replayed, and may be under the control of
aBPM, it isvery important that the change in state gets to the cache cluster. Synchronous writes
can aso be used (at a high performance cost) so that the put to the cache does not return until
the data has been applied. If an executing node failed before the data was transferred, the locks
would still bein place preventing readers from reading stale data, but that will not help the next
step in the process.
o CAS operations with eventual consistency. The CAS methods will not return until the data has

been applied to the server, so it is not necessary to use synchronous writes.

In a50 step processit islikely there are key milestones. Often it is desirable to record these in

a database with the non-milestone steps recorded in the cache. For these key milestones use the

"Financial Order Processing - write to cache and database” pattern.

8.1.6.6 E-commerce web app with Non-sticky sessions

Here a user makes reads and writes to aweb application cluster. There are n serverswheren > 1. The
load balancer is non-sticky so any of the n servers can be hit on the next HT TP operation.

When a user submitsusing aHTML form, either a GET or POST is done based on the form action.
And of courseif it isan AJAX app then requests are being done with XMLHt t pRequest and any
HTTP request method can be sent. If POST (form and AJAX) or PUT (AJAX) is used no content
isreturned and a separate GET isrequired to refresh the view or AJAX app. The key point is that
sending a change and getting a view may happen with one request or two. If it happens with two, then
the same server might respond to the second request or not. The probability that the second server will
be the same as the first is 1/n.

AJAX apps can further exacebate this situation. A page may make multiple request to fill different
panels. This opens up the possibility of, within a single page, having data come from multiple servers.
Any lack of consistency could be glaring indeed.
8.Solution
Use one of:

* strong consistency

« CAS

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

8 Cache Consistency Options 38

Other options can be added depending on what is needed for the request. e.g. XA if a database
plus the cache is updated.

8.1.6.7 E-commerce web app with sticky sessions

8.Problem

Here a user makes reads and writes to a web application cluster. There are n serverswheren > 1.
The load balancer is sticky so any of the n servers can be hit on the next HTTP operation. There
are different ways of configuring sticky sessions. The same server might be used for the length of a
session, which is the standard meaning, or a browser's | P can permanently hash to a server. In any
case each request is guaranteed to hit the same server.

8.Solution

The same server is aways hit. The consistency mode depends on whether only the user making the
changes needs to see them applied (read your writes, monotonic reads, monotonic writes) or whether
they are mutating shared state like inventory where write - write conflicts might occur.

For mutating user only consistency use eventual consistency.

For multi-user shared state use strong consistency at a minimum plus further safety mechanisms
depending on the type of mutation.

8.1.6.8 E-commerce Catalog

8.Problem

Catalogues display inventory. There are product details and pricing. There may be also be an
inventory status of available or sold out.

Catalogue changes are usually made by one user or process (for example a daily update load from a
supplier) and are usually do not have write-write conflicts. While the catalogue is often non-sticky,
admin users are typically configured sticky.

There is often tolerance for the displayed catal ogue to lag behind the change made. Users are usually
less tolerance for a user following a click path to see inconsistencies.

8.Solution

The person making the changes can see a consistent view by virtue of the sticky session. So eventual
consistency will often be enough.

For end users following a click path, they need a consistent view. However the network or Internet
time plus their think time to move along the path adds up to seconds to minutes, while eventual
consistency will propagate in the order of 2+ milliseconds. With eventual consistency it isvery
unlikely they will see inconsistency. The general recommendation is therefore to use eventual
consistency.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

9 Cache Eviction Algorithms 39

Cache Eviction Algorithms

9.1 Cache Eviction Algorithms
A cache eviction algorithm is away of deciding which El enent to evict when the cacheisfull.

In Ehcache the Menor y St or e hasafixed limited size set by maxEl enent s| nMenory (unless

the maxElementsinMemory is 0, in which case the capacity is unlimited). When the store gets full,

el ement s are evicted. The eviction algorithms in Ehcache determines which elementsis evicted. The
default isLRU.

What happens on eviction depends on the cache configuration. If aDi skSt or e is configured, the
evicted element will overflow to disk, otherwise it will be removed.

The Di skSt or e size by default is unbounded. But a maximum size can be set using the
maxEl enent sOnDi sk cache attribute. If the Di skSt or e isfull, then adding an element will cause
oneto be evicted. The Di skSt or e eviction algorithm is not configurable. It uses LFU.

9.1.1 Provided Menor y St or e Eviction Algorithms

Theideahereis, given alimit on the number of itemsto cache, how to choose the thing to evict that
gives the best result.

In 1966 Laszlo Belady showed that the most efficient caching agorithm would be to always discard
the information that will not be needed for the longest timein the future. Thisit atheoretical result
that is unimplementable without domain knowledge. The Least Recently Used ("LRU") algorithm
is often used as a proxy. It works pretty well because of the locality of reference phenonemon. Asa
result, LRU isthe default eviction algorithm in Ehcache, asit isin most caches.

Ehcache users may sometimes have a good domain knowledge. Accordingly, Ehcache provides three
eviction agorithms to choose from for the Menor y St or e.

9.1.1.1 Less Recently Used (LRU)
Thisisthe default.

The eldest element, is the Least Recently Used (LRU). The last used timestamp is updated when an
element is put into the cache or an element is retrieved from the cache with aget call.

It takes arandom sample of the Elements and evicts the smallest. Using the sample size of 15
elements, empirical testing shows that an Element in the lowest quartile of use is evicted 99% of the
time.

If probabilistic eviction does not suit your application, atrue Least Recently Used deterministic
algorithm is available by settingj ava - Dnet . sf. ehcache. use. cl assi c. | ru=true.

9.1.1.2 Less Frequently Used (LFU)

For each get call on the element the number of hits is updated. When a put call is made for anew
element (and assuming that the max limit is reached) the element with least number of hits, the Less
Frequently Used element, is evicted.

If cache element use follows a pareto distribution, this algorithm may give better results than LRU.

LFU isan algorithm unique to Ehcache. It takes arandom sample of the Elements and evicts the
smallest. Using the sample size of 15 elements, empirical testing shows that an Element in the lowest
quartile of useis evicted 99% of the time.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

9 Cache Eviction Algorithms 40

9.1.1.3 First In First Out (FIFO)

Elements are evicted in the same order as they come in. When a put call is made for a new element
(and assuming that the max limit is reached for the memory store) the element that was placed first
(First-In) in the store is the candidate for eviction (First-Out).

Thisagorithm is used if the use of an element makesit less likely to be used in the future. An
example here would be an authentication cache.

It takes

arandom sample of the Elements and evicts the smallest. Using the sample size of 15

elements, empirical testing shows that an Element in the lowest quartile of use is evicted 99% of the

time.

9.1.2 Plugging in your own Eviction Algorithm

Ehcache 1.6 and higher alows you to plugin in your own eviction algorithm. Y ou can utilise any
Element metadata which makes possible some very interesting approaches. For example, evict an
Element if it has been hit more than 10 times.

/**

*

Set

pol

It

E O B T I B R]

/

s the eviction policy strategy. The Cache will use a policy at startup. There

are three policies which can be configured: LRU, LFU and FI FOO However many ot her

icies are possible. That the policy has access to the whol e el ement enabl es polic

based on the key, value, nmetadata, statistics, or a conbination of any of the above.

is safe to change the policy of a store at any tine. The new policy takes effect

i medi atel y.

@ar am policy the new policy

public void set MenoryStoreEvictionPolicy(Policy policy) {
menorySt ore. set Evi cti onPol i cy(policy);

}

A Policy must implement the following interface:

public interface Policy {

/*

*

St
| *

L T A T

*

*

El
| *

*

*

©2011,

*

@eturn the nane of the Policy. Inbuilt exanples are LRU, LFU and FI FO

/

ring get Name();

*

Finds the best eviction candi date based on the sanpled el enents. Wat distingui sl
this approach fromthe classic data structures approach is that an El enent conta
netadata (e.g. usage statistics) which can be used for nmaki ng policy decisions,
whil e generic data structures do not. It is expected that inplenentations will t
advant age of that netadat a.

@ar am sanpl edEl emrents this should be a random subset of the popul ation
@ar am j ust Added we probably never want to select the el enent just added.
It is provided so that it can be ignored if selected. May be null.
@eturn the sel ected El enent
/
enment sel ect edBasedOnPol i cy(El enment[] sanpl edEl enents, El enment justAdded);

*

Conpares the desirabl eness for eviction of two el enents

@aram el enent1 the el enent to conpare agai nst

Terracotta, Inc. « ALL RIGHTS RESERVED.

9 Cache Eviction Algorithms 41

* @aramelement2 the el enent to conpare

* @eturn true if the second elenent is preferable for eviction to the first el ene
* under ths policy

*/

bool ean conpare(El enent el ement1l, Elenent el enent2);

9.1.3 Di skSt or e Eviction Algorithms
The Di skSt or e uses the Less Frequently Used algorithm to evict an element when it isfull.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

10

10 Big Memory:Off-Heap Store 42

Big Memory:Off-Heap Store

10.1 BigMemory: Off-heap Store

Terracotta BigMemory is an add-on to Enterprise Ehcache that permits caches to use an additional
type of memory store outside the object heap.

This off-heap store, which is not subject to Java GC, is 100 times faster than the DiskStore and allows
very large cachesto be created (we have tested this up to 350GB).

Because off-heap datais stored in bytes, there are two implications:
» Only Serializable cache keys and values can be placed in the store, similar to DiskStore.

 Seridization and deserialization take place on putting and getting from the store. This means that
the off-heap store is slower in an absolute sense (around 10 times slower than the MemoryStore),
but this theoretical difference disappears due to two effects:
« the MemoryStore holds the hottest subset of datafrom the off-heap store, already in
deserialized form

« when the GC involved with larger heaps is taken into account, the off-heap store is faster on
average

10.1.1 Configuration

10.1.1.1 Configuring caches to overflow to off-heap.
Configuring a cache to use an off-heap store can be done either through XML or programmatically.

10.Declarative Configuration

Thefollowing XML configuration creates an off-heap cache with an in-heap store
(maxElementsinMemory) of 10,000 elements which overflow to a 1-gigabyte off-heap area.

<?xm version="1. 0" encodi ng="UTF-8""?>
<ehcache updat eCheck="fal se" nonitoring="of f"
dynam cConfi g="fal se">
<def aul t Cache nmaxEl enent sl nMenor y="10000"
eternal ="true"
menor ySt or eEvi cti onPol i cy="LRU'
statistics="fal se" />
<cache nane="sanpl e- of f heap- cache"
maxEl ement s| nMenor y="10000"
eternal ="true"
menor ySt or eEvi cti onPol i cy="LRU'
over f | owToOf f Heap="t r ue"
maxMenor yOf f Heap="1G'/ >
</ ehcache>

The configuration options are:

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://www.terracotta.org/bigmemory?src=ehcache_off_heap_store

10 Big Memory:Off-Heap Store 43

10.overflowToOffHeap

Values may be true or false.

When set to true, enables the cache to utilize off-heap memory storage to improve performance.
Off-heap memory is not subject to Java GC cycles and has a size limit set by the Java property
MaxDirectMemorySize. The default value isfalse.

10.maxMemoryOffHeap

Sets the amount of off-heap memory available to the cache. This attribute's values are given as
number k|K|m[M|g|GJt|T for kilobytes (k|K), megabytes (m|M), gigabytes (g|G), or terabytes (t|T).
For example, maxMemoryOffHeap="2g" allots 2 gigabytes to off-heap memory. In effect only if
overflowToOffHeap is true.

The minimum amount that can be allocated is 128MB. There is no maximum.

Note that it is recommended to set maxElementsinMemory to at least 100 elements when using an
off-heap store, otherwise performance will be seriously degraded, and awarning will be logged.

10.Programmatic Configuration
The equivalent cache can be created using the following programmatic configuration:
public Cache createO fHeapCache() {

CacheConfiguration config = new CacheConfi guration("sanpl e-of f heap-
cache", 10000)

.over fl owlToOr f Heap(true). maxMenoryOf f Heap(" 1G') ;

Cache cache = new Cache(config);

manager . addCache(cache) ;

return cache;

}

10.1.1.2 Add The License

The Ehcache Enterprise trial download (available here - http://www.terracotta.org/bigmemory)
comes with atria license key which must be added to activate the off-heap store.

It can be added to the classpath or via a system property.

10.Configuring the License in the Classpath

Addtheterracotta-1icense. key totheroot of your classpath, which is also where you add
ehcache.xml. It will be automatically found.

10.Configuring the License as a Java system property

Addacom tc. product key. pat h=/ pat h/ t o/ key system property which pointsto the key
location.

eg.
java -Dcomtc. product key. pat h=/ pat h/ t o/ key

10.1.1.3 Allocating Direct Memory in the JVM

In order to use these configurations you must then use the ehcache-core-ee jar on your classpath,
and modify your VM command-line to increase the amount of direct memory allowed by the VM.
You must alocate at least 32MB more to direct memory than the total off-heap memory allocated to
caches.

e.g. to alocate 2GB of memory in the VM.
java - XX: MaxDi rect MenorySi ze=2G .. ."

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://www.terracotta.org/bigmemory

10 Big Memory:Off-Heap Store 44

10.1.2 Advanced Configuration Options
There are some rarer configuration options which can be used for fine grained control

10.1.2.1 -XX:+UselLargePages
ThisisaJVM flag which is meant to improve performance of memory-hungry applications. In
testing, this option gives a 5% speed improvement with a 1Gb off-heap cache.

See http://andrigoss.blogspot.com/2008/02/jvm-performance-tuning.html for a discussion.

10.1.2.2 Increasing the maximum serialized size of an Element that can be stored in the OffHeapStore
Firstly, the MemoryStore and the DiskStore do not have any limits.

By default, the OffHeapStore has a4MB limit for classes with high quality hashcodes, and 256K B
for those with pathologically bad hashcodes. The built-in classes such asthej ava. | ang. Nunber
subclasses such as Long, Integer etc and and St ri ng have high quality hashcodes.

Y ou can increase the size by setting a system property
net.sf.ehcache.offheap.cache_name.config.ideal M axSegmentSize to the size you require.

e.g. net.sf.ehcache.offheap.com.company.domain.State.config.ideal M ax SegmentSize=30M

10.1.2.3 Avoiding OS Swapping

Operating systems use swap partitions for virtual memory and are free to move less frequently
used pages of memory to the swap partition. Thisis generally not what you want when using the
OffHeapStore, as the time it takes to swap a page back in when demanded will add to cache latency.

It is recommended that you minimise swap use for maximum performance.

On Linux, you can set / pr oc/ sys/ v swappi ness to reduce the risk of memory pages being
swapped out. See http://lwn.net/Articles/83588/ for details of tuning this parameter. Note that there
are bugs in this which were fixed in kernel 2.6.30 and higher.

Another option is to configure HugePages. See http://unixfoo.blogspot.com/2007/10/hugepages.html

Thiskind of problem bit us several timesin the past in Linux. Although there's a swappiness kernel
parameter that can be set to zero, it is usually not enough to avoid swapping altogether. The only
surefire way to avoid any kind of swapping is either (a) disabling the swap partition, with the
undesirable consequences which that may bring, or (b) using HugePages, which are always mapped to
physical memory and cannot be swapped out to disk.

10.1.2.4 -XX:UseCompressedOops

This setting applies to the HotSpot JVM. It's use should be considered to make the most efficient use
of memory in 64 bit mode. See http://wikis.sun.com/display/HotSpotl nternal sy CompressedOops for
details.

10.1.2.5 Controlling Overallocation of Memory to the OffHeapStore

If the memory use is dramatically overallocated, you may end up trying to use more than the physical
and even virtual memory available on your OS. We attempt to detect this situation. If it takes

more than 3 seconds to allocate a 1GB chunk of memory we will log an error message and call

Syst em exi t (1) to protect the stability of your OS.

If you wish to force Ehcache to wait set the system property
net . sf. ehcache. of f heap. DoNot Hal t OnCri ti cal Al | ocati onDel ay totr ue.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://andrigoss.blogspot.com/2008/02/jvm-performance-tuning.html
http://lwn.net/Articles/83588/
http://unixfoo.blogspot.com/2007/10/hugepages.html
http://wikis.sun.com/display/HotSpotInternals/CompressedOops

(22s) 29 N4 152 H1e

10 Big Memory:Off-Heap Store 45

10.1.3 Sample application

The easiest way to get started is to play with a simple sample app.

Download here a simple Maven-based application that uses the ehcache off-heap functionality.
Note: You will need to get a license key and install it as discussed above to run this.

10.1.4 Performance Comparisons

Checkout https://svn.terracotta.org/repo/forge/offHeap-test/ terracotta_community_login a Maven-
based performance comparisons between different store configurations.

Note: You will need to get ademo license key and install it as discussed above to run the test.
Here are some charts from tests we have run on the release candidate of BigMemory.

The test machine was a Cisco UCS box running with Intel (R) Xeon(R) Processors. It had 6 2.93Ghz
Xeon(R) cpusfor atotal of 24 cores, with 128GB of RAM, running RHEL5.1 with Sun JDK 1.6.0 21
in 64 bit mode.

We used 50 threads doing an even mix of reads and writes with 1KB elements. We used the default
garbage collection settings.

Thetests al go through aload/warmup phase then start a performance run. Y ou can use the testsin
your own environments and extend them to cover different read/write ratios, data sizes, -Xmx settings
and hot sets. The full suite, which is done with r un. sh takes 4-5 hours to complete.

The following charts show the most common caching use case. The read/write ratio is 90% reads and
10% writes. The hot set is that 90% of thetime cache. get () will access 10% of the key set. Thisis
representative of the the familiar Pareto distribution that is very commonly observed.

There are of course many other caching use cases. Further performance results are covered on the
Further Performance Analysis page.

10.1.4.1 Largest Full GC

Largest Full GC

350
300
250
200
150
100

20

0 2 L & £ e & < & &
c12M 111G 2G AG 6G 8G 106 20G 300G 40G 6OG BOG

Data Size (GB)

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

100G

http://www.terracotta.org/bigmemory?src=ehcache.org
https://svn.terracotta.org/repo/forge/offHeap-test/
http://www.terracotta.org/bigmemory?src=ehcache.org

(2@s) Adu 23ET wn Wi ey

350
300
250
200
150
100
50
0

10 Big Memory:Off-Heap Store 46

This chart shows the largest observed full GC duration which occurred during the performance run.
Most non-batch applications have maximum response time SLAS. As can be seen in the chart, as data
sizes grow the full GC gets worse and worse for cache held on heap, whereas off-heap remains alow
constant.

The off-heap store will therefore enable applications with maximum response time SLAs to reliably
meet those SLAS.

10.1.4.2 Latency

Maximum Latency

G S L o £ & e &

51ZM 116G 2G 4G BG 8G 106 206 330G 406G 6B0OG BOG

Data Size (GB)

This chart shows the maximum observed latency while perfomring either acache. put () or a
cache. get (). Itisvery similar to the Full GC chart because the reason the on-heap latencies blow
out isfull GCs, where al threads in the test app get frozen.

Once again the off-heap store can be observed to have aflat, low maximum latency, because any full
GCsaretiny, and the cache has excellent concurrency properties.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

100G

(3agn) Asuaje] uea

(2@s fuxy) indydnoay)

10 Big Memory:Off-Heap Store 47

Off-Heap Mean Latency

250

200 o o @& B 0O g

150
100

50

512M 16 26 4G 66 BG 106 206 306G 406G 6OG BOG 100G
Data Size (GB)

This chart shows the off-heap mean latency in microseconds. It can be observed to be flat from 2GB
up to 40GB. Further in-house testing shows that the it remains flat up to the limits we have tested to
which is currently 350GB.

Lower latencies are observed at smaller data set sizes because we use anmaxEl enent sl nMenory
setting which approximates to 200MB of on-heap store. On-heap, excluding GC effectsis faster than
off-heap because there is no deserialization on gets. At lower data sizes there is a higher probability
that the small on-heap store will be hit, which is reflected in the lower average latencies.

10.1.4.3 Throughput

Off-Heap Throughput
700,000
600,000 4
500,000
400,000
200,000 u
200,000
100,000

0
51Z2M 116G 2G 4G BG BG 106 206 306G 406 660G B0G 100G

Data Size (GB)

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

10 Big Memory:Off-Heap Store 48

This chart shows the cache operations per second achieved with off-heap. It is the inverse of average
latency and shows much the same thing. Once the effect of the on-heap store becomes marginal,
throughput remains constant, regardless of cache size. Once again we have verified this constancy up
to 350GB.

Note that much larger throughputs than those shown in this chart are achievable. Throughput is
affected by:

* the number of threads (more threads -> more throughput)
* theread/write ratio (reads are dightly faster)
* data payload per operation (more dataimplies alower throughput in tps but similar in bytes)

 cpu cores available and their speed (our testing shows that the cpu is always the limiting factor
with enough threads. In other words cache throughput can be increased by adding threads until
all cores are utilised and then adding cpu cores - an ideal situation where the software can use as
much hardware as you can throw at it.)

10.1.5 Storage

10.1.5.1 Storage Hierarchy
With the OffHeapStore, Ehcache Enterprise has three stores:

» MemoryStore - very fast storage of Objects on heap. Limited by the size of heap you can
comfortably garbage collect

» OffHeapStore - fast (one order of magnitude slower than MemoryStore) storage of Serialized
objects off heap. Limited only by the amount of RAM on your hardware and address space. Y ou
need a 64 bit OS to address higher than 2-4GB.

» DiskStore - speedy storage on disk. It istwo orders of magnitude slower than the OffHeapStore
but still much faster than a database or a distributed cache

The relationship between speed and size for each store isillustrated below:

4 tierea storage

Speed (TPS) SHize (GB)
2,000,000 - -z
s00,000 [- - zA
40000 - A 5o

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

10 Big Memory:Off-Heap Store 49

10.1.5.2 Memory Use in each Store

As a performance optimisation, and because storage gets much cheaper as you drop down through the
hierarchy, we write each put to as many stores as are configured. So, if all three are configured, the
Element may be present in MemoryStore, OffHeapStore and DiskStore.

Theresult is that each store consumes storage for itself and the other stores higher up the hierarchy.
So, if the MemoryStore has 1,000,000 Elements which consume 2Gb, and the OffHeapStore is
configured for 8GB, then 2GB of that will be duplicate of what isin the MemoryStore. And the 8GB
will also be duplicated on the DiskStore plus the DiskStore will have what cannot fit in any of the
other stores.

This needs to be taken into account when configuring the OffHeap and Disk stores.

It has the great benefit, which pays for the duplication, of not requiring copy on eviction. On eviction
from a store, an Element can simply be removed. It isaready in the next store down.

One further twist: the MemoryStore is only populated on aread. Puts go to the OffHeapStore and then
when read, are held in the MemoryStore. The MemoryStore thus holds hot items of the Off HeapStore.
Thiswill result in adifference in what can be expected to be in the MemoryStore between this
implementation and the open source one. A "usage" for the purposes of the eviction algorithms

is either aput or aget. Asonly gets are counted in this implementation, some differences will be
observed.

10.1.6 Handling JVM startup and shutdown

So you can have a huge in-process cache. But thisis not adistributed cache, so when you shut down
you will lose what isin the cache. And when you start up, how long will it take to load the cache?

In caches up to a GB or two, these issues are not hugely problematic. Y ou can often pre-load the
cache on start-up before you bring the application online. Provided this only takes a few minutes,
there is minimal operations impact.

But when we go to tens of GBs, these startup times are O(n), and what took 2 minutes now takes 20
minutes.

To solve this problem, we provide a new implementation of Ehcache's DiskStore, available in the
enterprise version.

Y ou simply mark the cache di skPer si st ent =t r ue asyou normally would for adisk persistent
cache.

It works as follows:

* on startup, which isimmediate, the cache will get elements from disk and gradually fill the
MemoryStore and the OffHeapStore.

» when running elements are written to the OffHeapStore, they are already serialized. We write
these to the DiskStore asynchronously in awrite-behind pattern. Tests show they can be written
at arate of 20MB/s on server-class machines with fast disks. If writes get behind, they will
back up and once they reach the di skSpool Buf f er Si zeMB cache puts will be slowed while
the DiskStore writer catches up. By default this buffer is 30MB but can be increased through
configuration.

» When the Cache is disposed, only afinal syncisrequired to shut the DiskStore down.

10.1.7 Using OffHeapStore with 32 bit JVMs

On a 32 hit operating system, Javawill aways start with a 32 bit data model. On 64 bit OSs, it will
default to 64 bit, but can be forced into 32 bit mode with the Java command-line option - d32. The
problem is that this limits the size of the process to 4GB. Because garbage collection problems are

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

10 Big Memory:Off-Heap Store 50

generally manageable up to this size, there is not much point in using the OffHeapStore, asit will
simply be slower.

If you are suffering GC issues with a 32 bit VM, then OffHeapStore can help. There are afew points
to keep in mind.

» Everything hasto fit in 4GB of addressable space. If you allocate 2GB of heap (with - Xmx2g)
then you have at most 2GB |eft for your off-heap caches.

» Don't expect to be able to use al of the 4GB of addressable space for yourself. The VM process
requires some of it for its code and shared libraries plus any extra Operating System overhead.

* If you alocate a 3GB heap with -Xmx as well as 2047MB of off-heap memory the virtual
machine certainly won't complain at startup but when it's time to grow the heap you will get an
OutOfMemoryError.

* If you use both -Xms3G and -Xmx3G with 2047MB of off-heap memory the virtual machine
will start but then complain as soon as the OffHeapStore tries to alocate the of f-heap buffers.

» Some APIs, such asjava.util.zip.ZipFile on Sun 1.5 VMs, may mmap filesin memory. Thiswill
also use up process space and may trigger an OutOfMemoryError.

For these reasons we issue a warning to the log when Off HeapStore is used with 32 bit IV Ms,

10.1.8 Slow off-heap allocation

Off-heap allocation time is measured to avoid allocating buffers too large to fit in memory.

If it takes more than 1.5s to allocate a buffer awarning isissued asit could very well be

that the OS has started paging to disk. If it takes more than 15s then the VM is halted (with

Syst em exi t (), but different things are tried when the Security Manager prevents this) unless the
net . sf. ehcache. of f heap. DoNot Hal t OnCri ti cal Al | ocati onDel ay system property is set
to true.

This mechanism was built in because allocating an off-heap buffer too large to fit in RAM can quickly
and easily deplete critical system resources like RAM and swap space and crash the host operating
system. Linux and Mac OS X will crash in these circumstances.

10.1.9 Reducing Cache Misses

While the MemoryStore holds a hotset (a subset) of the entire data set, the off-heap store should be
large enough to hold the entire data set. The frequency of cache misses begins to rise when the data
istoo large to fit into off-heap memory, forcing getsto fetch data from the DiskStore. More missesin
turn raise latency and lower performance.

For example, tests with a 4GB data set and a 5GB off-heap store recorded no misses. With the off-
heap store reduced to 4GB, 1.7 percent of cache operations resulted in misses. With the off-heap store
at 3GB, misses reached 15 percent.

10.1.10 FAQ

10.1.10.1 The DiskStore Access stripes configuration no longer has effect. Why?

This has been reimplemented for Ehcache Enterprise and will get added back into the core in the
future.

10.1.10.2 What Eviction Algorithms are supported?

The pluggable MemoryStore eviction algorithms work as normal. The OffHeapStore and DiskStore
use a Clock Cache, a standard paging algorithm which is an approximation of LRU.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

10 Big Memory:Off-Heap Store

10.1.10.3 Why do | see performance slow down and speed up in a cyclical pattern when | am filling a
cache?

Thisis due to repartitioning in the OffHeapStore which is normal. Once the cacheis fully filled the
performance slow-downs cease.

10.1.10.4 What is the maximum serialized size of an object when using OffHeapStore?
Firstly, the MemoryStore and the DiskStore do not have any limits.

By default, the OffHeapStore has a4MB limit for classes with high quality hashcodes, and 256K B
for those with pathologically bad hashcodes. The built-in classes such asthej ava. | ang. Nunber
subclasses such as Long, Integer etc and and St r i ng have high quality hashcodes.

Y ou can increase the size by setting the system property
net.sf.ehcache.offheap.cache_name.config.ideal M axSegmentSize to the size you require.

e.g. net.sf.ehcache.offheap.com.company.domain.State.config.ideal M ax SegmentSize=30M

10.1.10.5 Why is my application startup slower?

On startup the CacheManager will calculate the amount of off-heap storage required for all caches
using off-heap stores. The memory will be allocated from the OS and zeroed out by Java. The time
taken will depend on the OS. A server-class machine running Linux will take approximately half a
second per GB.

We print out log messages for each 10% allocated, and also report the total time taken.

Thistime isincurred only once at startup. The pre-allocation of memory from the OS is one of the
reasons that runtime performance is so fast.

10.1.10.6 How can | do Maven testing with BigMemory?
Maven startsjavafor you. Y ou cannot add the reguired - XX switch in as anmvn argument.

Maven provides you withaMAVEN_OPTS environment variable you can use for this on Unix
systems.

e.g. to specify 1GB of MaxDirectMemorySize and then to run jetty:

export MAVEN_OPTS=- XX: MaxDi r ect Menor ySi ze=1G
m/n jetty:run-war

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

11

11 JDBC Caching 52

JDBC Caching

11.1 JDBC Caching

Ehcache can easily be combined with your existing JDBC code. Whether you access JDBC directly,
or have aDAO/DAL layer, Ehcache can be combined with your existing data access pattern to speed
up frequently accessed data to reduce page load times, improve performance, and reduce load from
your database.

This document discusses how to add caching to a JDBC application using the commonly used DAO/
DAL layer patterns:

11.1.1 Adding JDBC caching to a DAO/DAL layer

If your application already has a DAO/DAL layer, thisis anatural place to add caching. To add
caching, follow these steps:
* identify methods which can be cached

* instantiate a cache and add a member variable to your DAO to hold areferenceto it
* Put and get values from the cache

11.1.1.1 Identifying methods which can be cached

Normally, you will want to cache the following kinds of method calls:
» Any method which retrieves entities by an Id

» Any gueries which can be tolerate some inconsistent or out of date data
Example methods that are commonly cacheable:

public V getByld(final Kid);
public Collection<V> findXXX(...);

11.1.1.2 Instantiate a cache and add a member variable

Your DAO is probably already being managed by Spring or Guice, so simply add a setter method to
your DAO layer such asset Cache(Cache cache) . Configure the cache as a bean in your Spring
or Guice config, and then use the the frameworks injection methodology to inject an instance of the
cache.

If you are not using a DI framework such as Spring or Guice, then you will need to instantiate the
cache during the bootstrap of your application. Asyour DAO layer is being instantiated, pass the
cache instance to it.

11.1.1.3 Put and get values from the cache

Now that your DAO layer has a cache reference, you can start to useit. Y ou will want to consider
using the cache using one of two standard cache access patterns:
» cache-aside

* cache-as-sor
Y ou can read more about these in the Concepts cache-aside and Concepts cache-as-sor sections.

11.1.2 Putting it all together - an example

Here is some example code that demonstrates a DAO based cache using a cache aside methodol ogy
wiring it together with Spring..

This code implements a PetDao modeled after the Spring Framework PetClinic sample application.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

11 JDBC Caching 53

It implements a standard pattern of creating an abstract GenericDao implementation which all Dao
implementations will extend.

It also uses Spring's SimpleJdbcTemplate to make the job of accessing the database easier.

Finally, to make Ehcache easier to work with in Spring, it implements awrapper that holds the cache
name.

11.1.2.1 The example files
The following are relevant snippets from the example files. A full project will be available shortly.

11.CacheWrapper.java
Simple get/put wrapper interface.

public interface CacheW apper<K, V>

{
voi d put (K key, V value);
V get (K key);

}

11.EhcacheWrapper.java
The wrapper implementation. Holds the name so caches can be named.

public class EhCacheW apper<K, V> inplenents CacheW apper<K, V>
{
private final String cacheNang;
private final CacheManager cacheManager;
publ i c EhCacheW apper (final String cacheName, final CacheManager cacheManager)
{
t hi s. cacheNanme = cacheNane;
t hi s. cacheManager = cacheManager;

}
public void put(final K key, final V val ue)
{
get Cache() . put (new El enent (key, val ue));
}
public V get(final K key, CacheEntryAdapter<V> adapter)
{

El ement el ement = get Cache(). get (key);
if (element !'= null) {
return (V) el enent.getVal ue();
}
return null;

}
publ i c Ehcache get Cache()
{

}

return cacheManager. get Ehcache(cacheNane) ;

}

11.GenericDao.java
The Generic Dao. It implements most of the work.

public abstract class GenericDao<K, V extends BaseEntity> inplenments Dao<K, V>

{

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

11 JDBC Caching 54

prot ect ed Dat aSource dat asource;

protected SinpleldbcTenpl ate jdbcTenpl ate

/* Here is the cache reference */

prot ected CacheW apper <K, V> cache;

public void setJdbcTenpl ate(final SinpleJddbcTenpl ate jdbcTenplate) {
this.jdbcTenpl ate = jdbcTenpl at e;

}

public void setDatasource(final DataSource datasource) {
t hi s. dat asource = dat asource;

}

public void setCache(final CacheWapper<K, V> cache) {
t hi s. cache = cache;

}

/* the cacheabl e nethod */

public V getByld(final Kid) {

V val ue;
if ((value = cache.get(id)) == null) {
val ue = this.jdbcTenpl ate. queryFor Obj ect (fi ndByld, mapper, id);
if (value !'= null) {
cache. put (i d, value);
}
}
return val ue
}
/** rest of GenericDao inplenentation here **/
[xx L xx]
[xx L xx]
[xx L xx]

}

11.PetDaolmpl.java
The Pet Dao implementation, really it doesn't need to do anything unless specific methods not
available via GenericDao are cacheable.

public class PetDaol npl extends GenericDao<l nteger, Pet> inplenents PetDao
{

}

We need to configure the JdbcTemplate, Datasource, CacheManager, PetDao, and the Pet cache using
the spring configuration file.

[*¥* 0 xx]

11.application.xml
The Spring configuration file.

<l-- datasource and friends -->
<bean i d="dat aSource" cl ass="org. springframework.jdbc. dat asource. Fast er LazyConnecti onDal
<property nane="t ar get Dat aSour ce" ref="dat aSourceTarget"/>
</ bean>
<bean i d="dat aSourceTarget" class="com nthange. v2. ¢c3p0. ConboPool edDat aSour ce"
destroy- et hod="cl ose" >
<property name="user" val ue="${j dbc. usernane}"/>
<property name="password" val ue="${j dbc. password}"/>
<property name="driverd ass" val ue="${j dbc. driverd assNane}"/ >
<property name="jdbcU " val ue="${jdbc.url}"/>

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

11 JDBC Caching 55

<property nane="initial Pool Si ze" val ue="50"/>
<property nane="maxPool Si ze" val ue="300"/>
<property nane="m nPool Si ze" val ue="30"/>
<property nane="acquirelncrenent" val ue="2"/>
<property nane="acquireRetryAttenpts" val ue="0"/>

</ bean>

<l-- jdbctenplate -->

<bean id="j dbcTenpl ate" class="org. springfranmework.jdbc. core. sinple.SinpleldbcTenpl ate".
<constructor-arg ref="dataSource"/>

</ bean>

<l-- the cache nanager -->

<bean i d="cacheManager" cl ass="EhCacheManager Fact or yBean" >
<property nanme="confi gLocation" val ue="cl asspat h: ${ehcache. config}"/>

</ bean>

<l-- the pet cache to be injected into the pet dao -->

<bean nane="pet Cache" cl ass="EhCacheW apper">
<constructor-arg val ue="pets"/>
<constructor-arg ref="cacheManager"/>

</ bean>

<l-- the pet dao -->

<bean i d="pet Dao" cl ass="Pet Daol npl ">
<property nane="cache" ref="petCache"/>
<property nane="jdbcTenpl ate" ref="jdbcTenpl ate"/>
<property nane="dat asource" ref="dataSource"/>

</ bean>

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

12

12 Spring Caching with Ehcache 56

Spring Caching with Ehcache

12.1 Using Spring and Ehcache

Ehcache has had excellent Spring integration for many years. More recently there are two new ways
of using Ehcache with Spring

12.1.1 Spring 3.1

Spring Framework 3.1 added a new generic cache abstraction for transparently applying caching to
Spring applications.

It adds caching support for classes and methods using two annotations:

12.1.1.1 @Cacheable
Cache amethod call.

In the following example, the value is the return type, a Manual. The key is extracted from the ISBN
argument using theid.

@cacheabl e(val ue="nmanual ", key="#isbn.id")
public Manual findManual (I SBN isbn, bool ean checkWarehouse)

12.1.1.2 @CacheEvict
Clears the cache when called.

@CacheEvi ct (val ue = "manual s", allEntries=true)
public void | oadManual s(1 nput Stream bat ch)

Spring 3.1 includes an Ehcache implementation. Seethe Spring 3.1 JavaDoc.

It also does much more with SpEL expressions. See for an excellent blog post covering this material
in more detail.

12.1.2 Spring 2.5 - 3.1: Ehcache Annotations For Spring

This open source, led by Eric Dalquist, predates the Spring 3.1 project. You can use it with earlier
versions of Spring or you can useit with 3.1.

12.1.2.1 @Cacheable

Aswith Spring 3.1 it uses an @Cacheable annotation to cache a method. In this example callsto
findM essage are stored in a cache named "messageCache". The values are of type Message. Theid
for each entry isthei d argument given.

@cacheabl e(cacheNane = "nessageCache")
public Message findMessage(l ong id)

12.1.2.2 @TriggersRemove
And for cache invalidation, there is the @TriggersRemove annotation.

In thisexample, cache. renoveAl | () iscalled after the method isinvoked.

@ri gger sRenove(cacheNane = "nessagesCache",
when = When. AFTER METHOD | NVOCATI ON, renmoveAl |l = true)
public void addMessage(Message nessage)

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://static.springsource.org/spring/docs/3.1.0.M1/javadoc-api/org/springframework/cache/ehcache/package-summary.html
http://blog.springsource.com/2011/02/23/spring-3-1-m1-caching/

12 Spring Caching with Ehcache

See for ablog post explaining it's user and providing further links.

©2011, Terracotta, Inc. » ALL RIGHTS RESERVED.

57

http://blog.goyello.com/2010/07/29/quick-start-with-ehcache-annotations-for-spring/

13

13 Code Samples 58

Code Samples

13.1 Recipes and Code Samples

The Recipes and Code Samples page contains recipes - short concise examples for specific use cases -
and a set of code samples that will help you get started with Ehcache.

If you have a suggestion or an idea for arecipe or more code samples, please tell us about it using the

mailing list or forums.
13.2 Recipes

Recipe

Web Page and Fragment Caching
Configure a Grails App for Clustering
Data Freshness and Expiration
Enable Terracotta Programmatically

WAN Replication
Caching Empty Values

Database Read Overload

Database Write Overload
Caching methods with Spring Annotations

Cache Wrapper

13.3 Code Samples

13.3.1 Using the CacheManager

Description

How to use inluded Servlet Filters to Cache Web Page
and Web Page Fragments

How to configure a Grails Application for clustered
Hibernate 2nd Level Cache

How to maintain cache "freshness" by configuring TTL
and data expiration properly

How to enable Terracotta support for Ehcache
programmatically

3 Strategies for configuring WAN replication

Why caching empty values can be desirable to deflect
load from the database

When many readers simultaneously request the
same data element it is called the "Thundering Herd"
problem. How to prevent it in a single jvm or clustered
configuration

Writing to the Database is a Bottleneck. Configure
write-behind to offload database writes.

Adding caching to methods using Ehcache
Annotations for Spring project

A simple class to make accessing Ehcache easier for
simple use cases

All usages of Ehcache start with the creation of a CacheManager.

13.3.1.1 Singleton versus Instance

As of ehcache-1.2, Ehcache CacheManagers can be created as either singletons (use the create factory

method) or instances (use new).

Create a singleton CacheManager using defaults, then list caches.

CacheManager. create();

©2011, Terracotta, Inc. e

ALL RIGHTS RESERVED.

http://forums.terracotta.org

13 Code Samples 59

String[] cacheNanes = CacheManager. getl nstance(). get CacheNanes();
Create a CacheManager instance using defaults, then list caches.

CacheManager manager = new CacheManager () ;

String[] cacheNanes = manager. get CacheNanes();

Create two CacheManagers, each with a different configuration, and list the cachesin each.
CacheManager nanager 1
CacheManager nanager 2

String[] cacheNanesFor Manager1l = nanager 1. get CacheNanmes();
String[] cacheNanesFor Manager2 = nanager 2. get CacheNanes() ;

new CacheManager ("src/confi g/ ehcachel. xm ");
new CacheManager ("src/ confi g/ ehcache2. xm ");

13.3.1.2 Ways of loading Cache Configuration

When the CacheManager is created it creates caches found in the configuration.

Create a CacheManager using defaults. Ehcache will ook for ehcache.xml in the classpath.
CacheManager nmanager = new CacheManager () ;

Create a CacheManager specifying the path of a configuration file.

CacheManager manager = new CacheManager ("src/config/ehcache. xm ");

Create a CacheManager from a configuration resource in the classpath.

URL url = getd ass().get Resource("/anotherconfigurationnane.xm");
CacheManager nmamnager = new CacheManager (url);
Create a CacheManager from a configuration in an InputStream.

InputStreamfis = new Fil el nput Streamnew File("src/config/
ehcache. xm ") . get Absol ut ePat h());

try {
CacheManager manager = new CacheManager (fis);
} finally {

fis.close();

}

13.3.1.3 Adding and Removing Caches Programmatically
You are not just stuck with the caches that were placed in the configuration. Y ou can create and
remove them programmatically.

Add a cache using defaults, then use it. The following example creates a cache called testCache,
which will be configured using defaultCache from the configuration.

CacheManager singl et onManager = CacheManager. create();

si ngl et onManager . addCache("t est Cache");

Cache test = singl etonManager. get Cache("test Cache");

Create a Cache and add it to the CacheManager, then use it. Note that Caches are not usable until they
have been added to a CacheManager.

CacheManager singl et onManager = CacheManager. create();

Cache menoryOnl yCache = new Cache("test Cache", 5000, false, false, 5, 2);
manager . addCache(menor yOnl yCache) ;

Cache test = singl etonManager. get Cache("test Cache");

See the cache constructor for the full parameters for a new Cache:
Remove cache called sampleCachel
CacheManager singl et onManager = CacheManager. create();

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

13 Code Samples 60

si ngl et onManager . r enoveCache(" sanpl eCachel");

13.3.1.4 Shutdown the CacheManager

Ehcache should be shutdown after use. It does have a shutdown hook, but it is best practice to shut it
down in your code.

Shutdown the singleton CacheM anager

CacheManager . get | nst ance() . shut down();

Shutdown a CacheManager instance, assuming you have a reference to the CacheManager called
manager

manager . shut down() ;

Seethe CacheManagerTest for more examples.

13.3.2 Creating Caches Programmatically

13.3.2.1 Creating a new cache from defaults
A new cache with a given name can be created from defaults very ssimply:

manager . addCache(cache nane);

13.3.2.2 Creating a new cache with custom parameters

The configuration for a Cache can be specified programmatically as an argument to the Cache
constructor:

publ i c Cache(CacheConfiguration cacheConfiguration) {

}. ..
Here is an example which creates a cache called test.

/1 Create a CacheManager using defaults
CacheManager manager = CacheManager.create();
// Create a Cache specifying its configuration.
Cache testCache = new Cache(
new CacheConfiguration("test", nmaxEl ements)

. menor ySt or eEvi cti onPol i cy(MenorySt or eEvi cti onPol i cy. LFU)

.overfl owToDi sk(true)

.eternal (fal se)

.ti nmeTolLi veSeconds(60)

.ti meTol dl eSeconds(30)

. di skPersi stent(fal se)

. di skExpi ryThr eadl nt erval Seconds(0));
manager . addCache(cache) ;

Once the cacheis created, add it to the list of caches managed by the CacheManager:

manager . addCache(t est Cache);
The cache is not usable until it has been added.

13.3.3 Using Caches

All of these examples refer to manager, which is areference to a CacheManager, which has acachein
it called sampleCachel.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

13 Code Samples

13.3.3.1 Obtaining a reference to a Cache
Obtain a Cache called "sampleCachel", which has been preconfigured in the configuration file

Cache cache = manager. get Cache("sanpl eCachel");

13.3.3.2 Performing CRUD operations
Put an element into a cache
Cache cache = nmanager. get Cache("sanpl eCachel");

El enent el enent = new El ement ("keyl", "valuel");
cache. put (el enment) ;

Update an element in a cache. Even though cache. put () isused, Ehcache knows thereis an
existing element, and considers the put an update for the purpose of notifying cache listeners.

Cache cache = manager. get Cache("sanpl eCachel");

cache. put (new El enent ("key1l", "valuel"));
/1 This updates the entry for "keyl"
cache. put (new El enent ("key1", "val ue2"));

Get a Serializable value from an element in a cache with akey of "key1".

Cache cache = manager. get Cache("sanpl eCachel");
El enent el enent = cache. get("keyl");
Serializable value = el ement. get Val ue();

Get aNonSerializable value from an element in a cache with akey of "keyl".
Cache cache = manager. get Cache("sanpl eCachel");

El ement el enent = cache. get ("keyl");
bj ect val ue = el enent. get bj ect Val ue();

Remove an element from a cache with a key of "key1".

Cache cache = nmanager. get Cache("sanpl eCachel");
cache. renove("keyl");

13.3.3.3 Disk Persistence on demand
sampleCachel has a persistent diskStore. We wish to ensure that the data and index are written
immediately.

Cache cache = nmanager. get Cache("sanpl eCachel");
cache. fl ush();

13.3.3.4 Obtaining Cache Sizes

Get the number of elements currently in the Cache.

Cache cache = nmanager. get Cache("sanpl eCachel");
i nt elenentslnMenory = cache. get Si ze();

Get the number of elements currently in the Menor ySt or e.

Cache cache = manager. get Cache("sanpl eCachel");
| ong el enment sl nMenory = cache. get MenorySt or eSi ze() ;

Get the number of elements currently inthe Di skSt or e.

Cache cache = nmanager. get Cache("sanpl eCachel");
[ong el enment sl nMenory = cache. get Di skSt oreSi ze();

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

61

13 Code Samples 62

13.3.3.5 Obtaining Statistics of Cache Hits and Misses
These methods are useful for tuning cache configurations.

Get the number of times requested items were found in the cache. i.e. cache hits

Cache cache = manager. get Cache("sanpl eCachel");
int hits = cache. getH tCount();

Get the number of times requested items were found in the Menor y St or e of the cache.

Cache cache = manager. get Cache("sanpl eCachel");
int hits = cache. get MenorySt oreHi t Count () ;

Get the number of times requested items were found in the Di skSt or e of the cache.

Cache cache = manager. get Cache("sanpl eCachel");
int hits = cache. get Di skStoreCount();

Get the number of times requested items were not found in the cache. i.e. cache misses.

Cache cache = manager. get Cache("sanpl eCachel");
int hits = cache. get M ssCount Not Found() ;

Get the number of times requested items were not found in the cache due to expiry of the elements.

Cache cache = manager. get Cache("sanpl eCachel");
int hits = cache. get M ssCount Expired();

These are just the most commonly used methods. See CacheTest for more examples. See Cache for
the full API.

13.3.3.6 Dynamically Modifying Cache Configurations
This example shows how to dynamically modify the cache configuration of an already running cache:

Cache cache = manager. get Cache("sanpl eCache");
CacheConfiguration config = cache. get CacheConfi guration();
config. set Ti neTol dl eSeconds(60) ;

config. set Ti neToLi veSeconds(120);

confi g. set MaxEl enent sl nMenor y(10000) ;

confi g. set MaxEl enent sOnDi sk(1000000) ;

Dynamic cache configurations can a so be frozen to prevent future changes:

Cache cache = manager. get Cache("sanpl eCache");
cache. di sabl eDynam cFeat ures();

13.3.3.7 JTA

A cache will automatically participate in the ongoing UserTransaction when configured in
transactionalMode XA. This can be done programmatically:

// Create a CacheManager using defaults
CacheManager manager = CacheManager.create();
// Create a Cache specifying its configuration
Cache xaCache = new Cache(
new CacheConfiguration("test", 1000)
.overfl owToDi sk(true)
.eternal (fal se)
.transact i onal Mode(CacheConfi gurati on. Transacti onal Mode. XA)
.terracotta(new TerracottaConfiguration().clustered(true)));
manager . addCache(xaCache) ;

Or in your CacheManager's configuration file :

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

13 Code Samples 63

<cache nane="xaCache"
maxEl enent sl nMenor y="500"
eternal ="f al se"
ti meTol dl eSeconds=" 300"
ti meToLi veSeconds=" 600"
over f |l owToDi sk="f al se"
di skPersi stent="f al se"
di skExpi ryThr eadl nt erval Seconds="1"
transacti onal Mode="xa" >

<terracotta clustered="true"/>

</ cache>

Please note that XA Transactional caches are supported for standal one Ehcache and aso when
clustered with Terracotta, but with the replicating cluster architectures such as RMI|IM S|JJGroups as
thereis no locking in those architectures.

The Cache can then be used without any special requirement. Changes will only become visible to
others, once the transaction has been committed.

Ehcache cache = cacheManager. get Ehcache("xaCache");
transacti onManager . begi n();

try {
El ement e = cache. get (key);

nj ect result = conpl exServi ce. doSt uff (el ement. get Val ue());
/1 This put will be rolled back shoul d conpl exService. doMreStuff throw an Except
cache. put (new El enent (key, result));
/1 Any changes to result in that call, will be visible to others when the Transac
conpl exServi ce. doMoreStuff(result);
transacti onManager.conmit ();
} catch (Exception e) {
transacti onManager. rol | back();

13.3.4 Using Distributed Caches

13.3.4.1 Terracotta Example
See the fully worked examplesin the Terracotta Clustering Chapter.

13.3.5 Cache Statistics and Monitoring

13.3.5.1 Registering CacheStatistics in an MBeanServer

This example shows how to register CacheStatistics in the JDK 1.5 platform MBeanServer, which
works with the JConsole management agent.

CacheManager manager = new CacheManager () ;
MBeanSer ver nBeanServer = Managenent Factory. get Pl atf or mvBeanServer();
Managemnent Ser vi ce. r egi st er MBeans(manager, nBeanServer, false, false, false, true);

13.3.6 More examples

13.3.6.1 JCache Examples
See the examplesin the JCache Chapter.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

13 Code Samples 64

13.3.6.2 Cache Server Examples
See the examplesin the Cache Server Chapter.

13.3.6.3 Browse the JUnit Tests

Ehcache comes with a comprehensive JUnit test suite, which not only tests the code, but shows you
how to use ehcache.

A link to browsable unit test source code for the major Ehcache classes is given per section. The unit
tests are also in the src.zip in the Ehcache tarball.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

14 Class loading and Class Loaders 65

Class loading and Class Loaders

14.1 Class loading and Class Loaders
Class |oading within the plethora of environments Ehcache can be running is a somewhat vexed issue.
Since ehcache-1.2 dl classloading is done in a standard way in one utility class: O assLoader Uti | .

14.1.1 Plugin class loading
Ehcache allows plugins for events and distribution. These are loaded and created as follows:

/**

* Creates a new class instance. Logs errors along the way. C asses are | oaded using th
* Ehcache standard cl assl oader.
*
* @aramclassNanme a fully qualified class nane
* @eturn null if the instance cannot be | oaded
*/
public static Cbject createNewl nstance(String classNane) throws CacheException {
Cl ass clazz;
hj ect newl nst ance;
try {
clazz = O ass.forName(cl assNanme, true, get Standardd assLoader());
} catch (O assNot FoundException e) {
/1try fall back
try {
clazz = O ass.forName(cl assNanme, true, getFall backd assLoader());
} catch (C assNot FoundException ex) {
t hr ow new CacheException("Unable to | oad class " + classNane +
“. Initial cause was " + e.getMessage(), e);
}
}

try {
newl nstance = cl azz. new nst ance();

} catch (111 egal AccessException e) {
t hrow new CacheException("Unable to | oad class " + classNane +
"“. Initial cause was + e.get Message(), e);
} catch (InstantiationException e) {
t hrow new CacheException("Unable to | oad class " + classNane +
"“. Initial cause was + e.get Message(), e);

}

return newl nst ance;

}
/**
* CGets the <code>Cl assLoader </
code> that all classes in ehcache, and extensions, should
* use for classloading. All O assLoading in Ehcache should use this one. This is the o
* thing that seens to work for all of the class |loading situations found in the wld.
* @eturn the thread context class | oader.
*/
public static O assLoader get StandardC assLoader () {
return Thread. current Thread(). get Cont ext O assLoader () ;

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

14 Class loading and Class Loaders 66

}

/**

* Gets a fall back <code>C assLoader </
code> that all classes in ehcache, and extensions,
* shoul d use for classloading. This is used if the context class |oader does not work.
* @eturn the <code>Cl assLoader Util.cl ass. get O assLoader () ; </ code>
*/
public static O assLoader getFall backC assLoader () {
return C assLoaderUtil.class. getd assLoader();
}

If this does not work for some reason a CacheException is thrown with a detailed error message.

14.1.2 Loading of ehcache.xml resources

If the configuration is otherwise unspecified, Ehcache looks for a configuration in the following order:

» Thread.currentThread().getContextClassL oader().getResource("/ehcache.xml™)
» ConfigurationFactory.class.getResource("'/ehcache.xml™)
 ConfigurationFactory.class.getResource("/ehcache-fail safe.xml™)

Ehcache uses the first configuration found.

Note the use of "/ehcache.xml" which requires that ehcache.xml be placed at the root of the classpath,
i.e. not in any package.

14.1.3 Classloading with Terracotta clustering

If Terracotta clustering is being used with valueM ode="serialization" then keys and values will be
moved across the cluster in byte[] and deserialized on other nodes.

The classloaders used (in order) to instantiate those classes will be:

» Thread.currentThread().getContextClassL oader()
» The classloader that defined the CacheManager initialy

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

15

15 Tuning Garbage Collection 67

Tuning Garbage Collection

15.1 Tuning Garbage Collection

Applications which use Ehcache can be expected to have larger heaps. Some Ehcache applications
have heap sizes greater than 6GB.

Ehcache works well at this scale. However large heaps or long held object, which iswhat a cacheis,
can place strain on the default Garbage Collector.

Note. The following documentation relates to Sun JDK 1.5.

Finally Ehcache 2.3 introduced the Big Memory Offheap Store which adds an additional store
outside of the heap so solve this problem.

15.1.1 Detecting Garbage Collection Problems

A full garbage collection event pauses all threads in the VM. Nothing happens during the pause. If
this pause takes more than afew seconds it will become noticeable.

The clearest way to seeif thisis happening isto runj st at . The following command will produce a
log of garbage collection statistics, updated each ten seconds.
jstat -gcutil <pid> 10 1000000

The thing to watch for is the Full Garbage Collection Time. The difference between the total time for
each reading is the time the system spends time paused. If there is ajump more than afew seconds
thiswill not be acceptable in most application contexts.

15.1.2 Garbage Collection Tuning
The Sun core garbage collection team has offered the following tuning suggestion for virtual
machines with large heaps using caching:
java ... -XX: +Di sabl eExplicitGC - XX: +UseConcMar kSweepGC
- XX: NewSi ze=<1/4 of total heap size> -XX SurvivorRatio0=16
The reasoning for each setting is as follows:

e -XX:+DisableExplicitGC - some libs call System.gc(). Thisis usually abad idea and could
explain some of what we saw.

o -XX:+UseConcMarkSweepGC - use the low pause collector
o -XX:NewSize= 1/4 of total heap size -XX:SurvivorRatio=16

15.1.3 Distributed Caching Garbage Collection Tuning

Some users have reported that enabling distributed caching causes afull GC each minute. Thisis
an issue with RMI generally, which can be worked around by increasing the interval for garbage
collection. The effect that RMI is having is similar to a user application calling Syst em gc() each
minute. In the settings above thisis disabled, but it does not disable the full GC initiated by RMI.

The default in JDK 6 was increased to 1 hour. The following system properties control the interval.

-Dsun. rni.dgc.client.gclnterval =60000
-Dsun. rni . dgc. server. gcl nterval =60000

See http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4403367 for the bug report and detailed
instructions on workarounds.

Increase the interval as required in your application.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4403367

16

16 Cache Decorators 68

Cache Decorators

16.1 Cache Decorators

Ehcache 1.2 introduced the Ehcache interface, of which Cacheis an implementation. It is possible and
encouraged to create Ehcache decorators that are backed by a Cache instance, implement Ehcache and
provide extra functionality.

The Decorator pattern is one of the the well known Gang of Four patterns.

Decorated caches are accessed from the CacheManager using
CacheManager . get Ehcache(String nane).

Note that, for backward compatibility, CacheManager . get Cache(St ri ng nane) has been
retained. However only CacheManager . get Encache(Stri ng nane) returns the decorated cache.

16.1.1 Creating a Decorator

16.1.1.1 Programmatically
Cache decorators are created as follows:

Bl ocki ngCache newBl ocki ngCache = new Bl ocki ngCache(cache);
The class must implement Ehcache.

16.1.1.2 By Configuration

Cache decorators can be configured directly in ehcache.xml. The decorators will be

created and added to the CacheManager. It accepts the name of a concrete class that

extends net.sf.ehcache.constructs.CacheDecoratorFactory The properties will be parsed

according to the delimiter (default is comma’,") and passed to the concrete factory's

cr eat eDecor at edEhcache(Ehcache cache, Properties properties) method alongwith
the reference to the owning cache.

It is configured as per the following example:

<cacheDecor at or Fact ory
cl ass="com conpany. Somet hi ngCacheDecor at or Fact ory"
properties="propertyl=36 ..." />

Note that from version 2.2, decorators can be configured against the def aul t Cache. Thisisvery
useful for frameworks like Hibernate that add caches based on the def aul t Cache.

16.1.2 Adding decorated caches to the CacheManager

Having created a decorator programmatically it is generally useful to put it in a place where multiple
threads may accessit.

Note that decorators created via configuration in ehcache.xml have already been added to the
CacheManager .

16.1.2.1 Using CacheManager . r epl aceCacheW t hDecor at edCache()

A built-in way isto replace the Cache in CacheManager with the decorated one. Thisis achieved asin
the following example:

cacheManager . r epl aceCacheW t hDecor at edCache(cache, newBl ocki ngCache);

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

16 Cache Decorators 69

The CacheManager repl aceCacheW t hDecor at edCache method requires that the decorated
cache be built from the underlying cache from the same name.

Note that any overwritten Ehcache methods will take on new behaviours without casting, as per the
normal rules of Java. Casting is only required for new methods that the decorator introduces.

Any callsto get the cache out of the CacheManager now return the decorated one.

A word of caution. This method should be called in an appropriately synchronized init style method

before multiple threads attempt to useit. All threads must be referencing the same decorated cache.

An example of asuitable init method isfound in Cachi ngFi | t er:

/ * %
* The cache hol ding the web pages. Ensure that all threads for a given cache nane
* are using the sanme instance of this.
*/

privat e Bl ocki ngCache bl ocki ngCache;

/**

* |nitialises bl ockingCache to use

@hrows CacheException The nost likely cause is that a cache has not been
configured in Ehcache's configuration file ehcache.xm for thi
filter nane

* % %k X X

/
public void dolnit() throws CacheException {
synchroni zed (this.getd ass()) {
i f (blockingCache == null) {
final String cacheName = get CacheNane();
Ehcache cache = get CacheManager (). get Ehcache(cacheNan®);
if (!(cache instanceof Bl ockingCache)) {
// decorate and substitute
Bl ocki ngCache newBl ocki ngCache = new Bl ocki ngCache(cache);
get CacheManager () . r epl aceCacheW t hDecor at edCache(cache, newBl ocki ngCach

}
bl ocki ngCache = (Bl ocki ngCache) get CacheManager (). get Ehcache(get CacheName()

}

}
Ehcache bl ocki ngCache = si ngl et onManager . get Ehcache("sanpl eCachel");

The returned cache will exhibit the decorations.

16.1.2.2 Using CacheManager . addDecor at edCache()
Sometimes you want to add a decorated cache but retain access to the underlying cache.

The way to do thisisto create a decorated cache and then call cache. set Nane(new_nane) and
then add it to CacheManager with CacheManager . addDecor at edCache() .
/**

* Adds a decorated {@ink Ehcache} to the CacheManager. This nethod neither create
di sk store

* nor initializes the cache. It only adds the cache reference to the nap of caches
cacheManager .
<p/ >
It is generally required that a decorated cache, once constructed, is made avail
threads. The sinplest way of doing this is to either add it to the cacheManager -
substitute the original cache with the decorated one.

b B

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

16 Cache Decorators 70

<p/ >

This method adds the decorated cache assuming it has a different name. |f anothe
with the sane nane already exists, it will throw {@ink ObjectExistsException}.
cache with anot her decorated cache having sanme nane, please use

{@ink #replaceCacheWt hDecor at edCache(Ehcache, Ehcache)}

<p/ >

Not e that any overridden Ehcache nethods by the decorator will take on new behavi
Casting is only required for new nethods that the decorator introduces. For nore
known Gang of Four Decorator pattern.

@ar am decor at edCache
@hrows hj ect Exi st sexception
i f another cache with the sane nane al ready exists.

L S T I T R T S R

/
public void addDecor at edCache(Ehcache decor at edCache) throws bject Exi st sException -

16.1.3 Built-in Decorators

16.1.3.1 BlockingCache
A blocking decorator for an Ehcache, backed by a @link Ehcache.

It allows concurrent read access to elements already in the cache. If the element is null, other reads
will block until an element with the same key is put into the cache.

Thisis useful for constructing read-through or self-populating caches.
BlockingCache is used by Cachi ngFi | ter.

16.1.3.2 SelfPopulatingCache
A selfpopulating decorator for Ehcache that creates entries on demand.

Clients of the cache simply call it without needing knowledge of whether the entry existsin the cache.
If null the entry is created.

The cache is designed to be refreshed. Refreshes operate on the backing cache, and do not degrade
performance of get calls.

SelfPopul atingCache extends BlockingCache. Multiple threads attempting to access a null element
will block until the first thread completes. If refresh is being called the threads do not block - they
return the stale data.

Thisisvery useful for engineering highly scalable systems.

16.1.3.3 Caches with Exception Handling
These are decorated. See Cache Exception Handlers for full details.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

17

17 Hibernate Caching 71

Hibernate Caching

17.1 Hibernate Second Level Cache
IMPORTANT NOTICES- PLEASE READ

Users of Ehcache and/or Terracotta Ehcache for Hibernate prior to Ehcache 2.0 should read:
» Upgrade Notes for Ehcache versions prior to 2.0

These instructions are for Hibernate 3. For older instructions on how to use Hibernate 2.1, please
refer to:

e Guidefor Version 1.1

17.1.1 Overview

Ehcache easily integrates with the Hibernate Object/Relational persistence and query service. Gavin
King, the maintainer of Hibernate, is also acommitter to the Ehcache project. This ensures Ehcache
will remain afirst class cache for Hibernate.
Configuring Ehcache for Hibernate is simple. The basic steps are:

» Download and install Ehcache into your project

» Configure Ehcache as a cache provider in your project's Hibernate configuration.

» Configure second level caching in your project's Hibernate configuration.

 Configure Hibernate caching for each entity, collection, or query you wish to cache.

» Configure ehcache.xml as necessary for each entity, collection, or query configured for caching.
For more information regarding cache configuration in Hibernate see the Hibernate documentation.

17.1.2 Downloading and Installing Ehcache

The Hibernate provider is in the ehcache-core module. Download:
* thelatest version of the Ehcache core module here

For Terracotta clustering, download:
 afull Ehcache distribution here

17.1.3 Maven Dependency versions vary with the specific kit you intend to use. Since kits are
guaranteed to contain compatible artifacts, find the artifact versions you need by downloading a kit.

Configure or add the following repository to your build (pom.xml):

<repository>
<id>terracotta-rel eases</id>
<url>http://ww.terracotta. org/downl oad/ refl ector/rel eases</url >
<r el eases><enabl ed>t r ue</ enabl ed></rel eases>
<snapshot s><enabl ed>f al se</ enabl ed></ snapshot s>

</repository>

Configure or add the the ehcache core module defined by the following dependency to your build
(pom.xml):

<dependency>
<groupl d>net . sf . ehcache</ gr oupl d>
<artifactld>ehcache-core</artifactld>
<ver si on>${ ehcacheVer si on} </ ver si on>
</ dependency>

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://ehcache.org/documentation/documentation-1_1.html
http://hibernate.org
http://www.hibernate.org/hib_docs/reference/en/html_single/
http://sourceforge.net/projects/ehcache/files/ehcache-core
http://sourceforge.net/projects/ehcache/files/ehcache

17 Hibernate Caching 72

If you are configuring Hibernate and Ehcache for Terracotta clustering, add the following
dependenciesto your build (pom.xml):

<dependency>
<gr oupl d>net . sf. ehcache</ gr oupl d>
<artifactld>ehcache-terracotta</artifactld>
<ver si on>${ ehcacheVer si on} </ ver si on>

</ dependency>

<dependency>
<groupl d>org.terracotta</groupld>
<artifactld>terracotta-tool kit-${tool kitAPIversion}-runtinme</

artifactld>

<versi on>${t ool ki t Ver si on} </ ver si on>

</ dependency>

17.1.4 Configure Ehcache as the Second Level Cache Provider

To configure Ehcache as a Hibernate second level cache, set the region factory property (for
Hibernate 3.3 and above) or the factory class property (Hibernate 3.2 and below) to one of the
following in the Hibernate configuration.

Hibernate configuration is configured either via hibernate.cfg.xml, hibernate.properties or Spring. The
format given isfor hibernate.cfg.xml.

17.1.4.1 Hibernate 3.3 and higher
ATTENTION HIBERNATE 3.2 USERS: Make sure to note the change to BOTH the property
name and value.
Use:
<property nane="hi bernate.cache.region.factory_cl ass">
net . sf. ehcache. hi ber nat e. EhCacheRegi onFact or y</ property>
for instance creation, or
<property nane="hi bernate. cache.regi on.factory_cl ass">
net . sf. ehcache. hi ber nat e. Si ngl et onEhCacheRegi onFact ory</
property>
to force Hibernate to use a singleton of Ehcache CacheManager.

17.1.4.2 Hibernate 3.0 - 3.2
Use:
<property nane="hi bernate. cache. provi der_cl ass">
net . sf. ehcache. hi ber nat e. EhCachePr ovi der </ property>
for instance creation, or
<property nane="hi bernat e. cache. provi der_cl ass">
net . sf. ehcache. hi ber nat e. Si ngl et onEhCachePr ovi der </ property>
to force Hibernate to use a singleton Ehcache CacheM anager.

17.1.5 Enable Second Level Cache and Query Cache Settings

In addition to configuring the second level cache provider setting, you will need to turn on the second
level cache (by default it is configured to off - 'false’ - by Hibernate). Thisis done by setting the
following property in your hibernate config:

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

17 Hibernate Caching 73

<property nane="hi bernate. cache. use_second | evel cache">true</property>
Y ou may aso want to turn on the Hibernate query cache. Thisis done by setting the following
property in your hibernate config:

<property nane="hi bernat e. cache. use_query_cache" >t rue</ property>

17.1.6 Optional
The following settings or actions are optional.

17.1.6.1 Ehcache Configuration Resource Name
Theconfi gur ati onResour ceNane property is used to specify the location of the ehcache
configuration file to be used with the given Hibernate instance and cache provider/region-factory.

The resource is searched for in the root of the classpath. It is used to support multiple CacheManagers
in the same VM. It tells Hibernate which configuration to use. An example might be "ehcache-2.xml".

When using multiple Hibernate instances it is therefore recommended to use multiple non-singleton
providers or region factories, each with a dedicated Ehcache configuration resource.

net . sf. ehcache. confi gur ati onResour ceName=/ nane_of _ehcache. xm

17.1.6.2 Set the Hibernate cache provider programmatically

The provider can also be set programmatically in Hibernate by adding necessary Hibernate property
settings to the configuration before creating the SessionFactory:

Confi guration. set Property("hibernate.cache.region.factory_cl ass",
"net . sf.ehcache. hi ber nat e. EhCacheRegi onFact ory")

17.1.7 Putting it all together

If you are using Hibernate 3.3 and enabling both second level caching and query caching, then your
hibernate config file should contain the following:

<property nane="hi bernate. cache. use_second_| evel _cache">true</property>

<property nane="hi bernate. cache. use_query_cache" >t rue</ property>

<property nane="hi bernate. cache.region.factory_cl ass">net. sf. ehcache. hi ber nat e. EhCacheR
property>

An equivalent Spring configuration file would contain:

<prop key="hi bernate.cache.use_second | evel cache">true</prop>
<prop key="hi bernate.cache.use_query_cache" >t rue</ prop>
<prop key="hi bernate. cache.region.factory_class">net. sf.ehcache. hi bernat e. EhCacheRegi on

prop>

17.1.8 Configure Hibernate Entities to use Second Level Caching

In addition to configuring the Hibernate second level cache provider, Hibernate must aso be told to
enable caching for entities, collections, and queries.

For example, to enable cache entries for the domain object
com.somecompany.someproject.domain.Country there would be a mapping file something like the
following:

<hi ber nat e- mappi ng>
<cl ass
nane="com sonmeconpany. somepr oj ect . donai n. Country"

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

17 Hibernate Caching 74

tabl e="ut _Countri es"

dynam c- updat e="f al se"

dynam c-i nsert="fal se"
>

</ cl ass>
</ hi ber nat e- mappi ng>
To enable caching, add the following element.

<cache usage="read-wite|nonstrict-read-wite|read-only" />
eg.

<hi ber nat e- mappi ng>
<cl ass
nanme="com sonmeconpany. sonepr oj ect. donmai n. Country"
tabl e="ut _Countries"
dynam c- updat e="f al se"
dynam c-insert="fal se"
>

<cache usage="read-wite" />
</ cl ass>
</ hi ber nat e- mappi ng>
This can also be achieved using the @Cache annotation, e.g.
@ntity

@ache(usage = CacheConcurrencyStrat egy. READ WRI TE)
public class Country {

}

17.1.8.1 Definition of the different cache strategies

17.read-only
Caches data that is never updated.

17.nonstrict-read-write

Caches data that is sometimes updated without ever locking the cache. If concurrent accessto an item
is possible, this concurrency strategy makes no guarantee that the item returned from the cache is the
latest version available in the database. Configure your cache timeout accordingly!

17.read-write

Caches data that is sometimes updated while maintaining the semantics of "read committed" isolation
level. If the database is set to "repeatable read”, this concurrency strategy almost maintains the
semantics. Repeatabl e read isolation is compromised in the case of concurrent writes.

17.1.9 Configure ehcache.xml

Because ehcache.xml has a defaultCache, caches will always be created when required by Hibernate.
However more control can be exerted by specifying a configuration per cache, based on its name.

In particular, because Hibernate caches are populated from databases, there is potential for them to get
very large. This can be controlled by capping their maxElementsinMemory and specifying whether to
overflowToDisk beyond that.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

17 Hibernate Caching 75

Hibernate uses a specific convention for the naming of caches of Domain Objects, Collections, and
Queries.

17.1.9.1 Domain Objects
Hibernate creates caches named after the fully qualified name of Domain Objects.

So, for example to create a cache for com.somecompany.someproject.domain.Country create a cache
configuration entry similar to the following in ehcache.xml.

<?xm version="1.0" encodi ng="UTF-8"7?>
<ehcache>
<cache
nanme="com sonmeconpany. sonepr oj ect. donmai n. Country"
maxEl enent s| nMenor y="10000"
et ernal ="fal se"
ti meTol dl eSeconds=" 300"
ti meToLi veSeconds=" 600"
over f | owToDi sk="true"
/>
</ ehcache>

17.1.9.2 Hibernate

CacheConcurrencyStrategy read-write, nonstrict-read-write and read-only policies apply to Domain
Objects.

17.1.9.3 Collections

Hibernate creates collection caches named after the fully qualified name of the Domain Object
followed by "." followed by the collection field name.

For example, a Country domain object has a set of advancedSearchFacilities. The Hibernate doclet for
the accessor looks like:
/ * %
* Returns the advanced search facilities that should appear for this country.
* @i bernate.set cascade="all" inverse="true"
* @i bernate. collection-key col um="COUNTRY_| D'
* @i bernate.collection-one-to-
many cl ass="com wotif.jaguar.donmai n. AdvancedSear chFacility"
* @i bernate. cache usage="read-wite"
*/
public Set get AdvancedSearchFacilities() {
return advancedSearchFacilities;

}
Y ou need an additional cache configured for the set. The ehcache.xml configuration looks like:

<?xm version="1.0" encodi ng="UTF-8""?>
<ehcache>
<cache nane="com someconpany. sonmepr oj ect . donai n. Country"
maxEl ement sl nMenor y="50"
eternal ="fal se"
ti meToLi veSeconds="600"
overfl owToDi sk="true"
/>
<cache

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

17 Hibernate Caching 76

nanme="com sonmeconpany. sonepr oj ect. donai n. Country. advancedSear chFaci l i ti es"
maxEl enent sl nMenor y=" 450"
eternal ="fal se"
ti meToLi veSeconds="600"
over fl owToDi sk="true"
/>
</ ehcache>

17.1.9.4 Hibernate CacheConcurrencyStrategy
read-write, nonstrict-read-write and read-only policies apply to Domain Object collections.

17.1.9.5 Queries
Hibernate allows the caching of query results using two caches.

"net.sf.hibernate.cache.StandardQueryCache" and "net.sf .hibernate.cache.UpdateTimestampsCache"
inversions 2.1 to 3.1 and "org.hibernate.cache.StandardQueryCache" and
"org.hibernate.cache.UpdateTimestampsCache" in version 3.2. are always used.

17.1.9.6 StandardQueryCache

This cacheisused if you use a query cache without setting a name. A typical ehcache.xml
configuration is:

<cache
nanme="or g. hi ber nat e. cache. St andar dQuer yCache"
maxEl enent s| nMenor y="5"
eternal ="fal se"
ti meToLi veSeconds="120"
over f | owToDi sk="true"/>

17.1.9.7 UpdateTimestampsCache

Tracks the timestamps of the most recent updates to particular tables. It isimportant that the cache
timeout of the underlying cache implementation be set to a higher value than the timeouts of any of
the query caches. In fact, it is recommend that the the underlying cache not be configured for expiry at

A typical ehcache.xml configurationiis:

<cache
nanme="or g. hi ber nat e. cache. Updat eTi nest anpsCache"
maxEl enent s| nMenor y="5000"
eternal ="true"
over fl owToDi sk="true"/>

17.1.9.8 Named Query Caches

In addition, a QueryCache can be given a specific name in Hibernate using
Query.setCacheRegion(String name). The name of the cache in ehcache.xml is then the name given
in that method. The name can be whatever you want, but by convention you should use "query."
followed by a descriptive name.

E.g.

<cache nane="query. Adm ni strati veAreasPer Country"
maxEl enent sl nMenor y="5"
eternal ="fal se"

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

17 Hibernate Caching 77

ti mneToLi veSeconds="86400"
over fl owToDi sk="true"/>

17.1.9.9 Using Query Caches
For example, let's say we have a common guery running against the Country Domain.

Code to use aquery cache follows:

public List getStreetTypes(final Country country) throws Hi bernateException {
final Session session = createSession();

try {

final Query query = session.createQuery(
"select st.id, st.nanme"
+ " from Street Type st
+ " where st.country.id = :countryld "
+ " order by st.sortOrder desc, st.name");
qguery. setLong("countryld", country.getld().!|ongValue());
guery. set Cacheabl e(true);
guery. set CacheRegi on("query. Street Types");
return query.list();

} finally {
sessi on. cl ose();

}

}
Thequery. set Cacheabl e(t rue) line cachesthe query.

Thequery. set CacheRegi on("query. Street Types") line setsthe name of the Query Cache.
Alex Miller has agood article on the query cache here.

17.1.9.10 Hibernate CacheConcurrencyStrategy

None of read-write, nonstrict-read-write and read-only policies apply to Domain Objects. Cache
policies are not configurable for query cache. They act like a non-locking read only cache.

17.1.10 Demo Apps
We have demo applications showing how to use the Hibernate 3.3 CacheRegionFactory.

17.1.10.1 Hibernate Tutorial

Check out from https://svn.terracotta.org/repo/forge/projects/hibernate-tutorial -web/trunk
terracotta_community_login

17.1.10.2 Examinator

Examinator is our complete application that shows many aspects of caching, all using the Terracotta
Server Array.

Check out from http://svn.terracotta.org/svn/forge/projects/exam/trunk terracotta_community _login *
Performance Tips

17.1.10.3 Session.load
Session.load will always try to use the cache.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://tech.puredanger.com/2009/07/10/hibernate-query-cache/
https://svn.terracotta.org/repo/forge/projects/hibernate-tutorial-web/trunk
http://svn.terracotta.org/svn/forge/projects/exam/trunk

17 Hibernate Caching 78

17.1.10.4 Session.find and Query.find

Session.find does not use the cache for the primary object. Hibernate will try to use the cache for any
associated objects. Session.find does however cause the cache to be popul ated.

Query.find works in exactly the same way.

Use these where the chance of getting a cache hit islow.

17.1.10.5 Session.iterate and Query.iterate
Session.iterate always uses the cache for the primary object and any associated objects.

Query.iterate works in exactly the same way.
Use these where the chance of getting a cache hit is high.

17.1.11 How to Scale

Configuring each Hibernate instance with a standal one ehcache will dramatically improve
performance. However most production applications use multiple application instances for
redundancy and for scalability. Ideally applications are horizontally scalable, where adding more
application instances linearly improves throughput.

With an application deployed on multiple nodes, using standal one Ehcache means that each instance
holds its own data. On a cache miss on any node, Hibernate will read from the database. This
generaly resultsin N reads where N is the number of nodesin the cluster. As each new node gets
added database workload goes up. Also, when datais written in one node, the other nodes are
unaware of the data write, and thus subsequent reads of this data on other nodes will result in stale
reads.

The solution isto turn on distributed caching or replicated caching.

Ehcache comes with native cache distribution using the following mechanism:
» Terracotta
Ehcache supports the following methods of cache replication:
* RMI
» JGroups
» JMSreplication
Selection of the distributed cache or replication mechanism may be made or changed at any time.

There are no changes to the application. Only changes to ehcache.xml file are required. This allows an
application to easily scale as it grows without expensive re-architecting.

17.1.12 Configuring Ehcache for distributed caching using Terracotta
Ehcache provides built-in support for Terracotta distributed caching. The following are the key
considerations when selecting this option:

» Simple snap-in configuration with one line of configuration

» Simpleto scale up to as much performance as you need -- no application changes required

» Weadlth of "CAP" configuration options allow you to configure your cache for whatever it needs -
fast, coherent, asynchronous updates, dirty reads etc.

» Thefastest coherent option for caches with reads and writes
» Store as much data as you want - 20GB -> 1TB
e Commercia products and support available from http://www.terracotta.org

Configuring Terracotta replication is described in the Terracotta Documentation. A sample cache
configuration is provided here:

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://www.terracotta.org
http://www.terracotta.org/documentation/ga/distributed-hibernate-install.html

17 Hibernate Caching 79

<?xm version="1.0" encodi ng="UTF-8"7?>
<ehcache>
<terracottaConfig url="Iocal host: 9510" />
<cache
nanme="com sonmeconpany. sonepr oj ect. donmai n. Country"
maxEl enent s| nMenor y="10000"
eternal ="fal se"
ti meTol dl eSeconds="300"
ti meToLi veSeconds="600"
over fl owToDi sk="true">
<terracottal >
</ cache>
</ ehcache>

17.1.13 Configuring Replicated Caching using RMI, JGroups, or JMS

Ehcache can use IMS, JGroups or RMI as a cache replication scheme. The following are the key
considerations when selecting this option:

» The consistency isweak. Nodes might be stale, have different versions or be missing an element
that other nodes have. Y our application should be tolerant of weak consistency.

» session. refresh() should be used to check the cache against the database before performing
awrite that must be correct. This can have a performance inmpact on the database.

» Each nodein the cluster stores all data, thus the cache size islimited to memory size, or disk if
disk overflow is selected.

17.1.13.1 Configuring for RMI Replication

RMI configuration is described in the Ehcache User Guide - RMI Distributed Caching. A sample
cache configuration (using automatic discovery) is provided here:

<?xm version="1.0" encodi ng="UTF-8""?>
<ehcache>
<cacheManager Peer Pr ovi der Fact ory
cl ass="net. sf. ehcache. di stri buti on. RM CacheManager Peer Provi der Fact ory"
properti es="peer D scovery=automatic, multicast G oupAddress=230.0.0.1,
mul ti cast G oupPort =4446, timeToLive=32"/>
<cache
nane="com someconpany. somepr oj ect . donai n. Country"
maxEl ement s| nMenor y="10000"
eternal ="fal se"
ti neTol dl eSeconds="300"
ti meToLi veSeconds="600"
over fl owToDi sk="true">
<cacheEvent Li st ener Factory
cl ass="net . sf. ehcache. di stri buti on. RM CacheRepl i cat or Factory"/ >
</ cache>
</ ehcache>

17.1.13.2 Configuring for JGroups Replication

Configuraging JGroups replication is described in the Ehcache User Guide - Distributed Caching
with JGroups. A sample cache configuration is provided here:

<?xm version="1. 0" encodi ng="UTF-8""?>
<ehcache>

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

17 Hibernate Caching 80

<cacheManager Peer Provi der Factory cl ass="net. sf.ehcache. di stribution.jgroups
. J& oupsCacheManager Peer Pr ovi der Fact or y"
properti es="connect =UDP(ntast addr=231. 12. 21. 132; ntast_port =45566;ip_ttl =32;
nctast _send_buf si ze=150000; ntast _recv_buf _si ze=80000):
PI NGt i meout =2000; num_initial _menbers=6):
MERGE2(m n_i nt er val =5000; max_i nt er val =10000) :
FD_SOCK: VERI FY_SUSPECT(t i meout =1500) :
pbcast . NAKACK(gc_| ag=10;retransnit _ti meout =3000):
UNI CAST(ti meout =5000) :
pbcast . STABLE(desi red_avg_gossi p=20000) :
FRAG
pbcast . GVS(j oi n_ti neout =5000; j oi n_retry_ti meout =2000;
shun=fal se; print_I| ocal addr=true)"
propertySeparator="::"
/>
<cache
nanme="com sonmeconpany. sonepr oj ect. donmai n. Country"
maxEl enent s| nMenor y="10000"
eternal ="fal se"
ti meTol dl eSeconds="300"
ti meToLi veSeconds="600"
over fl owToDi sk="true">
<cacheEvent Li st ener Factory
cl ass="net. sf. ehcache. di stri bution.jgroups. JG oupsCacheRepl i cat or Fact ory"
properties="replicateAsynchronousl y=true, replicatePuts=true,
replicat eUpdat es=true, replicateUpdatesVi aCopy=fal se
replicateRenoval s=true" />
</ cache>
</ ehcache>

17.1.13.3 Configuring for JMS Replication

Configuring IMS replication is described in the Ehcache User Guide - IMS Distributed Caching. A
sample cache configuration (for ActiveMQ) is provided here:

<?xm version="1.0" encodi ng="UTF-8""?>
<ehcache>
<cacheManager Peer Pr ovi der Fact ory
cl ass="net. sf. ehcache. di stri buti on.jns. JIMSCacheManager Peer Pr ovi der Fact ory"
properties="initial ContextFact oryName=Exanpl eActi veMJ ni ti al Cont ext Factory,
provi der URL=t cp:/ /| ocal host: 61616,
t opi cConnecti onFact or yBi ndi ngNanme=t opi cConnecti onFact ory,
t opi cBi ndi ngNane=ehcache"
propertySeparator=","
/>
<cache
nanme="com sonmeconpany. sonepr oj ect. donmai n. Country"
maxEl enent s| nMenor y="10000"
eternal ="fal se"
ti meTol dl eSeconds="300"
ti meToLi veSeconds="600"
over fl owToDi sk="true">
<cacheEvent Li st ener Factory
cl ass="net . sf. ehcache. di stri bution.jns. JMSCacheRepl i cat or Fact ory"

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

17 Hibernate Caching 81

properties="replicateAsynchronousl y=true,
replicatePuts=true,
replicat eUpdat es=true,
repl i cat eUpdat esVi aCopy=t r ue,
replicat eRenoval s=true,
asynchronousReplicationlnterval MI1is=1000"
propertySeparator=","/>
</ cache>
</ ehcache>

17.1.14 FAQ

17.1.14.1 Should | use the provider in the Hibernate distribution or in Ehcache?

Since Hibernate 2.1, Hibernate has included an Ehcache CachePr ovi der . That provider is
periodically synced up with the provider in the Ehcache Core distribution. New features are generally
added in to the Ehcache Core provider and then the Hibernate one.

17.1.14.2 What is the relationship between the Hibernate and Ehcache projects?

Gavin King and Greg Luck cooperated to create Ehcache and include it in Hibernate. Since 2009 Greg
Luck has been acommitter on the Hibernate project so as to ensure Ehcache remains a first-class 2nd
level cache for Hibernate.

17.1.14.3 Does Ehcache support the new Hibernate 3.3 2nd level caching SPI?
Y es. Ehcache 2.0 supports this new API.

17.1.14.4 Does Ehcache support the transactional strategy?
Yes. It was introduced in Ehcache 2.1.

17.1.14.5 Is Ehcache Cluster Safe?

hibernate.org maintains atable listing the providers. While ehcache works as a distributed cache

for Hibernate, it is not listed as"Cluster Safe". What this meansis that "Hibernate's lock and unlock
methods are not implemented. Changes in one node will be applied without locking. This may or may
not be a noticeable problem.

In Ehcache 1.7 when using Terracotta, this cannot happen as access to the clustered cache itself is
controlled with read locks and write locks.

In Ehcache 2.0 when using Terracotta, the lock and unlock methods tie-in to the underlying clustered
cache locks. We expect Ehcache 2.0 to be marked as cluster safe in new versions of the Hibernate
documentation.

17.1.14.6 How are Hibernate Entities keyed?

Hibernate identifies cached Entities viaan object id. Thisis normally the primary key of a database
row.

17.1.14.7 Can you use Identity mode with the Terracotta Server Array

Y ou cannot use identity mode clustered cache with Hibernate. If the cache is exclusively used
by Hibernate we will convert identity mode caches to serialization mode. If the cache cannot be
determined to be exclusively used by Hibernate (i.e. generated from a singleton cache manager) then

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

17 Hibernate Caching 82

an exception will be thrown indicating the misconfigured cache. Serialization modeisin any case the
default for Terracotta clustered caches.

17.1.14.8 1 getor g. hi ber nat e. cache. ReadWiteCache - An itemwas expired by the
cache while it was | ocked error messages. What is it?

Soft locks are implemented by replacing a value with a special type that marks the element as locked,
thus indicating to other threads to treat it differently to anormal element. Thisis used in the Hibernate
Read/Write strategy to force fall-through to the database during the two-phase commit - since we
don't know exactly what should be returned by the cache while the commit isin process (but the db
does).

If a soft-locked Element is evicted by the cache during the 2 phase commit, then once the 2 phase
commit completes the cache will fail to update (since the soft-locked Element was evicted) and the
cache entry will be reloaded from the database on the next read of that object. Thisis obvioudy non-
fatal (we're acache failure here so it should not be a problem).

The only problem it really causes would | imagine be asmall risein db load.
So, in summary the Hibernate messages are not problematic.

The underlying cause is the probabilistic evictor can theoretically evict recently loaded items. This
evictor has been tuned over successive ehcache releases. As aresult thiswarning will happen most
oftenin 1.6, lessoftenin 1.7 and very rarely in 1.8.

Y ou can aso use the deterministic evictor to avoid this problem. Specify thej ava -
Dnet . sf. ehcache. use. cl assi c. | ru=t r ue system property to turn on classic LRU which
contains a deterministic evictor.

17.1.14.9 | get java.lang.ClassCastException: org.hibernate.cache.ReadWriteCache$ltem incompatible
with net.sf.ehcache.hibernate.strategy.AbstractReadWriteEhcacheAccessStrategy$Lockable

Thisisthetell-tale error you get if you are:

 using a Terracotta cluster with Ehcache

 you have upgraded part of the cluster to use net.sf.ehcache.hibernate. EhCacheRegionFactory but
part of itis till using the old SPI of EhCacheProvider.

* you are upgrading a Hibernate version
Ensure you have changed all nodes and that you clear any caches during the upgrade.

17.1.14.10 Are compound keys supported?
For standalone caching yes. With Terracotta alarger amount of memory is used.

17.1.14.11 Why do | not see replicated data when using nonstrict mode?

Y ou may thing that Hibernate's nonstrict mode isjust like read-write but with dirty reads. The truth
is far more complex than that. Suffice to say, in nonstrict mode, Hibernate puts the object in the
appropriate cache but then IMMEDIATELY removesit. The PUT and the REMOVE are BOTH
replicated by ehcache so the net effect of that is the new object is copied to remote cache but then it's
immediately followed by areplicated remove # so the next time you try get the object it's not in cache
and hibernate goes back to the DB.

So, practically thereis no point using nonstrict mode with replicated or distributed caches. If you want
the updated entry to be replicated or distributed use readwrite or transactional.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

18

18 Web Caching 83

Web Caching

18.1 Web Caching
Ehcache provides a set of general purpose web caching filtersin the encache- web module.

Using these can make an amazing difference to web application performance. A typica server

can deliver 5000+ pages per second from the page cache. With built-in gzipping, storage and
network transmission is highly efficient. Cache pages and fragments make excellent candidates for
Di skSt or e storage, because the object graphs are simple and the largest part isalready abyt e[] .

18.1.1 SimplePageCachingFilter

Thisis asimple caching filter suitable for caching compressable HTTP responses such as HTML,
XML or JSON.

It uses a Singleton CacheManager created with the default factory method. Override to use a different
CacheManager

It issuitable for:
» complete responsesi.e. not fragments.
* A content type suitable for gzipping. e.g. text or text/html
For fragments see the SimplePageFragmentCachingFilter.

18.1.2 Keys

Pages are cached based on their key. The key for this cacheis the URI followed by the query string.
An exampleis/ adnm n/ SonePage. j sp?i d=1234&nane=Beagl e.

This key technique is suitable for awide range of uses. It isindependent of hostname and port
number, so will work well in situations where there are multiple domains which get the same content,
or where users access based on different port numbers.

A problem can occur with tracking software, where unique ids are inserted into request

guery strings. Because each request generates a unique key, there will never be a

cache hit. For these situations it is better to parse the request parameters and override

cal cul at eKey(j avax. servl et. http. Ht pServl et Request) with animplementation that
takes account of only the significant ones.

18.1.3 Configuring the cacheName
A cache entry in ehcache.xml should be configured with the name of the filter.

Names can be set using the init-param cacheNane, or by sub-classing this class and overriding the
name.

18.1.4 Concurrent Cache Misses

A cache misswill cause the filter chain, upstream of the caching filter to be processed. To avoid
threads requesting the same key to do useless duplicate work, these threads block behind the first
thread.

The thead timeout can be set to fail after a certain wait by setting the init-param

bl ocki ngTi meout M | | i s. By default threads wait indefinitely. In the event upstream processing
never returns, eventually the web server may get overwhelmed with connections it has not responded
to. By setting atimeout, the waiting threads will only block for the set time, and then throw a @link

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

18 Web Caching 84

net.sf.ehcache.constructs.bl ocking.L ock TimeoutException. Under either scenario an upstream failure
will still cause afailure.

18.1.5 Gzipping
Significant network efficiencies, and page loading speedups, can be gained by gzipping responses.
Whether a response can be gzipped depends on:

» Whether the user agent can accept GZIP encoding. Thisfeature is part of HTTP1.1. If a browser
accepts GZIP encoding it will advertise this by including in its HTTP header: All common
browsers except |E 5.2 on Macintosh are capable of accepting gzip encoding. Most search engine
robots do not accept gzip encoding.

» Whether the user agent has advertised its acceptance of gzip encoding. Thisison a per request
basis. If they will accept agzip response to their request they must include the following in the
HTTP request header:

Accept - Encodi ng: gzip
Responses are automatically gzipped and stored that way in the cache. For requests which do not
accept gzip encoding the page is retrieved from the cache, ungzipped and returned to the user
agent. The ungzipping is high performance.

18.1.6 Caching Headers

The Si npl eCachi ngHeader sPageCachi ngFi | t er extends Si npl ePageCachi ngFi | ter to
provide the HTTP cache headers. ETag, Last-Modified and Expires. It supports conditional GET.

Because browsers and other HTTP clients have the expiry information returned in the response
headers, they do not even need to request the page again. Even once the local browser copy has
expired, the browser will do a conditional GET.

So why would you ever want to use SimplePageCachingFilter, which does not set these headers? The
answer isthat in some caching scenarios you may wish to remove a page before its natural expiry.
Consider a scenario where a web page shows dynamic data. Under Ehcache the Element can be
removed at any time. However if abrowser is holding expiry information, those browsers will have to
wait until the expiry time before getting updated. The caching in this scenario is more about defraying
server load rather than minimising browser calls.

18.1.7 Init-Params
The following init-params are supported:

» cacheNane - the namein ehcache.xml used by the filter.

* bl ocki ngTi neout M | |i s - thetime, in milliseconds, to wait for the filter chain to return with
aresponse on acache miss. Thisis useful to fail fast in the event of an infrastructure failure.

» varyHeader - et totrueto set Vary:Accept-Encoding in the response when doing Gzip. This
header is needed to support HTTP proxies however it is off by default.
<init-paranp
<par am nane>var yHeader </ par am nanme>
<par am val ue>t r ue</ par am val ue>
</init-paranr

18.1.8 Re-entrance

Care should be taken not to define afilter chain such that the same Cachi ngFi | t er classis
reentered. The Cachi ngFi | t er usesthe Bl ocki ngCache. It blocks until the thread which
did aget which resultsin anull does a put. If reentry happens a second get happens before the

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

18 Web Caching 85

first put. The second get could wait indefinitely. This situation is monitored and if it happens, an
I1legal StateException will be thrown.

18.1.9 SimplePageFragmentCachingFilter

The SimplePageFragmentCachingFilter does everyting that SimplePageCachingFilter does, except
it never gzips, so the fragments can be combined. Thereis variant of thisfilter which sets browser
caching headers, because that is only applicable to the entire page.

18.1.10 Example web.xml configuration

<web-app xm ns="http://java.sun.com xm /ns/javaee"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://java. sun. coni xm / ns/ j avaee
http://java. sun.coni xnm / ns/javaee/ web-app_2 5. xsd "
version="2.5">

<filter>
<filter-nane>CachePagelCachi ngFilter</filter-nanme>
<filter-

cl ass>net. sf. ehcache. constructs. web.filter. Si npl ePageCachi ngFilter
</[filter-class>
<init-paranp
<par am nanme>suppr essSt ackTr aces</ par am nane>
<par am val ue>f al se</ param val ue>
</init-paranpr
<init-paranp
<par am nane>cacheNane</ par am nane>
<par am val ue>CachePagelCachi ngFi | t er </ par am val ue>
</init-paranpr
</filter>
<filter>
<filter-nane>Si npl ePageFragnent Cachi ngFilter</filter-nanme>
<filter-
cl ass>net. sf. ehcache. constructs. web. filter.Si npl ePageFr agnment Cachi ngFi | t er
</[filter-class>
<init-paranp
<par am nanme>suppr essSt ackTr aces</ par am nane>
<par am val ue>f al se</ param val ue>
</init-paranpr
<init-paranp
<par am nane>cacheNane</ par am nane>
<par am val ue>Si npl ePageFr agnment Cachi ngFi | t er </ param val ue>
</init-paranpr
</filter>
<filter>
<filter-nanme>Si npl eCachi ngHeader sPageCachi ngFilter</filter-nanme>
<filter-
cl ass>net. sf. ehcache. constructs. web.filter. Si nmpl eCachi ngHeader sPageCachi ngFi |l ter
</[filter-class>
<init-paranp
<par am nanme>suppr essSt ackTr aces</ par am nane>
<par am val ue>f al se</ par am val ue>
</init-paranpr
<init-paranp

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

18 Web Caching

<par am nane>cacheNane</ par am nane>
<par am val ue>CachedPage2Cache</ par am val ue>
</init-paranp

</filter>
<l-- This is a filter chain. They are executed in the order bel ow
Do not change the order. -->

<filter-mppi ng>
<filter-name>CachePagelCachingFilter</filter-nanme>
<url - patt er n>/ CachedPage. j sp</url - pattern>
<di spat cher >REQUEST</ di spat cher >
<di spat cher >l NCLUDE</ di spat cher >
<di spat cher >FORWARD</ di spat cher >
</filter-mppi ng>
<filter-mppi ng>
<filter-name>Si npl ePageFr agnent CachingFilter</filter-nanme>
<url -pattern>/include/ Footer.jsp</url-pattern>
</filter-mppi ng>
<filter-mppi ng>
<filter-name>Si npl ePageFr agnent CachingFilter</filter-nanme>
<url - pattern>/fragment/ CachedFragnent.jsp</url-pattern>
</filter-mppi ng>
<filter-mppi ng>
<filter-name>Si npl eCachi ngHeader sPageCachi ngFilter</filter-nane>
<url - pattern>/ CachedPage2. j sp</url -pattern>
</filter-mppi ng>
An ehcache.xml configuration file, matching the above would then be:

<Ehcache xm ns: xsi="http://ww. w3. org/ 2001/ XM_Schena-i nst ance"
xsi : noNanmespaceSchemaLocati on="../../main/confi g/ ehcache. xsd">

<di skStore path="java.io.tnpdir"/>
<def aul t Cache

maxEl emrent s| nMenor y="10"

eternal ="fal se"

ti meTol dl eSeconds="5"

ti meToLi veSeconds="10"

over fl owToDi sk="true"

/>
<l-- Page and Page Fragnent Caches -->
<cache nane="CachePagelCachi ngFilter"

maxEl emrent s| nMenor y="10"

eternal ="fal se"

ti meTol dl eSeconds="10000"

ti meToLi veSeconds="10000"

over fl owToDi sk="true">
</ cache>
<cache nane="CachedPage2Cache"

maxEl emrent s| nMenor y="10"

eternal ="fal se"

ti meToLi veSeconds="3600"

over f |l owToDi sk="true" >
</ cache>
<cache nane="Si npl ePageFr agment Cachi ngFil ter"

maxEl emrent s| nMenor y="10"

eternal ="fal se"

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

18 Web Caching 87

ti meTol dl eSeconds="10000"
ti meToLi veSeconds="10000"
over f | owToDi sk="t rue" >

</ cache>

<cache nane="Si npl eCachi ngHeader sTi neout PageCachi ngFil ter"
maxEl enent sl nMenor y="10"
eternal ="f al se"
ti meTol dl eSeconds="10000"
ti meToLi veSeconds="10000"
over f | owToDi sk="t rue" >

</ cache>

</ ehcache>

18.1.11 CachingFilter Exceptions
Additional exception types have been added to the Caching Filter.

18.1.11.1 FilterNonReentrantException

Thrown when it is detected that a caching filter's doFilter method is reentered by the same thread.
Reentrant callswill block indefinitely because the first request has not yet unblocked the cache.
Nasty.

18.1.11.2 AlreadyGzippedException

The web package performs gzipping operations. One cause of problems on web browsersis getting
content that is double or triple gzipped. They will either get gobblydeegook or a blank page. This
exception is thrown when a gzip is attempted on already gzipped content.

18.1.11.3 ResponseHeadersNotModifiableException

A gzip encoding header needs to be added for gzipped content. The HttpServletResponsettsetHeader()
method is used for that purpose. If the header had already been set, the new value normally overwrites
the previous one. In some cases according to the servlet specification, setHeader silently fails. Two
scenarios where this happens are:

* Theresponse is committed.
» RequestDispatcher#include method caused the request.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

19

19 Using ColdFusion with Ehcache 88

Using ColdFusion with Ehcache

19.1 Using Ehcache with ColdFusion

19.1.1 Which version of Ehcache comes with which version of ColdFusion?

ColdFusion now ships with Ehcache. Here are the versions shipped:
» ColdFusion 9.0.1 includes Ehcache 2.0 out-of-the-box
e ColdFusion 9 includes Ehcache 1.6 out-of-the-box

» ColdFusion 8 caching was not built on Ehcache, but Ehcache can easily be integrated with a CF8
application (see below).

19.1.2 Which version of Ehcache should | use if | want a distributed cache?

Ehcache is designed so that applications written to use it can easily scale out. A standalone cache (the
default in ColdFusion 9) can easily be distributed. A distributed cache solves database bottleneck
problems, cache drift (where the data cached in individual application server nodes becomes out of
sync), and also (when using the recommended 2-tier Terracotta distributed cache) provides the ability
to have a highly available, coherent in-memory cache that is far larger than can fit in any single VM
heap. See http://ehcache.org/documentation/distributed_caching.html for details.

Note: Ehcache 1.7 and higher support the Terracotta distributed cache out of the box. Due to
Ehcache's API backward compatibility, it is easy to swap out older versions of ehcache with newer
ones to leverage the features of new releases.

19.1.3 Using Ehcache with ColdFusion 9 and 9.0.1

The ColdFusion community has actively engaged with Ehcache and have put out lots of great blogs.
Here are three to get you started.

For a short introduction - check out Raymond Camden's blog: http://www.col df usionjedi.com/
index.cfm/2009/7/18/Col dFusi on-9-and-Caching-Enhancements

For more in-depth analysis read Rob Brooks-Bilson's awesome 9 part Blog Series: http://
www . brooks-hil son.com/blogs/rob/index.cfm/2009/7/21/Caching-Enhancements-in-Col dFusion-9--
Part-1-Why-Cache

14 days of ColdFusion caching, by Aaron West, covering a different topic each day: http://
www.aaronwest.net/blog/index.cfm/2009/11/17/14-Days-of - Col dFusi on-9-Caching-Day- 1--Caching-
a-Full-Page

19.1.4 Switching from a local cache to a distributed cache with ColdFusion 9.0.1

1. http://www.terracotta.org/dl. Click the link to the open-source kit if you are using open source and
getterracotta-<version>-installer.jar.

Install the kit with 'java -jar terracotta-<version>-installer.jar'. We will refer to the directory you
installed it into as TCHOME. Similarly, we will refer to the location of ColdFusion as CFHOME.
These instructions assume you are working with a standal one server install of ColdFusion; if working
with aEAR/WAR install you will need to modify the steps accordingly (file locations may vary and
additional steps may be needed to rebuild the EAR/WAR).

Before integrating the distributed cache with ColdFusion, you may want to follow the simple self-
contained tutorial which uses one of the samplesin the kit to demonstrate distributed caching: http://
www.terracotta.org/start/distributed-cache-tutorial

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://ehcache.org/documentation/distributed_caching.html
http://www.coldfusionjedi.com/index.cfm/2009/7/18/ColdFusion-9-and-Caching-Enhancements
http://www.coldfusionjedi.com/index.cfm/2009/7/18/ColdFusion-9-and-Caching-Enhancements
http://www.brooks-bilson.com/blogs/rob/index.cfm/2009/7/21/Caching-Enhancements-in-ColdFusion-9--Part-1-Why-Cache
http://www.brooks-bilson.com/blogs/rob/index.cfm/2009/7/21/Caching-Enhancements-in-ColdFusion-9--Part-1-Why-Cache
http://www.brooks-bilson.com/blogs/rob/index.cfm/2009/7/21/Caching-Enhancements-in-ColdFusion-9--Part-1-Why-Cache
http://www.aaronwest.net/blog/index.cfm/2009/11/17/14-Days-of-ColdFusion-9-Caching-Day-1--Caching-a-Full-Page
http://www.aaronwest.net/blog/index.cfm/2009/11/17/14-Days-of-ColdFusion-9-Caching-Day-1--Caching-a-Full-Page
http://www.aaronwest.net/blog/index.cfm/2009/11/17/14-Days-of-ColdFusion-9-Caching-Day-1--Caching-a-Full-Page
http://www.terracotta.org/start/distributed-cache-tutorial
http://www.terracotta.org/start/distributed-cache-tutorial

19 Using ColdFusion with Ehcache 89

2. Copy TCHOM E/ehcache/lib/ehcache-terracotta-<version>.jar into CFHOME/lib

3. Edit the CFHOME/lib/ehcache.xml to add the necessary two lines of config to turn on distributed
caching

<terracottaConfig url="Iocal host: 9510"/ >
<def aul t Cache
>
<terracotta clustered="true" />
</ def aul t Cache>

4. Edit jvm.config (typically in CFHOM E/runtime/bin) properties to ensure that coldfusion.classPath
(set with -Dcoldfusion.classPath= in java.args) DOES NOT include any relative paths (ie ../) -

ie replace the relative paths with full paths (Thisis to work around a known issue in ehcache-
terracotta-2.0.0.jar).

5. Start the Terracotta server in a*NIX shell or Microsoft Windows:

$TCHOVE/ bi n/ start-tc-server.sh
start-tc-server. bat

Note: In production, you would run your servers on a set of separate machines for fault tolerance and
performance.

6. Start ColdFusion, access your application, and see the distributed cache in action.

7. Thisisjust thetip of theiceberg & you'll probably have lots of questions. Drop us an email to
info@terracottatech.com to let us know how you got on, and if you have questions you'd like answers
to.

19.1.5 Using Ehcache with ColdFusion 8

To integrate Ehcache with ColdFusion 8, first add the ehcache-core jar (and its dependent jars) to your
web application lib directory.

The following code demonstrates how to call Ehcache from ColdFusion 8. It will cache a CF object
in Ehcache and the set expiration time to 30 seconds. If you refresh the page many times within 30
seconds, you will see the data from cache. After 30 seconds, you will see a cache miss, then the code
will generate a new object and put in cache again.

<CFOBJECT type="JAVA" cl ass="net.sf.ehcache. CacheManager" nane="cacheManager" >
<cfset cache=cacheManager. getl nstance(). get Cache(" MyBookCache") >
<cfset nyBookEl ement =#cache. get (" nyBook") #>
<cfif |sDefined("nyBookEl ement") >
<cf out put >
nmyBookEl erent : #nmyBookE!l enent #

</ cf out put >
<cfif IsStruct(nyBookEl enent. get Cbj ect Val ue()) >
Cache Hit<p/>
<l-- Found the object fromcache -->
<cfset nyBook = #nyBookEl enent. get Cbj ect Val ue() #>
</cfif>
</cfif>
<cfif |sDefined("nyBook")>
<cfel se>
Cache M ss
<l-- object not found in cache, go ahead create it -->
<cfset nyBook = StructNew() >

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

19 Using ColdFusion with Ehcache 90

<cfset a = Structlnsert(myBook, "cacheTinme", LSTi neFornmat(Now(), 'hh:mmsstt'),
<cfset a = Structlnsert(myBook, "title", "EhCache Book", 1)>

<cfset a = Structlnsert(myBook, "author", "G eg Luck", 1)>

<cfset a = Structlnsert(myBook, "ISBN', "ABCD123456", 1)>

<CFOBJECT type="JAVA" cl ass="net.sf.ehcache. El enent" nane="nyBookEl enent">
<cfset nyBookEl enent.init("nyBook", myBook)>
<cfset cache. put (nyBookEl enent) >

</cfif>

<cf out put >

Cache tine: #nmyBook["cacheTi ne"] #

Title: #nyBook["title"]#

Aut hor: #nmyBook["aut hor "] #

| SBN: #myBook["I SBN'] #

</ cf out put >

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

20

20 Cache Topologies 91

Cache Topologies

20.1 Distributed and Replicated Caching

Many production applications are deployed in clusters of multiple instances for availability and
scalability. However, without a distributed or replicated cache, application clusters exhibit a number
of undesirable behaviors, such as:

» Cache Drift--if each application instance maintains its own cache, updates made to one cache
will not appear in the other instances. This also happens to web session data. A distributed or
replicated cache ensures that al of the cache instances are kept in sync with each other.

» Database Bottlenecks--In a single-instance application, a cache effectively shields a database
from the overhead of redundant queries. However, in a distributed application environment,
each instance much load and keep its own cache fresh. The overhead of loading and refreshing
multiple caches leads to database bottlenecks as more application instances are added. A
distributed or replicated cache eliminates the per-instance overhead of loading and refreshing
multiple caches from a database.

20.1.1 Distributed Caching

Ehcache comes bundled with a distributed caching mechanism using Terracotta that enables multiple
CacheManagers and their cachesin multiple JV Ms to share data with each other. Adding distributed
caching to Ehcache takes only two lines of configuration.

Using Terracotta for Ehcache distributed caching is the recommended method of operating Ehcache
in adistributed or scaled-out application environment. It provides the highest level of performance,
availability, and scalability. Asthe maintainers of Ehcache, the Terracotta devel opment team has
invested million of hours devel oping Ehcache and its distributed cache capabilities.

To get started, see the Distributed Caching With Terracotta chapter.

20.1.2 Replicated Caching

In addition to the built-in distributed caching, Ehcache has a pluggable cache replication scheme
which enables the addition of cache replication mechanisms.

The following additional replicated caching mechanisms are available:

¢ RMI
» JGroups
¢« JMS
» Cache Server
Each of theis covered in its own chapter.

One solution is to replicate data between the caches to keep them consistent, or coherent. Typical
operations which Applicable operations include:

* put
* update (put which overwrites an existing entry)
* remove

Update supports updateViaCopy or updateVialnvalidate. The latter sends the a remove message out to
the cache cluster, so that other caches remove the Element, thus preserving coherency. It istypically a
lower cost option than a copy.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

20 Cache Topologies 92

20.1.2.1 Using a Cache Server
Ehcache 1.5 supports the Ehcache Cache Server.

To achieve shared data, all IVMs read to and write from a Cache Server, which runsit in its own
VM.

To achieve redundancy, the Ehcache inside the Cache Server can be set up in its own cluster.
This technique will be expanded upon in Ehcache 1.6.

20.1.2.2 Notification Strategies
The best way of notifying of put and update depends on the nature of the cache.

If the Element is not available anywhere el se then the Element itself should form the payload of the
notification. An example is a cached web page. This notification strategy is called copy.

Where the cached datais available in a database, there are two choices. Copy as before, or invalidate
the data. By invalidating the data, the application tied to the other cache instance will be forced to
refresh its cache from the database, preserving cache coherency. Only the Element key needs to be
passed over the network.

Ehcache supports notification through copy and invalidate, selectable per cache.

20.1.2.3 Potential Issues with Replicated Caching

20.Potential for Inconsistent Data
Timing scenarios, race conditions, delivery, reliability constraints and concurrent updates to the same
cached data can cause inconsistency (and thus alack of coherency) across the cache instances.

This potential exists within the Ehcache implementation. These issues are the same aswhat is seen
when two compl etely separate systems are sharing a database; a common scenario.

Whether datainconsistency is a problem depends on the data and how it is used. For those times when
it isimportant, Ehcache provides for synchronous delivery of puts and updates viainvalidation. These
are discussed below:

20.Synchronous Delivery

Delivery can be specified to be synchronous or asynchronous. Asynchronous delivery gives faster
returns to operations on the local cache and is usually preferred. Synchronous delivery adds time to
the local operation, however delivery of an update to all peersin the cluster happens before the cache
operation returns.

20.Put and Update via Invalidation

The default is to update other caches by copying the new value to them. If the replicatePutsViaCopy
property is set to false in the replication configuration, puts are made by removing the element in
any other cache peers. If the replicateUpdatesViaCopy property is set to false in the replication
configuration, updates are made by removing the element in any other cache peers.

This forces the applications using the cache peers to return to a canonical source for the data.
A similar effect can be obtained by setting the element TTL to alow value such as a second.

Note that these features impact cache performance and should not be used where the main purpose of
a cache is performance boosting over coherency.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

20 Cache Topologies 93

20.Use of Time To Ildle

Time To Idleisinconsistent with replicated caching. Time-to-idle makes some entries live longer on
some nodes than in others because of cache usage patterns. However, the cache entry "last touched"
timestamp is not replicated across the distributed cache.

Do not use Time To Idle with distributed caching, unless you do not care about inconsistent data
across nodes.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

21 Replicated Caching With RMI 94

21 Replicated Caching With RMI

Application
Server 2

Application
Server 1

RMI RMI

’ __."'-_--\"\-_.-' .__<’
-'.-...

Put, Ren&n?e, Remnvehll{ Bootstrap
(Sync orfsync)

RMI RMI

Application
Server 3

Application
Server 4 | Ehcache

Since version 1.2, Ehcache has provided replicated caching using RMI.

An RMI implementation is desirable because:

it itself isthe default remoting mechanism in Java
itis mature
it allows tuning of TCP socket options

Element keys and values for disk storage must already be Serializable, therefore directly
transmittable over RMI without the need for conversion to athird format such as XML.

it can be configured to pass through firewalls

RMI had improvements added to it with each release of Java, which can then be taken advantage
of.

While RMI is a point-to-point protocol, which can generate alot of network traffic, Ehcache manages
this through batching of communications for the asynchronous replicator.

To set up RMI replicated caching you need to configure the CacheManager with:

a PeerProvider

a CacheManagerPeerListener

The for each cache that will be replicated, you then need to add one of the RMI
cacheEventListener types to propagate messages.

Y ou can also optionally configure a cache to bootstrap from other cachesin the cluster.

©2011, Terracotta, Inc. » ALL RIGHTS RESERVED.

21 Replicated Caching With RMI 95

21.1.1 Suitable Element Types
Only Serializable Elements are suitable for replication.

Some operations, such as remove, work off Element keys rather than the full Element itself. In this
case the operation will be replicated provided the key is Serializable, even if the Element is not.

21.1.2 Configuring the Peer Provider

21.1.2.1 Peer Discovery

Ehcache has the notion of agroup of caches acting as areplicated cache. Each of the cachesis a peer
to the others. There is no master cache. How do you know about the other caches that are in your
cluster? This problem can be given the name Peer Discovery.

Ehcache provides two mechanisms for peer discovery, just like a car: manual and automatic.

To use one of the built-in peer discovery mechanisms specify the

class attribute of cacheManager Peer Pr ovi der Fact ory as

net . sf. ehcache. di stri buti on. RM CacheManager Peer Pr ovi der Fact ory inthe
ehcache.xml configuration file.

21.1.2.2 Automatic Peer Discovery

Automatic discovery uses TCP multicast to establish and maintain a multicast group. It features
minimal configuration and automatic addition to and deletion of members from the group. No a priori
knowledge of the serversin the cluster isrequired. Thisis recommended as the default option.

Peers send heartbeats to the group once per second. If a peer has not been heard of for 5 secondsitis
dropped from the group. If a new peer starts sending heartbeats it is admitted to the group.

Any cache within the configuration set up as replicated will be made available for discovery by other
peers.

To set automatic peer discovery, specify the properties attribute of
cacheManager Peer Provi der Fact ory asfollows:

peerDiscovery=automatic multicastGroupAddress=multicast address | multicast host name

multi castGroupPort=port timeToLive=0-255 (See below in common problems before setting this)
hostName= the hostname or IP of the interface to be used for sending and receiving multicast packets
(relevant to mulithomed hosts only)

21.Example

Suppose you have two serversin acluster. Y ou wish to distribute sasmpleCachell and
sampleCachel2. The configuration required for each server isidentical:
Configuration for serverl and server2

<cacheManager Peer Pr ovi der Fact ory

cl ass="net. sf. ehcache. di st ri buti on. RM CacheManager Peer Pr ovi der Fact or y"
properti es="peerD scovery=automatic, mnulticast G oupAddress=230.0.0.1,
nmul ti cast G oupPort=4446, timeToLive=32"/>

21.1.2.3 Manual Peer Discovery

Manual peer configuration requires the | P address and port of each listener to be known. Peers cannot
be added or removed at runtime. Manual peer discovery is recommended where there are technical
difficulties using multicast, such as a router between serversin acluster that does not propagate

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

21 Replicated Caching With RMI 96

multicast datagrams. Y ou can also use it to set up one way replications of data, by having server2
know about serverl but not vice versa.

To set manual peer discovery, specify the properties attribute of
cacheManager Peer Pr ovi der Fact or y asfollows: peerDiscovery=manual rmiUrls=//server:port/
cacheName, ...

ThermiUrlsisalist of the cache peers of the server being configured. Do not include the server being
configured in the list.

21.Example

Suppose you have two serversin acluster. Y ou wish to distribute sasmpleCachell and
sampleCachel2. Following is the configuration required for each server:

Configuration for serverl

<cacheManager Peer Pr ovi der Fact ory
cl ass="net. sf. ehcache. di st ri buti on. RM CacheManager Peer Pr ovi der Fact ory"
properti es="peer D scovery=nmanual ,
rm Url s=//server2: 40001/ sanpl eCachell|//server2: 40001/ sanpl eCachel2"/ >

Configuration for server2
<cacheManager Peer Pr ovi der Fact ory
cl ass="net. sf. ehcache. di stri buti on. RM CacheManager Peer Provi der Fact ory"

properties="peer D scovery=nanual ,
rm Ul s=//server1l: 40001/ sanpl eCachell|//server1l: 40001/ sanpl eCachel2"/ >

21.1.3 Configuring the CacheManagerPeerListener
A CacheManagerPeerListener listens for messages from peersto the current CacheManager.

Y ou configure the CacheManagerPeerListener by specifiying a CacheM anagerPeerListenerFactory
which is used to create the CacheM anagerPeerListener using the plugin mechanism.

The attributes of cacheManagerPeerListenerFactory are:

» class- afully qualified factory class name * properties - comma separated properties having
meaning only to the factory.
Ehcache comes with a built-in RMI-based distribution system. The listener
component is RM I CacheM anagerPeerListener which is configured using
RMICacheManagerPeerListenerFactory. It is configured as per the following example:

<cacheManager Peer Li st ener Fact ory
cl ass="net . sf. ehcache. di stri buti on. RM CacheManager Peer Li st ener Fact ory"
properties="host Nanme=l ocal host, port=40001,
socket Ti meout M I i s=2000"/ >
Valid properties are:

* hostName (optional) - the hostName of the host the listener is running on. Specify where the host
is multihomed and you want to control the interface over which cluster messages are received.
The hostname is checked for reachability during CacheManager initialisation.

If the hostName is unreachable, the CacheManager will refuse to start and an CacheException
will be thrown indicating connection was refused.

If unspecified, the hostname will use | net Addr ess. get Local Host () . get Host Addr ess(),
which corresponds to the default host network interface.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

21 Replicated Caching With RMI 97

Warning: Explicitly setting thisto localhost refersto the local loopback of 127.0.0.1, whichis
not network visible and will cause no replications to be received from remote hosts. Y ou should
only use this setting when multiple CacheM anagers are on the same machine.

 port (mandatory) - the port the listener listens on.

» socketTimeoutMillis (optional) - the number of seconds client sockets will wait when sending
messages to this listener until they give up. By default thisis 2000ms.

21.1.4 Configuring Cache Replicators

Each cache that will be replicated needsto set a cache event listener which then replicates messagesto
the other CacheManager peers. Thisis done by adding a cacheEventListenerFactory element to each
cache's configuration.

<!-- Sanpl e cache named sanpl eCache2. -->
<cache nane="sanpl eCache2"
maxEl emrent s| nMenor y="10"
eternal ="f al se"
ti meTol dl eSeconds="100"
ti meToLi veSeconds="100"
over fl owToDi sk="f al se">
<cacheEvent Li st ener Fact ory
cl ass="net. sf. ehcache. di stri bution. RM CacheRepl i cat or Fact ory"
properties="replicateAsynchronousl y=true, replicatePuts=true, replicateUpdates=true
repl i cat eUpdat esVi aCopy=f al se, replicateRenoval s=true "/>
</ cache>

class - use net.sf.ehcache.distribution.RM I CacheReplicatorFactory
The factory recognises the following properties:

* replicatePuts=true | false - whether new elements placed in a cache are replicated to others.
Defaults to true.

* replicateUpdates=true | false - whether new elements which override an element already existing
with the same key are replicated. Defaults to true.

* replicateRemovals=true - whether element removals are replicated. Defaults to true.

* replicateAsynchronously=true | false - whether replications are asyncrhonous (true) or
synchronous (false). Defaults to true.

* replicateUpdatesViaCopy=true | false - whether the new elements are copied to other caches
(true), or whether aremove message is sent. Defaults to true.

To reduce typing if you want default behaviour, which is replicate everything in asynchronous mode,
you can leave off the RM CacheRepl i cat or Fact or y properties as per the following example:

<I-- Sanpl e cache naned sanmpl eCache4. Al mi ssing RM CacheReplicatorFactory propert
default to true -->
<cache nane="sanpl eCache4"
maxEl ement sl nMenor y="10"
eternal ="true"
over fl owToDi sk="f al se"
menor ySt or eEvi cti onPol i cy="LFU'>
<cacheEvent Li st ener Fact ory
cl ass="net. sf. ehcache. di stri buti on. RM CacheRepl i cat or Factory"/ >
</ cache>

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

21 Replicated Caching With RMI 98

21.1.5 Configuring Bootstrap from a Cache Peer

When a peer comes up, it will be incoherent with other caches. When the bootstrap completesit will
be partially coherent. Bootstrap gets the list of keys from arandom peer, and then loads those in
batches from random peers. If bootstrap fails then the Cache will not start (not like this right now).
However if a cache replication operation occurs which is then overwritten by bootstrap thereis a
chance that the cache could be inconsistent.

Here are some scenarios:

Delete overwritten by boostrap put --- Cache A keyswithvalues: 1, 2,3, 4,5

Cache B starts bootstrap

Cache A removes key 2

Cache B removes key 2 and then bootstrap puts it back

Put overwritten by boostrap put --- Cache A keyswithvalues: 1, 2, 3,4, 5

Cache B starts bootstrap

Cache A updates the value of key 2

Cache B updates the value of key 2 and then bootstrap overwrites it with the old value

The solution isfor bootstrap to get alist of keys and write them all before committing transactions.

This could cause synchronous transaction replicates to back up. To solve this problem, commits will
be accepted, but not written to the cache until after bootstrap. Coherency is maintained because the
cache is not available until bootstrap has completed and the transactions have been completed.

21.1.6 Full Example

Ehcache's own integration tests provide complete examples of RMI-based replication. The best
example is the integration test for cache replication. Y ou can seeit online here: http://ehcache.org/
xref-test/net/sf/ehcache/distribution/RM | CacheReplicator Test.html

The test uses 5 ehcache.xml's representing 5 CacheManagers set up to replicate using RMI.

21.1.7 Common Problems

21.1.7.1 Tomcat on Windows

Thereisabug in Tomcat and/or the JIDK where any RMI listener will fail to start on Tomcat if the
installation path has spacesin it. See http://archives.java.sun.com/cgi-bin/wa?A 2=ind0205& L =rmi-
users& P=797 and http://www.ontotext.com/kim/doc/sys-doc/fag-howto-bugs/known-bugs.html.

Asthe default on Windows isto install Tomcat in "Program Files', thisissue will occur by default.

21.1.7.2 Multicast Blocking

The automatic peer discovery process relies on multicast. Multicast can be blocked by routers.
Virtualisation technologies like Xen and VMWare may be blocking multicast. If so enableit. You
may also need to turn it on in the configuration for your network interface card.

An easy way to tell if your multicast is getting through is to use the Ehcache remote debugger and
watch for the heartbeat packetsto arrive.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://ehcache.org/xref-test/net/sf/ehcache/distribution/RMICacheReplicatorTest.html
http://ehcache.org/xref-test/net/sf/ehcache/distribution/RMICacheReplicatorTest.html

21 Replicated Caching With RMI 99

21.1.7.3 Multicast Not Propagating Far Enough or Propagating Too Far

Y ou can control how far the multicast packets propagate by setting the badly misnamed time to live.
Using the multicast I P protocol, the timeToLive value indicates the scope or range in which a packet
may be forwarded. By convention:

O is restricted to the same host

1l is restricted to the sanme subnet

32 is restricted to the sane site

64 is restricted to the same region
128 is restricted to the sane continent
255 is unrestricted

The default value in Javais 1, which propagates to the same subnet. Change the timeToLive property
to restrict or expand propagation.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

22 Replicated Caching With JGroups 100

Replicated Caching With JGroups

22.1 Replicated Caching using JGroups

JGroups can be used as the underlying mechanism for the replication operations in ehcache. JGroups
offersavery flexible protocol stack, reliable unicast and multicast message transmission. On the
down side JGroups can be complex to configure and some protocol stacks have dependencies on
others.

To set up replicated caching using JGroups you need to configure a PeerProviderFactory of type
JGroupsCacheM anagerPeerProviderFactory which is done globally for a CacheManager For
each cache that will be replicated, you then need to add a cacheEventListenerFactory of type
JGroupsCacheReplicatorFactory to propagate messages.

22.1.1 Suitable Element Types
Only Serializable Elements are suitable for replication.

Some operations, such as remove, work off Element keys rather than the full Element itself. In this
case the operation will be replicated provided the key is Serializable, even if the Element is not.

22.1.2 Peer Discovery

If you use the UDP multicast stack thereis no additional configuration. If you use a TCP stack you
will need to specify theinitial hostsin the cluster.

22.1.3 Configuration
There are two thingsto configure:

» The JGroupsCacheM anagerPeerProviderFactory which is done once per CacheManager and
therefore once per ehcache.xml file.

» The JGroupsCacheReplicatorFactory which is added to each cache's configuration.

The main configuration happens in the JGroupsCacheM anagerPeerProviderFactory connect
sub-property. A connect property is passed directly to the JGroups channel and therefore al the
protocol stacks and options available in JGroups can be set.

22.1.4 Example configuration using UDP Multicast

Suppose you have two serversin acluster. Y ou wish to replicated sampleCachell and
sampleCachel2 and you wish to use UDP multicast as the underlying mechanism.

The configuration for serverl and server2 are identical and will look like this:

<cacheManager Peer Pr ovi der Fact ory
cl ass="net. sf. ehcache. di stri bution.jgroups. JG oupsCacheManager Peer Provi der Fact ory"
properties="connect =UDP(ntast addr=231. 12. 21. 132; ntast _port =45566;) : Pl NG
MVERGE2: FD_SOCK: VERI FY_SUSPECT: pbcast . NAKACK: UNI CAST: pbcast . STABLE: FRAG pbcast . GVB"
propertySeparator="::"
/>

22.1.5 Example configuration using TCP Unicast

The TCP protocol requires the |P address of all serversto be known. They are configured through the
TCPPI NG protocol of Jgroups.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

22 Replicated Caching With JGroups 101

Suppose you have 2 servers hostl and host2, then the configuration is:

<cacheManager Peer Pr ovi der Fact ory

cl ass="net . sf. ehcache. di stri bution.jgroups. JG oupsCacheManager Peer Provi der Fact ory"

properties="connect =TCP(start _port=7800):
TCPPI NG i nitial _host s=host 1[7800], host 2[7800] ; port _range=10; ti neout =3000;
numinitial _nmenbers=3; up_thread=true; down_thread=true):
VERI FY_SUSPECT(t i meout =1500; down_t hr ead=f al se; up_t hr ead=f al se):
pbcast . NAKACK(down_t hread=t rue; up_t hread=true; gc_| ag=100; retransmt_ti neout =300
pbcast. GVS(j oi n_ti neout =5000; j oi n_retry_ti meout =2000; shun=f al se;
print | ocal addr=fal se; down_thread=true; up_t hread=true)"

propertySeparator="::" />

22.1.6 Protocol considerations.
Y ou should read the JGroups documentation to configure the protocols correctly.
See http://www.jgroups.org/javagroupsnew/docs/manual/html_single/index.html.

If using UDP you should at least configure PING, FD_SOCK (Failure detection),
VERIFY_SUSPECT, pbcast. NAKACK (Message reliability), pbcast. STABLE (message garbage
collection).

22.1.7 Configuring CacheReplicators

Each cache that will be replicated needsto set a cache event listener which then replicates messagesto
the other CacheManager peers. Thisis done by adding a cacheEventL istenerFactory element to each
cache's configuration. The properties are identical to the one used for RMI replication.

The listener factory MUST be of type JG oupsCacheRepl i cat or Fact ory.

<!-- Sanpl e cache named sanpl eCache2. -->
<cache nane="sanpl eCache2"
maxEl ement s| nMenor y="10"
eternal ="f al se"
ti meTol dl eSeconds="100"
ti meToLi veSeconds="100"
over fl owToDi sk="f al se" >
<cacheEvent Li st ener Fact ory
cl ass="net. sf. ehcache. di stri bution.jgroups. JG oupsCacheRepl i cat or Fact ory"
properties="replicateAsynchronousl y=true, replicatePuts=true,
replicateUpdat es=true, replicateUpdatesVi aCopy=fal se, replicateRenoval s=true" /
>
</ cache>

The configuration options are explained below:
class - use net.sf.ehcache.distribution.jgroups.JGroupsCacheReplicatorFactory
The factory recognises the following properties:
* replicatePuts=true | false - whether new elements placed in a cache are replicated to others.

Defaults to true.

* replicateUpdates=true | false - whether new elements which override an element already existing
with the same key are replicated. Defaults to true.

* replicateRemoval s=true - whether element removals are replicated. Defaults to true.

* replicateAsynchronously=true | false - whether replications are asyncrhonous (true) or
synchronous (false). Defaults to true.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://www.jgroups.org/javagroupsnew/docs/manual/html_single/index.html

22 Replicated Caching With JGroups 102

* replicateUpdatesViaCopy=true | fal se - whether the new elements are copied to other caches
(true), or whether aremove message is sent. Defaults to true.

» asynchronousReplicationintervalMillis default 1000ms Time between updates when replication
is asynchroneous

22.1.8 Complete Sample configuration
A typical complete configuration for one replicated cache configured for UDP will look like:

<Ehcache xm ns: xsi="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xsi : noNamespaceSchenmaLocation="../../../min/config/ehcache. xsd">
<di skSt ore path="java.io.tnpdir/one"/>
<cacheManager Peer Provi der Factory cl ass="net. sf. ehcache. di stribution.jgroups
. J& oupsCacheManager Peer Pr ovi der Fact or y"
properties="connect =UDP(ntast _addr=231. 12. 21. 132; ntast _port =45566; i p_ttl =32;
ntast _send_buf _si ze=150000; ntast _recv_buf _si ze=80000):
Pl N& t i neout =2000; num_i ni ti al _menber s=6):
MERGE2(m n_i nt er val =5000; max_i nt er val =10000) :
FD_SOCK: VERI FY_SUSPECT(ti meout =1500) :
pbcast . NAKACK(gc_| ag=10; retransmi t _ti meout =3000):
UNI CAST(ti meout =5000) :
pbcast . STABLE(desi red_avg_gossi p=20000) :
FRAG
pbcast . GVS(j oi n_ti meout =5000; j oi n_retry_ti meout =2000;
shun=f al se; print_I ocal _addr=true)"
propertySeparator="::"
/>
<cache nane="sanpl eCacheAsync"
maxEl ement sl nMenor y="1000"
eternal ="fal se”
ti meTol dl eSeconds="1000"
ti meToLi veSeconds="1000"
over fl owToDi sk="f al se">
<cacheEvent Li st ener Fact ory
cl ass="net . sf. ehcache. di stri buti on.jgroups. JG oupsCacheRepl i cat or Fact ory
properties="replicateAsynchronousl y=true, replicatePuts=true,
replicateUpdat es=true, replicateUpdatesVi aCopy=fal se
replicateRenmoval s=true" />
</ cache>
</ ehcache>

22.1.9 Common Problems

If replication using JGroups doesn't work the way you have it configured try this configuration which
has been extensively tested:

<cacheManager Peer Provi der Fact ory

cl ass="net . sf. ehcache. di stri buti on.jgroups. JG oupsCacheManager Peer Pr ovi der Fact ory"/
>
<cache nane="sanpl eCacheAsync"

maxEl enment sI nMenor y="1000"

eternal ="fal se”

ti meTol dl eSeconds="1000"

ti meToLi veSeconds="1000"

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

22 Replicated Caching With JGroups 103

over f| owToDi sk="f al se">
<cacheEvent Li st ener Factory
cl ass="net. sf. ehcache. di stri bution.jgroups. JG oupsCacheRepl i cat or Fact ory"
properties="replicateAsynchronousl y=true, replicatePuts=true,
replicat eUpdat es=true, replicateUpdatesVi aCopy=fal se,
replicateRenoval s=true" />
</ cache>

If thisfailsto replicate, try to get the example programs from JGroups to run:
http://www.jgroups.org/javagroupsnew/docs/manual/html/ch02.html#d0e451

and

http://www.jgroups.org/javagroupsnew/docs/manual/html/ch02.html#l tDoesntWork

Once you have figured out the connection string that works in your network for JGroups, you can
directly pasteit in the connect property of JG oupsCacheManager Peer Provi der Fact ory.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

23

23 Replicated Caching With JMS 104

Replicated Caching With JMS

23.1 Replicated Caching using JMS

Asof version 1.6, IM S can be used as the underlying mechanism for the replicated operationsin
Ehcache with the jmsreplication module.

IMS, ("Java Message Service'") is an industry standard mechanism for interacting with message
gueues. Message queues themselves are a very mature piece of infrastructure used in many enterprise
software contexts. Because they are arequired part of the Java EE specification, the large enterprise
vendors all provide their own implementations. There are also several open source choices including
Open MQ and Active MQ. Ehcache is integration tested against both of these.

The Ehcache jmsreplication module lets organisations with a message queue investment leverage it
for caching.

It provides:

* replication between cache nodes using areplication topic, in accordance with ehcache's standard
replication mechanism

 pushing of data directly to cache nodes from external topic publishers, in any language. Thisis
done by sending the data to the replication topic, where it automatically picked up by the cache
subscribers.

» aJMSCachel oader, which sends cache load requests to a queue. Either an Ehcache cluster node,
or an external queue receiver can respond.

23.1.1 Ehcache Replication and External Publishers
Ehcache replicates using IMS as follows:

» Each cache node subscribes to a predefined topic, configured as the topicBindingName in
ehcache.xml.

» Each replicated cache publishes cache El enent sto that topic. Replication is configured per
cache.

To set up replicated caching using M S you need to configure a
JM SCacheM anagerPeerProviderFactory which is done globally for a CacheManager.

For each cache that wishing to replicate, you add a JGroupsCacheReplicatorFactory element to
the cache element.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

23 Replicated Caching With JMS 105

User Application
Maode 1
ghcashe
Element subscriber
Objact A
Mpssage lext
Quoug KML -""“ cachas
Non cache "'f__.___..- Gachet
’ blisher
publisher Object all P
[Jawa) Tienct EE——
XML If ament
topic
Object Elemant * un
et
AML
Mon cache
publizher User Application
(non Java) Moda n
ghcache
Element \"' subscriber
N
cachel
pubdisher
e

23.1.1.1 Configuration

23.Message Queue Configuration

Each cluster needs to use afixed topic name for replication. Set up atopic using the toolsin your
message gueue. Out of the box, both ActiveMQ and Open MQ support auto creation of destinations,
so this step may be optional.

23.Ehcache Configuration
Configuration is done in the ehcache.xml.
There are two things to configure:

* The JM SCacheM anagerPeerProviderFactory which is done once per CacheManager and
therefore once per ehcache.xml file.

» The JM SCacheReplicatorFactory which is added to each cache's configuration if you want that
cache replicated.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

23 Replicated Caching With JMS 106

The main configuration happens in the JGroupsCacheM anagerPeerProviderFactory connect
sub-property. A connect property is passed directly to the JGroups channel and therefore al the
protocol stacks and options available in JGroups can be set.

23.Configuring the IMSCacheManagerPeerProviderFactory

Following is the configuration instructions as it appears in the sample ehcache.xml shipped with
ehcache:

{Configuring JVS replication}.

<cacheManager Peer Pr ovi der Fact ory
cl ass="net. sf. ehcache. di stri buti on.jns. JIMsCacheManager Peer Provi der Fact ory"
properties="..."
propertySeparator=",6"
/>
The JMS Peer Provi der Factory uses JNDI to nmintain nessage queue independence.
Refer to the manual for full configuration exanples using ActiveMQ and Open Message Qe
Val id properties are:
* initial ContextFactoryName (mandatory) - the nane of the factory used to create the
nessage queue initial context.
* providerURL (nmandatory) - the JNDI configuration infornmation for the service provider
use.
* topi cConnecti onFact or yBi ndi ngNanme (mandatory) - the JNDI binding nane for the
Topi cConnecti onFact ory
t opi cBi ndi ngNane (mandatory) - the JNDI binding nane for the topic nane
securityPrinci pal Nane - the JNDI java.nam ng.security.principa
securityCredentials - the JNDI java.nam ng.security.credentials
url PkgPrefixes - the JNDI java.nam ng.factory.url.pkgs
user Nane - the user name to use when creating the Topi cConnection to the Message Queu
password - the password to use when creating the Topi cConnection to the Message Queue
acknow edgerent Mode - the JMB Acknowl edgenent nobde for both publisher and subscri ber
The avail abl e choices are
AUTO_ACKNOWLEDGE, DUPS_OK_ACKNOW.EDGE and SESSI ON_TRANSACTED
The default is AUTO ACKNOALEDGE.
* |istenToTopic - true or false. If false, this cache will send to the JVMS topic but w |
not listen for updates.
* Default is true.
23.Example Configurations

Usageis best illustrated with concrete examples for Active MQ and Open MQ.

23.Configuring the IMSCacheManagerPeerProviderFactory for Active MQ
This configuration works with Active MQ out of the box.

* % %k X % X X

<cacheManager Peer Pr ovi der Fact ory

cl ass="net. sf. ehcache. di stri buti on.jns. JIMsSCacheManager Peer Pr ovi der Fact ory"

properties="initial ContextFact oryName=Exanpl eActi veMJ ni ti al Cont ext Factory,
provi der URL=t cp:/ /| ocal host: 61616,
t opi cConnecti onFact or yBi ndi ngNanme=t opi cConnecti onFactory,
t opi cBi ndi ngNane=ehcache"

propertySeparator=",6"

/>

Y ou need to provide your own ActiveM QI nitial ContextFactory for the initial ContextFactoryName.
An example which should work for most purposesis:

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

23 Replicated Caching With JMS 107

public class Exanpl eActiveMJ nitial ContextFactory extends ActiveMJ nitial ContextFactory
/**
* {@nheritDoc}
*/
@verride
@uppr essWar ni ngs("unchecked")
public Context getlnitial Context(Hashtable environnent) throws Nam ngException {
Map<String, Object> data = new Concurrent HashMap<String, Object>();
String factoryBi ndi ngName = (String)environnent. get(JMsCacheManager Peer Provi der Fact
. TOPI C_CONNECTI ON_FACTORY_BI NDI NG_NAME) ;
try {
dat a. put (f act oryBi ndi ngNane, createConnecti onFactory(environment));
} catch (URI Synt axException e) {
t hrow new Nami ngException("Error initialisating ConnectionFactory with nessage
+ e. get Message());

}
String topicBi ndingNane = (String)environnent. get (JVMsCacheManager Peer Provi der Fact or

. TOPI C_BI NDI NG_NAME) ;
dat a. put (t opi cBi ndi ngNane, createTopi c(topi cBi ndi ngNane)) ;
return createContext(environnent, data);

}

}
23.Configuring the IMSCacheManagerPeerProviderFactory for Open MQ

This configuration works with an out of the box Open MQ.

<cacheManager Peer Pr ovi der Fact ory

cl ass="net. sf. ehcache. di stri bution.jnms. JMSCacheManager Peer Provi der Fact ory"

properties="initial ContextFactoryNane=com sun. j ndi . fscont ext. Ref FSCont ext Fa
providerURL=file:///tnmp,
t opi cConnecti onFact or yBi ndi ngName=MyConnect i onFact ory,
t opi cBi ndi ngNane=ehcache"

propertySeparator=","

/>

To set up the Open MQ file system initial context to work with this example use the following
i ngobj ngr commands to create the requires objects in the context.

i rgobj ngr add -t tf -1 ' MyConnectionFactory' -j java.nam ng.provider.url \
=file:///tmp -

j java.nam ng.factory.initial=comsun.jndi.fscontext.RefFSContextFactory -f
i rgobj ngr add -t t -1 'ehcache' -o 'ingDestinati onNane=EhcacheTopi cDest

-j java.nam ng. provider.url\

=file:///tmp -

j java.nam ng.factory.initial=comsun.jndi.fscontext.RefFSContextFactory -f
23.Configuring the IMSCacheReplicatorFactory

Thisis the same as configuring any of the cache replicators. The class should be
net. sf. ehcache. di stribution.jns. JMSCacheRepl i cat or Factory.

See the following example:

<cache nane="sanpl eCacheAsync"
maxEl emrent s| nMenor y="1000"
eternal ="fal se"
ti meTol dl eSeconds="1000"
ti meToLi veSeconds="1000"
over fl owToDi sk="fal se">

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

23 Replicated Caching With JMS 108

<cacheEvent Li st ener Factory

cl ass="net. sf. ehcache. di stri bution.jns. JIMSCacheRepl i cat or Fact ory"

properties="replicateAsynchronousl y=true,
replicatePuts=true,
replicat eUpdat es=true,
repl i cat eUpdat esVi aCopy=t r ue,
replicat eRenoval s=true,
asynchronousReplicationlnterval MI1is=1000"

propertySeparator=","/>
</ cache>

23.1.1.2 External JMS Publishers

Anything that can publish to a message queue can also add cache entries to ehcache. These are called
non-cache publishers.

23.Required Message Properties

Publishers need to set up to four String properties on each message: cacheName, action, mimeType
and key.

23. cacheNane Property
A IM S message property which contains the name of the cache to operate on.

If no cacheName is set the message will beignored. A warning log message will indicate that the
message has been ignored.

23. acti on Property
A IJMS message property which contains the action to perform on the cache.

Available actions are strings labeled PUT, REMOVE and REMOVE_ALL.

If not set no action is performed. A warning log message will indicate that the message has been
ignored.

23. m meType Property

A IM S message property which contains the mimeType of the message. Applies to the PUT action. If
not set the message is interpreted as follows:

ObjectMessage - if it is an net.sf.ehcache.Element, then it is treated as such and stored in the cache.

For other objects, anew Element is created using the object in the ObjectM essage as the value and the
key property as akey. Because objects are aready typed, the mimeType isignored.

TextMessage - Stored in the cache as value of MimeTypeByteArray. The mimeType should be
specified. If not specified it is stored astypet ext/ pl ai n.

BytesMessage - Stored in the cache as value of MimeTypeByteArray. The mimeType should be
specified. If not specified it is stored astype appl i cati on/ oct et - stream

Other message types are not supported.

To send XML use a TextMessage or BytesMessage and set the mimeTypeto appl i cati on/ xm .It
will be stored in the cache as a value of MimeTypeByteArray.

The REMOVE and REMOVE_ALL actions do not require ani neType property.

23. key Property
The key in the cache on which to operate on. The key is of type String.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

23 Replicated Caching With JMS 109

The REMOVE_ALL action does not require a key property.

If an ObjectMessage of type net.sf.ehcache.Element is sent, the key is contained in the element. Any
key set as a property isignored.

If the key isrequired but not provided, awarning log message will indicate that the message has been
ignored.

23. Code Samples

These samples use Open MQ as the message queue and use it with out of the box defaults. They are
heavily based on Ehcache's own JM S integration tests. See the test source for more details.

M essages should be sent to the topic that Ehcacheis listening on. In these samplesit is
EhcacheTopi cDest .

All samples get a Topic Connection using the following method:

private Topi cConnecti on get MQConnection() throws JMSException {
com sun. nessagi ng. Connecti onFactory factory = new com sun. messagi ng. Connecti onFact o
factory. set Property(ConnectionConfiguration.ingAddressList, "local host:7676");
factory. set Property(Connecti onConfiguration.ingReconnect Enabl ed, "true");
Topi cConnecti on nyConnection = factory. creat eTopi cConnection();
return nyConnecti on;

}
23.PUT a Java Object into an Ehcache JMS Cluster
String payload = "this is an object”;

Topi cConnecti on connecti on = get MQonnecti on();
connection.start();
Topi cSessi on publ i sher Session =

connecti on. creat eTopi cSessi on(fal se, Session. AUTO ACKNONLEDGE) ;
hj ect Message nessage = publ i sher Sessi on. creat e(hj ect Message(payl oad) ;
nessage. set Stri ngProperty(ACTI ON_PROPERTY, "PUT");
nmessage. set Stri ngProperty(CACHE _NAME PROPERTY, "sanpl eCacheAsync");
//don't set. Should work.
/I message. set Stri ngProperty(M MeE_TYPE PROPERTY, null);
//shoul d work. Key should be ignored when sending an el enent.
nessage. set Stri ngProperty(KEY_PROPERTY, "1234");
Topi c topic = publisherSession. createTopi c("EhcacheTopi cDest");
Topi cPubl i sher publisher = publisherSession. createPublisher(topic);
publ i sher. send(nessage) ;
connection. stop();

Ehcache will create an Element in cache "sampleCacheAsync” with key "1234" and a Java class
String value of "thisis an object".

23.PUT XML into an Ehcache JMS Cluster

Topi cConnecti on connecti on = get MQConnection();
connection.start();
Topi cSessi on publi sher Sessi on = connecti on. creat eTopi cSessi on(fal se,
Sessi on. AUTO_ACKNOWN_EDCE) ;
String value = "<?xm version=\"1.0\"?>\n" +
"<ol dj oke>\n" +
"<burns>Say <quot e>goodni ght </ quote>,\n" +
"Gracie.</burns>\n" +
"<al | en><quot e>Goodni ght, \n" +
"Gracie.</quote></allen>\n" +

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

23 Replicated Caching With JMS 110

"<appl ause/ >\ n" +

"</ ol dj oke>";
Text Message nessage = publ i sher Sessi on. cr eat eText Message(val ue) ;
nessage. set Stri ngProperty(ACTI ON_PROPERTY, "PUT");
nmessage. set Stri ngProperty(CACHE NAME PROPERTY, "sanpl eCacheAsync");
nmessage. set Stri ngProperty(M ME_TYPE _PROPERTY, "application/xm");
nessage. set Stri ngProperty(KEY_PROPERTY, "1234");
Topi c topic = publisherSession. createTopi c("EhcacheTopi cDest");
Topi cPubl i sher publisher = publisherSession. createPublisher(topic);
publ i sher. send(nessage) ;
connection. stop();

Ehcache will create an Element in cache "sampleCacheAsync" with key "1234" and a value of type
MimeTypeByteArray.

On a get from the cache the MimeTypeByteArray will be returned. It is an Ehcache value object from
which amimeType and byte[] can be retrieved. The mimeType will be "application/xml". The byte[]
will contain the XML String encoded in bytes, using the platform’s default charset.

23.PUT arbitrary bytes into an Ehcache JMS Cluster

byte[] bytes = new byte[]{0x34, (byte) Oxe3, (byte) 0x88};

Topi cConnecti on connecti on = get MQConnection();

connection.start();

Topi cSessi on publ i sher Sessi on = connection. creat eTopi cSessi on(fal se,
Sessi on. AUTO_ACKNOALEDGE) ;

Byt esMessage nessage = publisher Sessi on. creat eByt esMessage() ;

nessage. wit eByt es(bytes);

nmessage. set Stri ngProperty(ACTI ON_PROPERTY, "PUT");

nmessage. set Stri ngProperty(CACHE_NAME_PROPERTY, "sanpl eCacheAsync");

nessage. set Stri ngProperty(M ME_TYPE_PROPERTY, "application/octet-streani);

nessage. set Stri ngProperty(KEY_PROPERTY, "1234");

Topi ¢ topic = publisherSession. creat eTopi c("EhcacheTopi cDest");

Topi cPubl i sher publisher = publisher Session. createPublisher(topic);

publ i sher. send(nessage) ;

Ehcache will create an Element in cache "sampleCacheAsync" with key "1234" in and avalue of type
MimeTypeByteArray.

On a get from the cache the MimeTypeByteArray will be returned. It is an Ehcache value object from
which amimeType and byte]] can be retrieved. The mimeType will be "application/octet-stream”.
The byte][] will contain the original bytes.

23.REMOVE

Topi cConnecti on connecti on = get MQonnecti on();

connection.start();

Topi cSessi on publ i sher Sessi on = connection. createTopi cSessi on(fal se, Sessi on. AUTO ACKNC
Ohj ect Message nessage = publ i sher Sessi on. creat ethj ect Message() ;

nessage. set Stri ngProperty(ACTI ON_PROPERTY, "REMOVE");

nmessage. set Stri ngProperty(CACHE NAME PROPERTY, "sanpl eCacheAsync");

nessage. set Stri ngProperty(KEY_PROPERTY, "1234");

Topi c topic = publisherSession. createTopi c("EhcacheTopi cDest");

Topi cPubl i sher publisher = publisherSession. createPublisher(topic);

publ i sher. send(nessage) ;

Ehcache will remove the Element with key "1234" from cache "sampleCacheAsync" from the cluster.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

23 Replicated Caching With JMS 111

23.REMOVE_ALL

Topi cConnecti on connecti on = get MQConnection();

connection.start();

Topi cSessi on publ i sher Sessi on = connection. creat eTopi cSessi on(fal se,
Sessi on. AUTO_ACKNOALEDGE) ;

nj ect Message nessage = publ i sher Sessi on. creat ethj ect Message() ;

nmessage. set Stri ngProperty(ACTI ON_PROPERTY, "REMOVE ALL");

nmessage. set Stri ngProperty(CACHE_NAME_PROPERTY, "sanpl eCacheAsync");

Topi ¢ topic = publisherSession. creat eTopi c("EhcacheTopi cDest");

Topi cPubl i sher publisher = publisher Session. createPublisher(topic);

publ i sher. send(nessage) ;

connection. stop();

Ehcache will remove all Elements from cache "sampleCacheAsync" in the cluster.

23.1.2 Using the JMSCacheLoader

The JM SCachel oader is a Cachel oader which loads objects into the cache by sending requeststo a
JMS Queue.

The loader places an ObjectMessage of type JM SEventM essage on the getQueue with an Action of
type GET.

It is configured with the following String properties, | oader Ar gunent .

The defaultL oaderArgument, or the loaderArgument if specified on the load request. To work with
the JM SCacheM anagerPeerProvider this should be the name of the cache to load from. For custom
responders, it can be anything which has meaning to the responder.

A queue responder will respond to the request. Y ou can either create your own or use the one built-
into the JM SCacheM anagerPeerProviderFactory, which attempts to load the queue from its cache.

The JM SCacheloader uses INDI to maintain message queue independence. Refer to the manual for
full configuration examples using ActiveM Q and Open Message Queue.

It is configured as per the following example:

<cachelLoader Factory cl ass="net. sf.ehcache. di stribution.jns. JMSCacheLoader Fact ory"
properties="initial ContextFactoryName=com sun. j ndi . fscont ext. Ref FSCont ext Fact ory,

providerURL=file:///tnp,

replicationTopi cConnecti onFact or yBi ndi ngNane=MyConnecti onFact ory,

replicationTopi cBi ndi ngName=ehcache,

get QueueConnect i onFact or yBi ndi ngNane=queueConnecti onFact ory,

get QueueBi ndi ngNane=ehcacheGet Queue,

ti meout M| 1i s=20000

def aul t Loader Ar gunent =/ >

Valid properties are:

* initial ContextFactoryName (mandatory) - the name of the factory used to create the message
gueueinitial context.

» providerURL (mandatory) - the INDI configuration information for the service provider to use.

 getQueueConnectionFactoryBindingName (mandatory) - the JINDI binding name for the
QueueConnectionFactory

» getQueueBindingName (mandatory) - the INDI binding name for the queue name used to do
make requests.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

23 Replicated Caching With JMS 112

* defaultL oaderArgument - (optional) - an application specific argument. If not supplied asa
cache.load() parameter this default value will be used. The argument is passed in the JM S request
as a StringProperty called loaderArgument.

* timeoutMillis - time in milliseconds to wait for areply.

* securityPrincipalName - the INDI java.naming.security.principal

 securityCredentials - the INDI java.naming.security.credentials

* urlPkgPrefixes - the INDI java.naming.factory.url.pkgs

» userName - the user name to use when creating the TopicConnection to the Message Queue
» password - the password to use when creating the TopicConnection to the M essage Queue

 acknowledgementMaode - the IM S Acknowledgement mode for both publisher and subscriber.
The available choicesare AUTO_ACKNOWLEDGE, DUPS_OK_ACKNOWLEDGE and
SESSION_TRANSACTED. The default isAUTO_ACKNOWLEDGE.

23.1.2.1 Example Configuration Using Active MQ

<cache nane="sanpl eCacheNor ep"
maxEl ement sl nMenor y="1000"
eternal ="fal se”
ti meTol dl eSeconds="1000"
ti meToLi veSeconds="1000"
over fl owToDi sk="f al se">
<cacheEvent Li st ener Fact ory
cl ass="net . sf. ehcache. di stri bution.jns. JMSCacheRepl i cat or Fact ory"
properties="replicateAsynchronousl y=fal se, replicatePuts=fal se
replicat eUpdat es=f al se, replicateUpdat esVi aCopy=fal se
replicat eRenoval s=f al se, | oader Argunent =sanpl eCacheNor ep"
propertySeparator=","/>
<cachelLoader Factory cl ass="net. sf.ehcache. di stribution.jms.JMCacheLoader Fact ory
properties="initial ContextFact oryNane=net. sf.ehcache. di stribution.jmns.
Test Acti veMQ ni ti al Cont ext Fact ory,
provi der URL=t cp:/ /| ocal host: 61616,
replicationTopi cConnecti onFact or yBi ndi ngNanme=t opi cConnect i onFactory,
get QueueConnect i onFact or yBi ndi ngNanme=queueConnect i onFact ory,
replicationTopi cBi ndi ngName=ehcache,
get QueueBi ndi ngNane=ehcacheCet Queue,
ti meoutM | i s=10000"/>

</ cache>

23.1.2.2 Example Configuration Using Open MQ

<cache nane="sanpl eCacheNor ep"
maxEl ement s| nMenor y="1000"
eternal ="fal se"
ti meTol dl eSeconds="100000"
ti meToLi veSeconds="100000"
overfl owToDi sk="f al se">
<cacheEvent Li st ener Fact ory
cl ass="net . sf. ehcache. di stri bution.jns. JMSCacheRepl i cat or Fact ory"
properties="replicateAsynchronousl y=fal se, replicatePuts=fal.
replicat eUpdat es=f al se, replicateUpdat esVi aCopy=fal se
repli cat eRenoval s=f al se"
propertySeparator=","/>
<cachelLoader Factory cl ass="net. sf.ehcache. di stribution.jms. JMCacheLoader Fact ory"

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

23 Replicated Caching With JMS 113

properties="initial ContextFactoryName=com sun. j ndi . fscont ext. Ref FSCont ext Fact or
providerURL=file:///tnp,
replicationTopi cConnecti onFact or yBi ndi ngNane=MyConnecti onFactory,
replicationTopi cBi ndi ngName=ehcache,
get QueueConnect i onFact or yBi ndi ngNane=queueConnecti onFact ory,
get QueueBi ndi ngNane=ehcacheGet Queue,
timeout M | 1is=10000,
user Name=t est ,
passwor d=test"/ >
</ cache>

23.1.3 Configuring Clients for Message Queue Reliability

Ehcache replication and cache loading is designed to gracefully degrade if the message queue
infrastructure stops. Replicates and loads will fail. But when the message queue comes back, these
operations will start up again.

For thisto work, the ConnectionFactory used with the specific message queue needs to be configured
correctly.

For example, with Open MQ, reconnection is configured as follows:

 imgReconnect="true' - without this reconnect will not happen

» imgPingInterval='5" - Consumers will not reconnect until they notice the connection is down. The
ping interval

» doesthis. The default is 30. Set it lower if you want the Ehcache cluster to reform more quickly.

 Finaly, unlimited retry attempts are recommended. Thisis also the default.

For greater reliability consider using a message queue cluster. Most message queues
support clustering. The cluster configuration is once again placed in the ConnectionFactory
configuration.

23.1.4 Tested Message Queues

23.1.4.1 Sun Open MQ
This open source message queue istested in integration tests. It works perfectly.

23.1.4.2 Active MQ

This open source message queue is tested in integration tests. It works perfectly other than having a
problem with temporary reply queues which prevents the use of JM SCachel oader. IM SCacheloader
isnot used during replication.

23.1.4.3 Oracle AQ
Versions up to an including 0.4 do not work, due to Oracle not supporting the unified API (send) for
topics.

23.1.4.4 JBoss Queue
Works as reported by a user.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

23 Replicated Caching With JMS 114

23.1.5 Known JMS Issues

23.1.5.1 Active MQ Temporary Destinatons
ActiveMQ seemsto haveabug in at least ActiveMQ 5.1 where it does not cleanup temporary queues,
even though they have been deleted. That bug appears to be long standing but was though to have
been fixed.
See:
o http://www.nabble.com/Memory-L eak-Using-Temporary-Queues-td11218217.html#al1218217
* http://issues.apache.org/activemg/browse/ AM Q-1255

The IM SCachel_oader uses temporary reply queues when loading. The Active MQ issueis
readily reproduced in Ehcache integration testing. Accordingly, use of the JM SCachel oader with
ActiveMQ is not recommended. Open MQ testsfine.

Active MQ works fine for replication.

23.1.5.2 WebSphere 5 and 6

Wehsphere Application Server prevents Messagel isteners, which are not MDBs, from being
created in the container. While thisis a general Java EE limitation, most other app servers either

are permissive or can be configured to be permissive. WebSphere 4 worked, but 5 and 6 enforce the
restriction.

Accordingly the IMS replicator cannot be used with WebSphere 5 and 6.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

24

24 Shutting Down Ehcache 115

Shutting Down Ehcache

24.1 Shutting Down Ehcache

If you are using persistent disk stores, or distributed caching, care should be taken to shutdown
ehcache.

Note that Hibernate automatically shuts down its Ehcache CacheManager .
The recommended way to shutdown the Ehcacheis:
 tocal CacheManager . shut down()

* inaweb app, register the Ehcache Shut downLi st ener
Though not recommended, Ehcache also lets you register a VM shutdown hook.

24.1.1 ServletContextListener

Ehcache proivdes a ServletContextListener that shutsdown CacheManager. Use this when you want to
shutdown Ehcache automatically when the web application is shutdown.

To receive notification events, this class must be configured in the deployment descriptor for the web
application.

To do so, add the following to web.xml in your web application:

<listener>

<li stener-cl ass>net. sf. ehcache. constructs. web. Shut downLi st ener </
i stener-cl ass>
</listener>

24.1.2 The Shutdown Hook
Ehcache CacheManager can optionally register a shutdown hook.
To do so, set the system property net . sf. ehcache. enabl eShut downHook=t r ue.

Thiswill shutdown the CacheManager when it detects the Virtual Machine shutting down and it is not
already shut down.

24.1.2.1 When to use the shutdown hook
Use the shutdown hook where:
* you need guaranteed orderly shutdown, when for example using persistent disk stores, or
distributed caching.

» CacheManager is not already being shutdown by a framework you are using or by your
application.

Having said that, shutdown hooks are inherently dangerous. The JVM is shutting down, so
sometimes things that can never be null are. Ehcache guards against as many of these asit can,
but the shutdown hook should be the last option to use.

24.1.2.2 What the shutdown hook does
The shutdown hook is on CacheManager. It simply calls the shutdown method.

The sequence of eventsis:

» call dispose for each registered CacheManager event listener

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

24 Shutting Down Ehcache 116

« cal dispose for each Cache.
Each Cache will:

« shutdown the MemoryStore. The MemoryStore will flush to the DiskStore
 shutdown the DiskStore. If the DiskStore is persistent, it will write the entries and index to
disk.
« shutdown each registered CacheEventListener
* set the Cache status to shutdown, preventing any further operations on it.
* set the CacheManager status to shutdown, preventing any further operations on it

24.1.2.3 When a shutdown hook will run, and when it will not
The shutdown hook runs when:

» aprogram exists normally. e.g. System.exit() is caled, or the last non-daemon thread exits

* the Virtual Machineisterminated. e.g. CTRL-C. Thiscorrespondstoki | | - SI GTERM pi d or
kill -15 pidonUnix systems.

The shutdown hook will not run when:

e theVirtua Machine aborts

* A SIGKILL signal is sent to the Virtual Machine process on Unix systems. eg. ki | | -
SIGKILL pidorkill -9 pid

e A Termi nat eProcess call is sent to the process on Windows systems.

24.1.3 Dirty Shutdown

If Ehcache is shutdown dirty then any persistent disk stores will be corrupted. They will be deleted,
with alog message, on the next startup.

Replications waiting to happen to other nodes in a distributed cache will also not get written.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

25

25 Logging 117

Logging

25.1 Logging

25.1.1 SLF4J Logging

Asof 1.7.1, Ehcache uses the the sIf4j (http://www.slf4j.org) logging facade. Plug in your own
logging framework.

25.1.1.1 Concrete Logging Implementation Use in Maven
With sIf4j, users must choose a concrete logging implementation at deploy time.

The maven dependency declarations are reproduced here for convenience. Add one of these to your
Maven pom.

<dependency>
<groupl d>org. sl f 4j </ gr oupl d>
<artifactld>slf4j-jdkl4</artifactld>
<versi on>1. 5. 8</versi on>

</ dependency>

<dependency>
<groupl d>org. sl f 4j </ gr oupl d>
<artifactld>slf4j-1og4j12</artifactld>
<versi on>1. 5. 8</versi on>

</ dependency>

<dependency>
<groupl d>org. sl f 4j </ gr oupl d>
<artifactld>slf4j-sinmple</artifactld>
<versi on>1. 5. 8</versi on>

</ dependency>

25.1.1.2 Concrete Logging Implemenation Use in the Download Kit

We provide the df4j-api and df4j-jdk14 jarsin the kit along with the ehcache jars so that, if the app
does not already use SLF4J, you have everything you need.

Additional concrete logging implementations can be downloaded from http://www.slf4j.org.

25.1.2 Recommended Logging Levels

Ehcache seeks to trade off informing production support devel opers or important messages and
cluttering the log.

ERROR ERROR messages should not occur in normal production and indicate that action should be
taken.

WARN WARN messages generally indicate a configuration change should be made or an unusual
event has occurred.

DEBUG DEBUG and TRACE messages are for development use. All DEBUG level statements are
surrounded with a guard so that no performance cost isincurred unlessthe logging level is set.

Setting the logging level to DEBUG should provide more information on the source of any problems.
Many logging systems enable alogging level change to be made without restarting the application.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://www.slf4j.org
http://www.slf4j.org

26 Remote Network replication debugging: RMI Replicated Caches 118

QSB]Pctgtecht(\fVé)crrlfer plication debugging: RMI

“ep

26.1 Remote Network debugging and monitoring for Distributed Caches

26.1.1 Introduction

The ehcache-1.x-remote-debugger.jar} can be used to debug replicated cache operations. When
started with the same configuration as the cluster, it will join the cluster and then report cluster events
for the cache of interest. By providing awindow into the cluster it can help to identify the cause of
cluster problems.

26.1.2 Packaging
From version 1.5 it is packaged in its own distribution tarball along with a maven module.
It is provided as an executable jar.

26.1.3 Limitations
This version of the debugger has been tested only with the default RM1 based replication.

26.1.4 Usage
It isinvoked asfollows:

java -classpath [add your application jars here]
-jar ehcache-debugger-1.5.0.jar ehcache.xm sanpl eCachel
pat h_to_ehcache. xm [cacheToMbnitor]
Note: Add to the classpath any libraries your project usesin addition to these above, otherwise RMI
will attempt to load them remotely which requires specific security policy settings that surprise most
people.

It takes one or two arguments:
* thefirst argument, which is mandatory, is the Ehcache configuration file e.g. app/config/

ehcache.xml. Thisfile should be configured to allow Ehcache to joing the cluster. Using one of
the existing ehcache.xml files from the other nodes normally is sufficient.

* the second argument, which is optional, is the name of the cache e.g. distributedCachel
If only the first argument is passed, it will print our alist of caches with replication configured
from the configuration file, which are then available for monitoring.

If the second argument is also provided, the debugger will monitor cache operations received for
the given cache.

Thisis done by registering a CacheEventListener which prints out each operation.

26.1.4.1 Output

When monitoring a cache it prints alist of caches with replication configured, prints notifications as
they happen, and periodically prints the cache name, size and total events received. See sample output
below which is produced when the RemoteDebuggerTest is run.

Caches with replication configured which are avail able for nonitoring are:
sanpl eCachel9 sanpl eCache20 sanpl eCache26 sanpl eCache42 sanpl eCache33
sanpl eCache51 sanpl eCache40 sanpl eCache32 sanpl eCachel8 sanpl eCache25

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

26 Remote Network replication debugging: RMI Replicated Caches 119

sanpl eCache9 sanpl eCachel5 sanpl eCache56 sanpl eCache3l sanpl eCache?7

sanpl eCachel2 sanpl eCachel? sanpl eCached45 sanpl eCache4l sanpl eCache30
sanpl eCachel3 sanpl eCache46 sanpl eCached4 sanpl eCache36 sanpl eCache29

sanpl eCache50 sanpl eCache37 sanpl eCache49 sanpl eCache48 sanpl eCache38
sanpl eCache6 sanpl eCache2 sanpl eCache55 sanpl eCachel6 sanpl eCache27

sanpl eCachell sanpl eCache3 sanpl eCache54 sanpl eCache28 sanpl eCachel0

sanpl eCache8 sanpl eCache47 sanpl eCache5 sanpl eCache53 sanpl eCache39

sanpl eCache23 sanpl eCache34 sanpl eCache22 sanpl eCache44 sanpl eCache52
sanpl eCache24 sanpl eCache35 sanpl eCache2l sanpl eCache43 sanpl eCachel
Moni t ori ng cache: sanpl eCachel

Cache: sanpl eCachel Notifications received: 0 Elenents in cache: 0

Recei ved put notification for element [key = this is an id, value=this is
a val ue, version=1, hitCount=0, CreationTine = 1210656023456,

Last AccessTine = 0]

Recei ved update notification for elenent [key = this is an id, value=this
is a value, version=1210656025351, hitCount=0, CreationTime =
1210656024458, Last AccessTinme = 0]

Cache: sanpl eCachel Notifications received: 2 Elenents in cache: 1

Recei ved renove notification for element this is an id

Recei ved renpveAl |l notification

26.1.4.2 Providing more Detailed Logging

If you see nothing happening, but cache operations should be going through, enable trace (LOGA4J) or
finest (JDK) level logging on codenet.sf.ehcache.distribution /code in the logging configuration being
used by the debugger. A large volume of log messages will appear. The normal problem isthat the
CacheManager has not joined the cluster. Look for the list of cache peers.

26.1.4.3 Yes, but | still have a cluster problem

Check the FAQ where alot of commonly reported errors and their solutions are provided. Beyond
that, post to the forums or mailing list or contact Ehcache for support.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

27

27 JMX Management And Monitoring 120

JMX Management And Monitoring

27.1 JMX Management and Monitoring

27.1.1 Terracotta Monitoring Products

An extensive monitoring product, available in Enterprise Ehcache, provides a monitoring server with
probes supporting Ehcache-1.2.3 and higher for standalone and clustered Ehcache. It comes with a
web console and a RESTful API for operations integration.

Seethe ehcache-monitor documentation for more information.

When using Ehcache 1.7 with Terracotta clustering, the Terracotta Developer Console shows statistics
for Ehcache.

27.1.2 IMX Overview

JMX, part of IDK 1.5, and available as a download for 1.4, creates a standard way of instrumenting
classes and making them available to a management and monitoring infrastructure.

Thenet . sf. ehcache. managenent package contains MBeans and a Managenent Ser vi ce for
JMX management of ehcache. It isin a separate package so that IMX libraries are only required if
you wish to use it - there is no leakage of IMX dependencies into the core Ehcache package.

Thisimplementation attempts to follow Sun's IMX best practices. See http://java.sun.com/javase/
technol ogies/core/mntr-mgmt/ javamanagement/best-practices.jsp.

Usenet. sf. ehcache. managenent . Managenent Ser vi ce. r egi st er MBeans(...) static
method to register a selection of MBeans to the MBeanServer provided to the method.

If you wish to monitor Ehcache but not use IMX, just use the existing public methods on Cache and
CacheStati sti cs.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

27 JMX Management And Monitoring

net.sf.ehcache.management

CacheConfigurationMBean

|
1

CacheConfiguration

CacheManagerMBean

A

CacheManager

ManagementService

generated by yDoc

CacheMBean
I
|
1

Cache

CacheStatisticsMBean

I
L

CacheStatistics

The Management Package

27.1.3 MBeans

Ehcache uses Standard MBeans. MBeans are available for the following:

» CacheManager

» Cache

» CacheConfiguration
» CacheStatistics

121

All MBean attributes are available to alocal MBeanServer. The CacheManager MBean alows
traversal to its collection of Cache MBeans. Each Cache MBean likewise allows traversal to its
CacheConfiguration MBean and its CacheStatistics M Bean.

27.1.4 JIMX Remoting

The IMX Remote API allows connection from aremote JIM X Agent to an MBeanServer viaan

MBeanSer ver Connecti on.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

27 JMX Management And Monitoring 122

Only Seri al i zabl e attributes are available remotely. The following Ehcache MBean attributes are
available remotely:

¢ limited CacheManager attributes
* limited Cache attributes

+ all CacheConfiguration attributes
 all CacheStatistics attributes

Most attributes use built-in types. To access al attributes, you need to add ehcache.jar to the
remote IMX client's classpath e.g. j consol e -J-Dj ava. cl ass. pat h=ehcache. j ar.

27.1.5 oj ect Nane naming scheme

» CacheManager - "net.sf.ehcache:type=CacheManager,name= CacheManager"
» Cache - "net.sf.ehcache:type=Cache,CacheM anager= cacheManager Name,name= cacheName"

» CacheConfiguration - "net.sf.ehcache:type=CacheConfiguration,CacheM anager=
cacheManager Name,name= cacheName"

» CacheStatistics - "net.sf.ehcache:type=CacheStati stics,CacheM anager=
cacheManager Name,name= cacheName"

27.1.6 The Management Service
The Managenent Ser vi ce classisthe API entry point.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

27 JMX Management And Monitoring 123

net.sf.ehcache.event

CacheManagerEventlListener

A

netsf.ehcache.management

o o -

nagement .
ManagementService

158 FrVer w=— |
+ disposel) : void

+ getStatus() : Status

+ init(: void

+ notifyCacheAdded (String) : void

+ notifyCacheRemoved(String) : void

+ registerMBeans(CacheManager, MBeanServer, boolean, boolean, boolean, boolear

cache

Manager —

-

I by yDoc

ManagementService
There is only one method, Managenent Ser vi ce. r egi st er MBeans which isused to initiate IMX
registration of an Ehcache CacheManager's instrumented MBeans.

The Managenent Ser vi ce isaCacheManager Event Li st ener and istherefore notified of any
new Caches added or disposed and updates the MBeanServer appropriately.

Once initiated the MBeans remain registered in the MBeanServer until the CacheManager shuts
down, at which time the M Beans are deregistered. This behaviour ensures correct behaviour in
application servers where applications are deployed and undeployed.

/**

* This met hod causes the selected nmonitoring options to be be registered

* with the provi ded MBeanServer for caches in the given CacheManager.

* <pl>

* While registering the CacheManager enables traversal to all of the other
* jitens,

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

27 JMX Management And Monitoring 124

* this requires progranmatic traversal. The other options allow entry points closer

* to an itemof interest and are nore accessible from JMX nanagenent tools |ike JConso
* Moreover CacheManager and Cache are not serializable, so renbte nonitoring is not

* possible * for CacheManager or Cache, while CacheStatistics and CacheConfiguration a
* Finally * CacheManager and Cache enabl e managenent operations to be perforned.

* <pl >

* Once nonitoring is enabled caches will automatically added and renpoved fromthe

* MBeanServer * as they are added and di sposed of fromthe CacheManager. Wen the

* CacheManager itself * shutsdown all registered MBeans wi |l be unregistered.

*

* @ar am cacheManager the CacheManager to listen to

* @ar am nBeanServer the MBeanServer to register MBeans to

* @aram regi st er CacheManager Whether to regi ster the CacheManager MBean

* @aram regi sterCaches Wether to register the Cache MBeans

* @aram regi sterCacheConfigurations Wiether to register the CacheConfigurati on MBeans
* @aramregisterCacheStatistics Wiether to register the CacheStatistics Means

*

/

public static void register©Means(
net . sf. ehcache. CacheManager cacheManager,
MBeanSer ver nBeanServer,
bool ean regi st er CacheManager
bool ean regi st er Caches,
bool ean regi st er CacheConfi gurati ons,
bool ean regi sterCacheStatistics) throws CacheException {

27.1.7 JConsole Example

This example shows how to register CacheStatisticsin the JIDK 1.5 platform MBeanServer, which
works with the JConsole management agent.

CacheManager nmanager = new CacheManager () ;
MBeanSer ver nmBeanServer = Managenent Factory. get Pl at f or mvBeanSer ver () ;
Managenent Ser vi ce. r egi st er MBeans(manager, nBeanServer, false, false,

CacheStatistics MBeans are then registered.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

fal se, true);

27 JMX Management And Monitoring

125

J25E 5.0 Monitoring & Management Console: 3075@localhost

iEummaw Memory Threads Classes MBeans VM |

-

lementation
Ang
til.logging
.ehcache
chestatistics

net.sf.ehcache.CacheManager@88 1ch3

@@ Cached
@@ FooterP

Login
ageCache

@ SimplePageCachingFilter
f# SimplePageCachingFilterWithBlankPageProblem

i@ SimplePageFragmentCachingFilter

6@ net.sf.ehcache.constructs.asynchronous.MessageCache
6@ persistentLongExpirylntervalCache

@ sampleCachel

@ sampleCache2

@ sampleCacheNoldle
f# sampleCacheNotEternalButNoldleOrExpiry

@ samplel

dlingExpiringCache

| Attributes = Operations 1—‘

Mame
AssociatedCacheName sample
CacheHits
CacheMisses
InMemoryHits
ObjectCount
OnDiskHits
StatisticsAccuracy
StatisticsAccuracyDescription Best Eff

= I =

27.1.8 Hibernate statistics

CacheSatistics MBeans in JConsole

If you are running Terracotta clustered caches as hibernate second-level cache provider, it is possible
to access the hibernate statistics + ehcache stats etc via jmx.

EhcacheHi ber nat eMBean isthe main interface that exposes all the API'sviajmx. It basically
extends two interfaces -- EhcacheSt at s and H ber nat eSt at s. And as the name implies
EhcacheSt at s contains methods related with Ehcache and Hi ber nat eSt at s related with

Hibernate.

©2011, Terracotta, Inc. =

ALL RIGHTS RESERVED.

27 JMX Management And Monitoring 126

Y ou can see cache hit/miss/put rates, change config element values dynamically -- like
maxElementinMemory, TTI, TTL, enable/disable statistics collection etc and various other things.
Please ook into the specific interface for more details.

27.1.9 JMX Tutorial

See http://weblogs.java.net/blog/maxpoon/archive/2007/06/extending_the n_2.html for an online
tutorial.

27.1.10 Performance

Collection of cache statistics is not entirely free of overhead. In production systems where monitoring
is not required statistics can be disabled. This can be done either programatically by calling

setStati sticsEnabled(false) on the cache instance, or in configuration by setting the statistics="false"
attribute of the relevant cache configuration element.

From Ehcache 2.1.0 statistics are off by default.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://weblogs.java.net/blog/maxpoon/archive/2007/06/extending_the_n_2.html

28

28 JTA And Transactions 127

JTA And Transactions

28.1 Transactions in Ehcache

28.1.1 Introduction
Transactions are supported in versions of Ehcache 2.0 and higher.

The 2.3.x or lower releases only support XA. However since encache 2.4 support for both Global
Transactionswith xa_st ri ct and xa modes, and Local Transactionswith| ocal mode has been
added.

28.1.1.1 All or nothing

If acacheisenabled for transactions, all operations on it must happen within a transaction context
otherwiseaTr ansact i onExcept i on will be thrown.

28.1.1.2 Change Visibility

Theisolation level offered in Ehcache is READ_COVM TTED. Ehcache can work as an XAResource in
which case, full two-phase commit is supported.

Specifically:

 All mutating changes to the cache are transactional including put , r enove, put Wt hwWi t er,
removeWthWiter andrenoveAl | .

» Mutating changes are not visible to other transactionsin the local VM or across the cluster until
COWM T has been called.

 Until then, read such asby cache. get (. ..) by other transactions will return the old copy.
Reads do not block.

28.1.2 When to use transactional modes

28.1.2.1 Transactional modes are a powerful extension of Ehcache allowing you to perform atomic
operations on your caches and potentially other data stores, eg: to keep your cache in sync with your
database.

* | ocal When you want your changes across multiple caches to be performed atomically.

Use this mode when you need to update your caches atomically, ie: have all your changes be
committed or rolled back using a straight simple API. This mode is most useful when a cache
contains data cal culated out of other cached data.

* Xa
Use this mode when you cache data from other data stores (eg: DBMS, IMS) and wantto doitin
an atomic way under the control of the JTA API but don't want to pay the price of full two-phase
commit. In this mode, your cached data can get out of sync with the other resources participating
in the transactions in case of a crash so only useit if you can afford to live with stale datafor a
brief period of time.

* xa strict
Same as xa but use it only if you need strict XA disaster recovery guarantees. In this mode, the
cached data can never get out of sync with the other resources participating in the transactions,
even in case of a crash but you pay ahigh price in performance to get that extra safety.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

28 JTA And Transactions 128

28.1.3 Requirements

The abjects you are going to store in your transactional cache must:
» implementj ava.io. Serializable
Thisisrequired to store cached objects when the cache is clustered with Terracotta but it's also
required by the copy on read / copy on write mechanism used to implement isolation.
e overrideequal s and hashcode

Those must be overridden as the transactional stores rely on element value comparison, see:
El ement Val ueConpar at or and the el emrent Val ueConpar at or configuration setting.

28.1.4 Configuration
Transactions are enabled on a cache by cache basiswith thet r ansact i onal Mode cache attribute.

The allowed values are:
e Xxa strict
* Xxa
e | ocal
e of f
The default value is off.

Enabling acachefor xa_st ri ct transactionsis shown in the following example:

<cache nane="xaCache"

maxEl erent sl nMenor y="500"
et ernal ="f al se"
ti meTol dl eSeconds="300"
ti meToLi veSeconds="600"
over fl owToDi sk="fal se"
di skPersi stent="fal se"
di skExpi ryThr eadl nt er val Seconds="1"
transacti onal Mbde="xa_strict">

</ cache>

28.1.4.1 Considerations when using clustered caches with Terracotta

For Terracotta clustered caches, t r ansact i onal Mode can only be used where

terracotta consistency="strong". Because caches can be dynamically changed into
consistency Type=eventual mode for bulk loading, any attempt to perform a transaction when thisis
the case will throw a CacheExcepti on.

Note that transactions do not work with Terracotta'si dent i t y mode. An attempt to initialise a
transactional cache when this mode is set will result in aCacheExcept i on being thrown. The default
modeisseri al i zati on mode.

Also note that all transactional modes are currently sensitive to the ABA problem.

28.1.5 Global Transactions

Global Transactions are supported by Ehcache. Ehcache can act as an X AResouce to participate
in JTA ("Java Transaction API") transactions under the control of a Transaction Manager. Thisis
typically provided by your application server, however you may also use athird party transaction
manager such as Bitronix.

To use Global Transactions, select either xa_st ri ct or xa mode. The differences are explained in
the sections below.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

28 JTA And Transactions 129

28.1.5.1 Implementation

Global transactions support isimplemented at the Store level, through XATransactionStore

and Jtal_ocal TransactionStore. The former actually decorates the underlying MemoryStore
implementation, augmenting it with transaction isolation and two-phase commit support through an
XAResouce implementation. The latter decorates a L ocal TransactionStore-decorated cache to make it
controllable by the standard JTA API instead of the proprietary TransactionController API.

During itsinitialization, the Cache will lookup the TransactionManager using

the provided TransactionManagerL ookup implementation. Then, using the

Transact i onManager Lookup. r egi st er (XAResouce) , the newly created X AResource will be
registered.

The storeis automatically configured to copy every Element read from the cache or written to it.
Cache is copy-on-read and copy-on-write.

28.1.6 Failure Recovery
As specified by the JTA specification, only prepared transaction data is recoverable.

Prepared data is persisted onto the cluster and locks on the memory are held. This basically means
that non-clustered caches cannot persist transactions data, so recovery errors after a crash may be
reported by the transaction manager.

28.1.6.1 Recovery

At any time after something went wrong, an XAResour ce may be asked to recover. Datathat has
been prepared may either be committed or rolled back during recovery. In accordance with XA, data
that has not yet been pr epar ed is discarded.

The recovery guarantee differs depending on the xa mode.

28.xa Mode

With xa, the cache doesn't get registered as an X AResource with the transaction manager but merely
can follow the flow of aJTA transaction by registering a JTA Synchronization. The cache can end up
inconsistent with the other resources if thereisa JVM crash in the mutating node.

In this mode, some inconsistency may occur between a cache and other XA resources (such as
databases) after a crash. However, the cache's data remains consistent because the transaction is still
fully atomic on the cache itself.

28.xa_strict Mode

If xa_strict isusedthe cache will always respond to the TransactionManager's recover calls with
thelist of prepared X1Ds of failed transactions. Those transaction branches can then be committed or
rolled back by the transaction manager. Thisis the standard XA mechanism in strict compliance with
the JTA specification.

28.1.7 Sample Apps
We have three sampl e applications showing how to use XA with avariety of technologies.

28.1.7.1 XA Sample App

This sample application uses JBoss application server. It shows an example using User managed
transactions. While we expect most people will use JTA from within Spring or EJB where the
container rather than managing it themselves, it clearly showswhat is going on.

The following snippet from our SimpleTX servlet shows a complete transaction.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

28 JTA And Transactions 130

Ehcache cache = cacheManager. get Ehcache("xaCache");
User Transacti on ut = get User Transaction();

printLi ne(servl et Response, "Hello...");
try {
ut. begin();

int index = serviceWthinTx(servl etResponse, cache);
printLi ne(servl et Response, "Bye #" + index);
ut.conmit();
} catch(Exception e) {
printLi ne(servl et Response,
"Caught a " + e.getC ass() + "! Rolling Tx back");
if(!printStackTrace) {
PrintWiter s = servl et Response. getWiter();
e.printStackTrace(s);
s.flush();

}

rol | backTransacti on(ut);
}

The source code for the demo can be checked out from http://svn.terracotta.org/svn/forge/projects/
ehcache-jta-sample/trunk

A README.txt explains how to get the JTA Sample app going.

28.1.7.2 XA Banking Application

The Idea of this application isto show areal world scenario. AwWeb app reads account transfer
messages from a queue and tries to execute these account transfers.

With JTA turned on, failures are rolled back so that the cached account balance is always the same as
the true balance summed from the database.

Thisapp is a Spring-based Java web app running in a Jetty container. It has (embedded) the following
components:

e A JMS Server (ActiveMQ)
2 databases (embedded Derby XA instances)
» 2 caches (JTA Ehcache)

All XA Resources are managed by Atomikos TransactionManager. Transaction demarcation is
done using Spring AOP's @ ansact i onal annotation.

You can run it with: nvn cl ean jetty: run. Then point your browser at: http://
localhost:9080.

To see what happens without XA transactions:
m/n clean jetty:run -Dxa=no

The source code for the demo can be checked out from http://svn.terracotta.org/svn/forge/
proj ects/ehcache-jta-banking/trunk

A README.txt explains how to get the JTA Sample app going.

28.1.7.3 Examinator

Examinator is our complete application that shows many aspects of caching in one web based Exam
application, al using the Terracotta Server Array.

Check out from http://svn.terracotta.org/svn/forge/projects/exam/

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://svn.terracotta.org/svn/forge/projects/ehcache-jta-sample/trunk
http://svn.terracotta.org/svn/forge/projects/ehcache-jta-sample/trunk
http://localhost:9080
http://localhost:9080
http://svn.terracotta.org/svn/forge/projects/ehcache-jta-banking/trunk
http://svn.terracotta.org/svn/forge/projects/ehcache-jta-banking/trunk
http://svn.terracotta.org/svn/forge/projects/exam/

28 JTA And Transactions 131

28.1.8 Transaction Managers

28.1.8.1 Automatically Detected Transaction Managers
Ehcache automatically detects and uses the following transaction managers in the following order:

* GenericINDI (e.g. Glassfish, JBoss, JTOM and any others that register themselvesin JNDI at the
standard location of java:/TransactionManager

» Weblogic (since 2.4.0)
 Bitronix
» Atomikos
No configuration is required; they work out of the box.

Thefirst found is used.

28.1.8.2 Configuring a Transaction Manager

If your Transaction Manager is not in the above list or you wish to change the
priority you need to configure your own lookup class and specify it in place of the
Def aul t Tr ansact i onManager Lookup in the ehcache.xml config:

<transacti onManager Lookup
cl ass= "net.sf.ehcache.transacti on. manager. Def aul t Transact i onManager Lookup"
properties="" propertySeparator=":"/>

Y ou can aso provide a different location for the INDI lookup by providing the jndiName property to
the DefaultTransactionM anagerL ookup.

The example below provides the proper location for the TransactionManager in GlassFish v3:

<transacti onManager Lookup
cl ass="net. sf. ehcache. transacti on. manager . Def aul t Transact i onManager Lookup"
properti es="j ndi Nane=j ava: appserver/

Transacti onManager" propertySeparator=";"/>

28.1.9 Local Transactions

Local Transactions allow single phase commit across multiple cache operations, across one or more
caches, and in the same CacheManager, whether distributed with Terracotta or standalone.

This lets you apply multiple changes to a CacheManager all in your own transaction. If you also want
to apply changes to other resources such as a database then you need to open a transaction to them and
manually handle commit and rollback to ensure consistency.

Local transactions are not controlled by a Transaction Manager. Instead there is an explicit API
where areference isobtained to aTr ansact i onCont r ol | er for the CacheManager using
cacheManager . get Transacti onCont rol | er () and the stepsin the transaction are called
explicitly.

The stepsin alocal transaction are:

e transactionControl |l er. begi n() - This marksthe beginning of the local transaction on the
current thread. The changes are not visible to other threads or to other transactions.

e transactionController.conmmit () - Commitswork donein the current transaction on the
calling thread.

e transactionController.rollback() - Rollsback work donein the current transaction on
the calling thread. The changes done since begin are not applied to the cache.

These steps should be placed in atry-catch block which catches Tr ansact i onExcept i on. If any
exceptions are thrown, rollback() should be called.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

28 JTA And Transactions 132

Local Transactions has it's own exceptions that can be thrown, which are all subclasses of
CacheExcept i on. They are:

e Transacti onExcepti on - ageneral exception

e Transactionl nterrupt edExcepti on - if Thread.interrupt() got called while the cache was
processing a transaction.

e Transacti onTi meout Excepti on - if acache operation or commit is called after the
transaction timeout has el apsed.

28.1.9.1 Introduction Video

Ludovic Orban the primary author of Local Transactions presents an introductory video on Local
Transactions.

28.1.9.2 Configuration
Local transactions are configured as follows:

<cache nane="sanpl eCache"

t ransacti onal Mbde="1ocal "
</ cache>

28.1.9.3 Isolation Level
As with the other transaction modes, the isolation level isREAD_COMMITTED.

28.1.9.4 Transaction Timeouts

If atransaction cannot compl ete within the timeout period, then a
Transact i onTi meout Except i on will be thrown. To return the cache to a consistent state you need
tocal transacti onController.roll back().

Because Tr ansact i onCont r ol | er isat the level of the CacheManager, a default timeout can be set
which appliesto all transactions across al cachesin a CacheManager. If not set, it is 15 seconds.

To change the defaultTimeout:

transacti onControl |l er.set Defaul t Transacti onTi neout (i nt defaul t Transacti onTi neout Sec

The countdown starts straight after begi n() iscalled. Y ou might have another local transaction on
aJDBC connection and you may be making multiple changes. If you think it could take longer than
15 seconds for an individual transaction, you can override the default when you begin the transaction
with:

transacti onControll er. begin(int transactionTi neout Seconds) ({

28.1.9.5 Sample Code
This example shows a transaction which performs multiple operations across two caches.

CacheManager cacheManager = CacheManager. getlnstance();
try {
cacheManager . get Transacti onControl | er (). begi n();
cachel. put (new El ement (1, "one"));
cache2. put (new El ement (2, "two"));
cachel. renove(4);
cacheManager . get Transacti onController().commit();
} catch (CacheException e) {
cacheManager . get Transacti onControl l er (). roll back()

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://vimeo.com/21299785

28 JTA And Transactions 133

}

28.1.9.6 What can go wrong

28.JVM crash between begin and commit
On restart none of the changes applied after begin are there.

On restart, nothing needs to be done. Under the covers in the case of a Terracotta cluster, the
Element's new value is there but not applied. It'swill be lazily removed on next access.

28.1.10 Performance

28.1.10.1 Managing Contention

If two transactions, either standalone or across the cluster, attempt to perform a cache operation on the
same element then the following rules apply:

» Thefirst transaction gets access

» Thefollowing transactions will block on the cache operation until either the first transaction
completes or the transaction timeout occurs.

Under the covers, when an element isinvolved in atransaction, it is replaced with a new element with
amarker that islocked, along with the transaction ID. The normal cluster semantics are used.

Because transactions only work with consistency=strong caches, the first transaction will be the
thread that manages to atomically place a soft lock on the Element. (Up to Terracotta 3.4 thiswas
done with write locks. After that it is done with the CAS based putlfAbsent and replace methods).

28.1.10.2 What granularity of locking is used?
Ehcache standal one up to 2.3 used page level locking, where each segment in the ConpoundSt or e is
locked. From 2.4, it is one with soft locks stored in the Element itself and is on akey basis.

Terracotta clustered caches are locked on the key level.

28.1.10.3 Performance Comparisons
Any transactional cache adds an overhead which is significant for writes and nearly negligible for
reads.

Within the modes the relative time take to perform writes, where off = 1, is.

 off - no overhead

» Xa gtrict - 20 times slower

* Xa- 3timesdower

» local - 3times slower
Therelative read performanceis:

 off - no overhead

» Xa_gtrict - 20 times slower

* xa- 30% slower

» local - 30% slower

Accordingly, xa_strict should only be used where it's full guarantees are required, othewise one of the
other modes should be used.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

28 JTA And Transactions 134

28.1.11 FAQ

28.1.11.1 Is IBM Websphere Transaction Manager supported?

Mostly. xa _strict is not supported due to each version of Websphere essentially being a
custom implementation i.e. no stable interface to implement against. However, xa, which uses
TransactionManager callbacksand | ocal are supported.

28.1.11.2 How do transactions interact with Write-behind and Write-through caches?

If your transactional enabled cache is being used with awriter, write operations will be queued until
transaction commit time. Solely a Write-through approach would have its potential X AResource
participate in the same transaction. Write-behind, while supported, should probably not be used with
an XA transactional Cache, as the operations would never be part of the same transaction. Y our writer
would also be responsible for obtaining a new transaction...

Using Write-through with anon XA resource would also work, but there is no guarantee the
transaction will succeed after the write operations have been executed successfully. On the other
hand, any thrown exception during these write operations would cause the transaction to be rolled
back by having UserTransaction.commit() throw a RollbackException.

28.1.11.3 Are Hibernate Transactions supported?

Ehcacheisa"transactional" cache for Hibernate purposes. The
net . sf. ehcache. hi ber nat e. EhCacheRegi onFact or y has support for Hibernate entities
configured with cache usage="transactional"/.

28.1.11.4 How do | make WebLogic 10 work with Ehcache JTA?

WebL ogic uses an optimization that is not supported by our implementation. By default WebL ogic 10
will spawn threads to start the Transaction on each XAResource in parallel. Aswe need transaction
work to be performed on the same Thread, you will have to turn this optimization off by setting

par al | el - xa- enabl ed optiontof al se inyour domain configuration :

<jta>

<checkpoi nt -i nt erval - seconds>300</ checkpoi nt -i nterval - seconds>
<paral | el - xa- enabl ed>f al se</ paral | el - xa- enabl ed>
<unr egi st er-resource-grace- peri od>30</ unregi ster-resource-grace-period>

</jta>
28.1.11.5 How do | make Atomikos work with Ehcache JTA's xa mode?

Atomikos has a bug which makes the xa mode's hormal transaction termination mechanism
unreliable, see: http://fogbugz.atomikos.com/default.asp?community.6.802.3. Thereisan
alternative termination mechanism built in that transaction mode that is automatically enabled when
net.sf.ehcache. transaction. xa. al ternati veTer mi nati onMode isset to true or when
Atomikos s detected as the controlling transaction manager.

This aternative termination mode has strict requirement on the way threads are used by the
transaction manager and Atomikos's default settings won't work. Y ou have to configure this property
to make it work: --- com.atomikos.icatch.threaded 2pc=false ---

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://fogbugz.atomikos.com/default.asp?community.6.802.3

29

29 Search 135

Search

29.1 Search

29.1.1 Ehcache Search API

The Ehcache Search API alows you to execute arbitrarily complex queries against either a standalone
cache or a Terracotta clustered cache with pre-built indexes. Searchable attributes may be extracted
from both keys and values. Keys, values, or summary values (Aggregators) can all be returned.

Hereis asimple example: Search for 32 year old males and return the cache values.

Results results = cache.createQuery().includeVal ues()
.addCriteria(age. eq(32).and(gender.eq("nmale"))).execute();

29.1.2 What is searchable?
Searches can be performed against Element keys and values.

Element keys and values are made searchable by extracting attributes with supported search types out
of the values.

It is the attributes themelves which are searchable.

29.1.3 How to make a cache searchable

29.1.3.1 By Configuration
Caches are made searchable by adding a <searchable/> tag to the ehcachel .xml.

<cache nane="cache2" maxEl ement sl nMenory="10000" eternal ="true" overfl owlToDi sk="fal se">
<sear chabl e/ >
</ cache>

This configuration will scan keys and vales and if they are of supported search types, add them as
attributes called "key" and "value" respectively. If you do not want automatic indexing of keys and
values you can disable it with:

<cache nanme="cache3" ...>
<searchabl e keys="fal se" val ues="fal se">

</ sear chabl e>
</ cache>

Y ou might want to do this if you have amix of typesfor your keys or values. The automatic indexing
will throw an exception if types are mixed.

L ots of times keys or values will not be directly searchable and instead you will need to extract
searchable attributes out of them. The following example shows this more typical case. Attribute
Extractors are explained in more detail in the following section.

<cache nane="cache3" maxEl ement sl nMenory="10000" eternal ="true" overfl owlToDi sk="fal se">
<sear chabl e>
<searchAttri bute name="age" class="net.sf.ehcache.search. TestAttri buteExtractor

<searchAttri bute name="gender" expression="val ue.getGender()"/>
</ sear chabl e>

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

29 Search 136

</ cache>

29.1.3.2 Programmatically
The following example shows how to programmatically create the cache configuration, with search
attributes.

Configuration cacheManager Config = new Configuration();

CacheConfiguration cacheConfig = new CacheConfi guration("myCache", 0).eternal (true);
Sear chabl e searchabl e = new Sear chabl e();

cacheConfi g. addSear chabl e(sear chabl e) ;

/1l Create attributes to use in queries.
sear chabl e. addSear chAttri but e(new SearchAttri bute().nanme("age"));

/1 Use an expression for accessing val ues.

sear chabl e. addSear chAttri but e(new SearchAttri bute()
.nane("first_name")
. expression("val ue.getFirstNane()"));

sear chabl e. addSear chAtt ri but e(new SearchAttri bute().name("l ast _nane") . expressi on("val ue
sear chabl e. addSear chAttri but e(new SearchAttribute().nanme("zi p_code"). expressio

cacheManager = new CacheManager (cacheManager Confi Q) ;
cacheManager . addCache(new Cache(cacheConfig));

Ehcache myCache = cacheManager. get Ehcache(" nmyCache");

/1 Now create the attributes and queries, then execute.

To learn more about the Ehcache Search API, seethenet . sf. ehcache. sear ch* packagesin this
Javadoc.

29.1.4 Attribute Extractors

Attributes are extracted from keys or values. Thisisdone on put () into the cache using
At tri but eExtract or sinthe clustered implementation and during search in the standalone
implementation

Extracted attributes must be one of the following supported types:

* Boolean

* Byte

» Character

* Double

* Float

* Integer

* Long

» Short

e String

* javautil.Date
e javasgl.Date
* Enum

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://ehcache.org/apidocs/index.html
http://ehcache.org/apidocs/index.html

29 Search 137

If an attribute cannot be extracted due to not being found or of being the wrong type an
AttributeExtractorException is thrown during the put () in the clustered implementation and on
search execution in the standal one implementation

29.1.4.1 Well-known Attributes

The parts of an Element are well-known attributes that can be referenced by some predefined, well-
known names.

If akeysand/or valueis of a supported search type, they are added automatically as attributes with the
names "key" amd "value".

These well-known attributes have convenience constant attributes made available on the Quer y class.
So, for example, the attribute for "key" may be referenced in aquery by Query. KEY. For even greater
readability it is recommended to statically import so that in this example you would just use KEY.

Well-known Attribute Name Attribute Constant
key Query.KEY
value Query.VALUE

29.1.4.2 ReflectionAttributeExtractor

The ReflectionAttributeExtractor is a built-in search attribute extractor which uses JavaBean
conventions and al so understands a simple form of expression.

Where a JavaBean property is available and it is of a searchable type, it can be simply declared using:

<cache>
<sear chabl e>
<searchAttri bute nanme="age"/>
</ sear chabl e>
</ cache>

Finally, when things get more complicated, we have an expression language using method/value
dotted expression chains.

The expression chain must start with one of either "key", "value", or "element". From the starting
object achain of either method calls or field names follows. Method calls and field names can be
freely mixed in the chain.

Some more examples:

<cache>
<sear chabl e>
<searchAttri bute name="age" expression="val ue. person. get Age()"/ >
</ sear chabl e>
</ cache>
<cache>
<sear chabl e>
<searchAttri bute nanme="nane" expression="elenent.toString()"/>
</ sear chabl e>
</ cache>

The method and field name portions of the expression are case sensitive.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

29 Search 138

29.1.4.3 Custom AttributeExtractor

In more complex situations you can create your own attribute extractor by implementing the
AttributeExtractor interface. Providing your extractor classis shown in the following example:

<cache nane="cache2" maxEl enent sl nMenory="0" eternal ="true" overfl owToD sk="fal se">
<sear chabl e>
<searchAttri bute name="age" class="net.sf.ehcache.search. TestAttri buteExtractor
>

</ sear chabl e>
</ cache>

If you need to pass state to your custom extractor you may do so with properties as shown in the
following example:

<cache>
<sear chabl e>
<searchAttri bute name="age"
cl ass="net . sf. ehcache. search. Test Attri but eExtractor™
properti es="foo=this, bar=t hat, etc=12" />
</ sear chabl e>
</ cache>

If properties are provided then the attribute extractor implementation must have a public constructor
that accepts a single java.util.Properties instance

29.1.5 Query API

Ehcache Search introduces a fluent Object Oriented query API, following DSL principles, which
should fedl familiar and natural to Java programmers.
Hereisasimple example:

Query query = cache.createQuery().addCriteria(age.eq(35)).includeKeys().end();
Results results = query. execute();

29.1.5.1 Using attributes in queries

If declared and available, the well-known attributes are referenced by their name or the convenience
attributes are used directly as shown in this example:

Results results = cache.createQuery().addCriteria(Query. KEY. eq(35)).execute();
Results results = cache.createQuery().addCriteria(Query. VALUE. It (10)).execute();
Other attributes are referenced by the names given them in the configuration. E.g.

Attribute<lnteger> age = cache. get SearchAttri bute("age");

Attribute<String> gender = cache. get SearchAttri bute("gender");
Attribute<String> name = cache. get SearchAttri bute("name");

29.1.5.2 Expressions
The Query to be searched for is built up using Expressions.

Expressions include logical operators such as and and or. It also includes comparison operators such
as ge (>=), between and like

addCriteria(...) isusedtoadd aclauseto aquery. Adding afurther clause automatically ands
the clauses

guery = cache. createQuery().includeKeys().addCriteria(age.|e(65)).add(gender.eq("male"),
Both logical and comparison operatorsimplement the Cri t er i a interface.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

29 Search 139

To add acriteriawith a different logical operator, you need to explicitly nest it within a new logical
operator Criteria Object.

e.g. to check for age = 35 or gender = female, do the following:

qguery. addCriteria(new O (age. eq(35),
gender . eq(Gender . FEVMALE))

);

More complex compound expressions can be further created with extra nesting.

Seethe Expression JavaDoc for acomplete list.

29.1.5.3 List of Operators

Operators are available as methods on attributes, so they are used by adding a".". So, "It" means less
than and isused asage. | t (10) , which is a shorthand way of saying new LessThan(10) .

The full listing of operator shorthand is shown below.

Shorthand Criteria Class Description

and And The Boolean AND logical operator

between Between A comparison operator meaning
between two values

eq EqualTo A comparison operator meaning
Java "equals to" condition

gt GreaterThan A comparison operator meaning
greater than.

ge GreaterThanOrEqual A comparison operator meaning
greater than or equal to.

in InCollection A comparison operator meaning in
the collection given as an argument

It LessThan A comparison operator meaning
less than.

le LessThanOrEqual A comparison operator meaning
less than or equal to

ilike ILike A regular expression matcher. *?*
and "*" may be used. Note that
placing a wildcard in front of the
expression will cause a table scan.
ILike is always case insensitive.

not Not The Boolean NOT logical operator

ne NotEqualTo A comparison operator meaning
not the Java "equals to" condition

or Or The Boolean OR logical operator

29.1.5.4 Making queries immutable

By default a query can be executed and then modified and re-executed. If end is called the query is

made immutable.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://ehcache.org/xref/net/sf/ehcache/search/expression/package-frame.html

29 Search 140

29.1.5.5 Ordering Results
Query results may be ordered in ascending or descending order by adding an addOr der By clauseto
the query, which takes as parameters the attribute to order by and the ordering direction.

e.g. to order the results by ages in ascending order --- query.addOrderBy(age,
Direction. ASCENDING); ---

29.1.5.6 Limiting the size of Results
By default aquery will return an unlimited number of results. For example the following query will
return all keysin the cache.

Query query = cache.createQery();
qguery.incl udeKeys();
qguery. execute();

If too many results are returned it could cause an OutOfMemoryError
The maxResul t s clauseis used to limit the size of the results.
e.g. to limit the above query to the first 100 elements found:

Query query = cache.createQery();
qguery.incl udeKeys();

guery. maxResul t s(100);

qguery. execute();

If areturns avery large result, you can get it in chunks with Resul t s. r ange() .

29.1.6 Search Results
Queriesreturn aResul t s object which contains alist of objects of classResul t

29.1.6.1 Results
Either all results can bereturned usingresul ts. al | () to get the al in one chunk, or arange of
resultsusingresul ts. range(int start, int count) toachieve paging

When you are done with the results, it is recommended to call di scar d() . Thisalows resourcesto
be freed. In the distributed implementation with Terracotta, resources may be used to hold results for
paging or return.

To determine what was returned by the query use one of the interrogation methods on Resul t s:

* hasKeys()

* hasVal ues()

* hasAttributes()
* hasAggregat ors()

29.1.6.2 Result

Each El enent in the cache found with a query will be represented asaResul t object. So if aquery
finds 350 elements there will be 350 Resul t objects. An exception to this if no keys or attributes are
included but aggregators are -- In this case there will be exactly one Resul t present

A Result object can contain:

 the Element key - wheni ncl udeKeys() was added to the query
+ the Element value - wheni ncl udeVal ues() was added to the query

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

29 Search 141

 predefined attribute(s) extracted from an Element value - wheni ncl udeAttri bute(...) was
added to the query. To access an attribute from Result, useget At t ri but e(At t ri but e<T>
attribute.

 aggregator results

Aggregator results are summaries computed for the search. They are available
Resul t . get Aggr egat or Resul t s which returns alist of Aggr egat or sin the same order in which
they were used in the Query.

29.1.6.3 Aggregators
Aggregators are added with quer y. i ncl udeAggr egat or (<at t ri but e>. <aggr egat or >) .

E.g. to find the sum of the age attribute:

qguery.incl udeAggr egat or (age. sun());
Seethe Aggregators JavaDaoc for a complete list.

29.1.7 Sample Application

We have created a simple standal one sample application with few dependencies for you to easily get
started with Ehcache Search.

or check out the source:

git clone git://github.conlsharrissf/Ehcache- Search-Sanpl e. git
The Ehcache Test Sources show lots of further examples on how to use each Ehcache Search feature.

29.1.8 Scripting Environments

Ehcache Search is readily amenable to scripting. The following example shows how to use it with
BeanShdll:

Interpreter i = new Interpreter();
/1
Aut o di scover the search attributes and add themto the interpreter's context
Map<String, SearchAttribute> attributes = cache. get CacheConfiguration().getSearchAttrib
for (Map. Entry<String, SearchAttribute> entry : attributes.entrySet()) {
i.set(entry.getKey(), cache.getSearchAttribute(entry.getKey()));
LOG info("Setting attribute " + entry. getKey());
}
/1
Define the query and results. Add things which would be set in the GU i.e.
/1includeKeys and add to context
Query query = cache.createQery().incl udeKeys();
Results results = null;
i.set("query", query);
i.set("results", results);
/1 This comes fromthe freeformtext field
String userDefinedQuery = "age.eq(35)";
/1 Add the stuff on that we need
String full QueryString = "results = query.addCriteria(" + userDefinedQuery + ").execute
i.eval (full QueryString);
results = (Results) i.get("results");
assertTrue(2 == results.size());
for (Result result : results.all()) {
LOG info("" + result.getKey());

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://ehcache.org/xref/net/sf/ehcache/search/aggregator/package-frame.html
http://ehcache.org/xref-test/net/sf/ehcache/search/package-summary.html

29 Search 142

29.1.9 Concurrency Considerations

Unlike cache operations which has selectable concurrency control and/or transactions, the Search AP
does not. This may change in a future release, however our survey of prospective users showed that
concurrency control in search indexes was not sought after.

The indexes are eventually consistent with the caches.

29.1.9.1 Index updating
Indexes will be updated asynchronously, so there state will lag slightly behind the state of the cache.
The only exception is when the updating thread then performs a search.
For caches with concurrency control, an index will not reflect the new state of the cache until:
» The change has been applied to the cluster.
* For acache with transactions, when commi t has been called.

29.1.9.2 Query Results

There are several ways unexpected results could present:
A search returns an Element reference which no longer exists.

» Search criteria select an Element, but the Element has been updated and a new Search would no
longer match the Element.

» Aggregators, such as sum(), might disagree with the same calculation done by redoing the
calculation yourself by re-accessing the cache for each key and repeating the calculation.

* incl udeVal ues returns values. Under the covers the index contains a server value reference.
The reference gets returned with the search and Terracotta supplies the matching value. Because
the cache is always updated before the search index it is possible that a value reference may refer
to avalue that has been removed from the cache. If this happens the value will be null but the
key and attributes which were supplied by the now stale cache index will be non-null. Because
values in Ehcache are also allowed to be null, you cannot tell whether your valueis null because
it has been removed from the cache since the index was last updated or because it isanull value.

29.1.9.3 Recommendations

Because the state of the cache can change between search executions it is recommended to add all of
the Aggregators you want for a query at once so that the returned aggregators are consistent.

Use null guards when accessing a cache with a key returned from a search.

29.1.10 Implementations

29.1.10.1 Standalone Ehcache

The standal one Ehcache implementation does not use indexes. It uses fast iteration of the cache
instead, relying on the very fast access to do the equivalent of atable scan for each query. Each
element in the cache is only visited once.

Attributes are not extracted ahead of time. They are done during query execution.
29.Performance
Search operations perform in O(n) time.

Checkout https://svn.terracotta.org/repol/forge/offHeap-test/ terracotta_community_login, a Maven-
based performance test showing standal one cache performance. This test shows search performance

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

https://svn.terracotta.org/repo/forge/offHeap-test/

29 Search 143

of of an average of representative queries at 10ms per 10,000 entries. So, atypical query would take 1
second for a 1,000,000 entry cache.

Accordingly, standal one implementation is suitable for development and testing. For productionitis
recommended to only standalone search for caches that are less than 1 million elements.

Performance of different Cri t eri a vary. For example, here are some queries and their execute times
on a 200,000 element cache. (Note that these results are all faster than the times given above because
they execute asingle Criteria).

final Query intQuery = cache. createQery();

i nt Query.includeKeys();

i nt Query.addCriteria(age.eq(35));

i nt Query. end();

Execute Tinme: 62ns

final Query stringQuery = cache. createQuery();
stringQuery.includeKeys();
stringQuery.addCriteria(state.eq("CA"));
stringQuery. end();

Execute Time: 125ns

final Query iLikeQuery = cache.createQuery();
i Li keQuery.incl udeKeys();

i Li keQuery.addCriteria(nane.ilike("H"));

i Li keQuery. end();

Execute Time: 180ns

29.1.10.2 Ehcache backed by the Terracotta Server Array

This implementation uses indexes which are maintained on each Terracotta server. In Ehcache EX
the index is on asingle active server. In Ehcache FX the cache is sharded across the number of active
nodes in the cluster. The index for each shard is maintained on that shard's server.

Searches are performed using the Scatter-Gather pattern. The query executes on each node and the
results are then aggregated back in the Ehcache that initiated the search.

29.Performance
Search operations perform in O(log n / number of shards) time.

Performance is excellent and can be improved simply by adding more serversto the FX array.

29.Network Effects

Search results are returned over the network. The data returned could potentially be very large, so
techniques to limit return size are recommended such as:

* limiting the results with maxResul t s or using the paging APl Resul ts. range(int start,
int |ength)

 Only including the data you need. Specifically only usei ncl udekeys() and/or
i ncl udeAttribute() if thosevauesare actualy required for your application logic

 using abuilt-in Aggr egat or function when you only need a summary statistic

i ncl udeVal ues rates a special mention. Once aquery requiring values is executed we push the
values from the server to the Ehcache CacheManager which requested it in batches for network
efficiency. Thisis done ahead as soon as possible reducing therisk that Resul t . get Val ue()
might have to wait for data over the network.

« turn off key and value indexing if you are not going to search against them as they will just chew
up space on the server.

Y ou do this as follows:

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

29 Search 144

<cache nane="cache3d" ...>
<searchabl e keys="fal se" val ues="fal se">

</ sear chabl e>
</ cache>

©2011, Terracotta, Inc. » ALL RIGHTS RESERVED.

30 Ehcache Monitor 145

Ehcache Monitor

30.1 Ehcache Monitor

This add-on tool for Ehcache provides enterprise-class monitoring and management capabilities for
use in both development and production. It isintended to help understand and tune cache usage,
detect errors, and provide an easy to use access point to integrate with production management
systems. It also provides administrative functionality such as the ability to forcefully remove items
from caches.

Simply install the Monitor on an Operations server, add the Monitor Probe jar to your app, add afew
lines of config in ehcache.xml and your done.

The package contains a probe and a server. The probe installs with your existing Ehcache cache
instance, and communicatesto a central server. The server aggregates data from multiple probes. It
can be accessed viaa simple web Ul, aswell asascriptable API. In thisway, it is easy to integrate
with common third party systems management tools (such as Hyperic, Nagios etc). The probeis
designed to be compatible with al versions of Ehcache from 1.5 and requires JDK 1.5 or 1.6.

Get the Ehcache Monitor now.

30.1.1 Installation And Configuration
First download and extract the Ehcache Monitor package.

The package consists of alib directory with the probe and monitor server jars, a bin directory with
startup and shutdown scripts for the monitor server and an etc directory with an example monitor
server configuration file and a Jetty Server configuration file.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://www.terracotta.org/ehcache.org/download-monitor
http://www.terracotta.org/ehcache.org/download-monitor

30 Ehcache Monitor 146

30.1.2 Recommended Deployment Topology

Ehcache Monitor Deployment Topology

Application

[Ehcache TCP

o —

[Mnn itor Probe

Web
i Interface User

Application Encache
[Ehcache]___ TCP Monitor
Server

[Mnnimr Frobe J

Browser

XML

over
Application HTTP
[Ehcache] TCP
[Munimr Probe J

Production Operations

It is recommended to place the Monitor on an Operations server separate to production. The Monitor
acts as an aggregation point for access by end users and for scripted connection from Operations tools
for data feeds and set up of aerts.

30.1.2.1 Probe
To include the probe in your Ehcache application, you need to perform two steps:

1 Add the ehcache-probe- version.jar to your application classpath (or war file). Do thisin the
same way you added the core ehcache jar to your application.

If you are Maven based, the probe module isin the Terracotta public repository for easy
integration.

<r eposi tory>
<id>terracotta-rel eases</id>
<url>http://ww. terracotta. org/ downl oad/ refl ector/
rel eases</url >
</repository>
<dependency>
<groupl d>org. terracotta</groupl d>

©2011, Terracotta, Inc. » ALL RIGHTS RESERVED.

Operations
Manitor

30 Ehcache Monitor 147

<artifactld>ehcache-probe</artifactld>
<versi on>[ver si on] </ versi on>
</ dependency>
2 Configure Ehcache to communicate with the probe by specifying the class name of the probe, the

address (or hostname), the port that the monitor will be running on and whether to do memory
measurement. Thisis done by adding the following to ehcache.xml:

<cacheManager Peer Li st ener Fact ory
cl ass="org.terracotta. ehcachedx. noni t or. probe. ProbePeer Li stiener Fact ory"
properti es="nonitor Addr ess=l ocal host, nonitorPort=9889, nenoryMeasurenent =t

3 Include required SLF4Jlogging jars.

Ehcache 1.7.1 and above require SLFAJ. Earlier versions used commons logging. The probe,
like al new Ehcache modules, uses SLF4J, which is becoming a new standard in open source
projects.

If you are using Ehcache 1.5t0 1.7.0, you will need to add dlf4j-api and one concrete logger.

If you are using Ehcache 1.7.1 and above you should not need to do anything because you will
aready be using sf4j-api and one concrete logger.
More information on SLF4J is available from http://www.df4j.org.

4 Ensure that statistics capture in each cacheis turned on for the probe to gather statistics.
Statistics were turned off by default from Ehcache 2.1 onwards.

<cache nanme="sanpl eCache2"
maxEl ement sl nMenor y="1000"
eternal ="true"
overfl owToDi sk="f al se"
menor ySt or eEvi cti onPol i cy="FI FO'
statistics="true"
/>

30.1.2.2 Monitor
Copy the monitor package to a monitoring server.

To start the monitor, run the startup script provided in the bin directory: startup.sh on Unix and
startup.bat on Microsoft Windows. The monitor port selected in this script should match the port
specified in ehcache.xml.

The monitor can be configured, including interface, port and simple security settings, in the etc/
ehcache-monitor.conf.

Note that if you are using the commercial version, you need to specify in ehcache-monitor.conf the
location of your licensefile.

eg.
license file=/Users/karthik/Docunents/workspace/lib/license/terracotta-
i cense. key

The monitor connection timeout can also be configured. If the monitor is frequently timing out
while attempting to connect to a node (due to long GC cycles, for example), then the default
timeout value may not be suitable for your environment. Y ou can set the monitor timeout
using the system property ehcachedx. connect i on. t i meout . seconds. For example, -
Dehcachedx. connecti on. ti meout . seconds=60 sets the timeout to 60 seconds.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

30 Ehcache Monitor 148

30.1.3 Securing the Monitor

The Monitor can be secured in avariety of ways. The simplest method involves simply editing
ehcache-monitor.conf to specify a single user name and password. This method has the obvious
drawbacksthat (1) it provides only a single login identity, and (2) the credentials are stored in clear-
text.

A more comprehensive security solution can be achieved by configuring the Jetty Server with one ore
more User Real nsasdescribed by Jetty and JAAS. Simply edit etc/jetty.xml to use the appropriate
User Real mimplementation for your needs. To configure the Monitor to authenticate against an
existing LDAP server, first ensure that you have defined and properly registered aLogi nConfi g,
such as the following example:

MyExi sti ngLDAPLogi nConfi g {
com sun. security. aut h. nodul e. LdapLogi nMbdul e REQUI RED
j ava. nam ng. security. aut henti cati on="si npl e"
user Provi der="1dap:/ /| dap- host : 389"
aut hl denti t y="ui d={ USERNANVE} , ou=Peopl e, dc=nyor g, dc=or g"
useSSL=f al se
bi ndDn="cn=Manager "
bi ndCr edent i al ="secr et Bi ndCr edenti al "
bi ndAut hent i cati onType="si npl e"
debug=t r ue;

s

Note: the LdapLogi nMbdul e isnew with JDK 1.6.

JAAS supports many different types of login modules and it is up to the reader to provide avalid,
working JAAS environment. For more information regarding JAAS refer to JAAS Reference Guide.

For information on how to register your LoginConfig refer to $JAVA_HOME/jre/lib/security/
java.security.

Next, edit etc/jetty.xml like so:

<?xm version="1.0"7?>
<! DOCTYPE Configure PUBLIC "-//Mrt Bay Consulting//DTD Confi gure//EN'
"http://jetty. nortbay. org/configure.dtd">
<Configure id="Server" class="org.terracotta. ehcachedx.org. nortbay./jetty. Server">
<Set nane="User Real ns">
<Array type="org.terracotta.ehcachedx.org. nortbay.jetty.secunity. UserReal nf'>
<ltenmr
<New cl ass="org.terracotta. ehcachedx. org. nortbay. jetty. pllus.jaas. JAASUser
<Set nane="Nanme" >M/Ar bi t r ar yLDAPReal mNane</ Set >
<Set nane="Logi nModul eNanme" >MyExi sti ngLDAPLogi nConf i g</ Set >
</ New>
</ltemnp
</ Array>
</ Set >
</ Confi gure>

The Logi nMbdul eNane you specify as the second constructor parameter to the JAASUser Real m
class must exactly match the name of your Logi nMbdul e. The realm name specified as the first
constructor parameter can be an arbitrary value.

Note: the version of Jetty used in the Monitor has been repackaged so be sure to prefix any standard
Jetty class nameswith or g. t er racot t a. ehcachedx.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://docs.codehaus.org/display/JETTY/JAAS
http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html

30 Ehcache Monitor 149

If the Jetty Server isfound to have been configured with any security realms, the ssmple user name
and password from ehcache-monitor.conf isignored.

30.1.4 Using the Web GUI

The web-based GUI is available by pointing your browser at http:// monitor-host-name: monitor-port/
monitor. For a default installation on the local machine, this would be http://localhost:9889/monitor

The GUI contains six tabs, described as follows:

30.1.4.1 Cache Managers

This tab shows aggregate statistics for the cache managers being monitored by probes connected to
the monitor server. Double-clicking on any cache manager drills down to the detailed Statistics tab for
that manager.

30.1.4.2 Statistics

This tab shows the statistics being gathered for each cache managed by the selected cache manager.
The Settings button permits you to add additional statistics fields to the display. Note: only displayed
fields are collected and aggregated by the probe. Adding additional display fields will increase the

processing required for probe and the monitor. The selected settings are stored in a preferences cookie
in your browser.

Double-clicking on any cache drills down to the Contents tab for that cache.

30.1.4.3 Configuration

This tab shows the key configuration information for each cache managed by the selected cache
manager.

30.1.4.4 Contents
This tab enables you to ook inside the cache, search for elements viatheir keys and remove
individual or groups of elements from the cache.

The GUI is set to refresh at the same frequency that the probes aggregate their statistic samples which
isevery 10 seconds by default. The progress bar at the bottom of the screen indicates the time until
the next refresh.

30.1.4.5 Charts

This tab contains various live charts of cache statistics. It gives you afeel for the trending of the each
statistic, rather than just the latest value.

30.Estimated Memory Use Chart
This chart shows the estimated memory use of the Cache.

Memory is estimated by sampling. The first 15 puts or updates are measured and then every 100th put
or update. Most caches contain objects of similar size. If thisis not the case for your cache, then the
estimate will not be accurate.

M easurements are performed by walking the object graph of sampled elements through reflection. In
some cases such as classes not visible to the classloader, the measurement fails and O is recorded for
cache size. If you see a chart with 0 memory size values but the cache has datain it, then thisisthe
cause. For this release, caches distributed via Terracotta server show as 0.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

30 Ehcache Monitor 150

30.1.4.6 API

Thistab contains alisting of the APl methods. Each is a hyperlink, which may be clicked on. Some
will display data and some will require additional arguments. If additional arguments are required an
error message will be displayed with the details. Thistab is meant for interative testing of the API.

30.1.5 Using the API
The Monitor providesa APl over HTTP on the same port as the Web GUI.

Thelist of functions supported by the API can be accessed by pointing your browser at http://
monitor-host-name: monitor-port/monitor/list. For a default installation on the local machine, this
would be http://localhost: 9889/monitor/list

The API returns data as either structured XML or plan text. The default format is txt.

For example, the getV ersion function returns the software version of the monitor server. It can be
called asfollows:

http://localhost: 9889/monitor/getVersion
or, to receive theresultsas XML:
http://localhost: 9889/monitor/getV ersion?format=xml

To query the data collected by the monitor server from scripts that can then be used to pass the datato
enterprise system management frameworks, commands such ascur | or wget can be used.

For example, on aLinux system, to query the list of probesthat alocal monitor on the default port is
currently aware of, and return the datain XML format, the following command could be used:

$ curl http://1ocal host: 9889/ nonitor/listProbes?formt=xmn

30.1.6 Licensing
Unless otherwise indicated, this moduleis licensed for usage in development.

For details see the license terms in the appropriate LICENSE.txt. To obtain acommercial license for
use in production, please contact sales@terracottatech.com

30.1.7 Limitations

30.1.7.1 History not Implemented

This release has server side history configuration in place, however history is not implemented. It is
anticipated it will be implemented in the next release. In the meantime, the charts with their recent
history provide trending.

30.1.7.2 Memory Measurement limitations
Unfortunately in Java, thereis no JSR for memory measurement of objects. Implementations, such as
the sizeof one we use are subject to fragilities.

For example, Java 7 memory measurement is not supported at thistime. You will get a
j ava. | ang. NoSuchFi el dExcepti on: header exception messageif you use memory
measurement with Java 7.

Memory measurement can optionally be turned off by setting menor yMeasur enent =f al se inthe
probe configuration.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

31

31 CacheManager Event Listeners 151

CacheManager Event Listeners

31.1 CacheManager Event Listeners

CacheManager event listeners alow implementersto register callback methods that will be executed
when aCacheManager event occurs. Cache listeners implement the CacheM anagerEventL istener
interface.

The events include:
» adding aCache
* removing aCache
Callbacks to these methods are synchronous and unsynchronized. It isthe responsibility of the

implementer to safely handle the potential performance and thread safety issues depending on what
their listener is doing.

31.1.1 Configuration

One CacheManagerEventL istenerFactory and hence one CacheM anagerEventListener can be
specified per CacheManager instance.

The factory is configured as below:

<cacheManager Event Li st ener Factory cl ass="" properties=""/>

The entry specifies a CacheM anagerEventListenerFactory which will be used to create a
CacheManagerPeerProvider, which is notified when Caches are added or removed from the
CacheManager.

The attributes of CacheManagerEventListenerFactory are:
» cl ass - afully qualified factory class hame
e properties - commaseparated properties having meaning only to the factory.
Callbacks to listener methods are synchronous and unsynchronized. It is the responsibility of the

implementer to safely handle the potential performance and thread safety issues depending on
what their listener is doing.

If no classis specified, or there is no cacheM anagerEventL istenerFactory element, no listener is
created. Thereis no default.

31.1.2 Implementing a CacheManagerEventListenerFactory and CacheManagerEventListener

CacheManagerEventListenerFactory is an abstract factory for creating cache manager listeners.
Implementers should provide their own concrete factory extending this abstract factory. It can then be
configured in ehcache.xml.

The factory class needs to be a concrete subclass of the abstract factory

CacheManagerEventListenerFactory, which is reproduced bel ow:

/**
* An abstract factory for creating {@ink CacheManager Event Li stener}s. |nplenmenters sh
* provide their own concrete factory extending this factory. It can then be configured
* ehcache. xni
*
* @uthor Geg Luck
* @ersion $ld: cachemanager _event |isteners. apt 3744 2011-03-04 02:58:18Z gluck $
* @ee "http://ehcache. org/ docunment ati on/

cachemanager _event listeners. htnl"

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

31

*

CacheManager Event Listeners 152

/

public abstract class CacheManager EventLi stenerFactory {

/**

* Create a <code>CacheEvent Li st ener </ code>

@aram properties inplenentation specific properties. These are configured as co
separated nanme value pairs in ehcache.xm . Properties nmay be n
@eturn a constructed CacheManager Event Li st ener
/
public abstract CacheManager Event Li st ener
cr eat eCacheManager Event Li st ener (Properti es properties);

* %k F X

}
The factory creates a concrete implementation of CacheM anagerEventListener, which is reproduced
below:
/ * %
* Allows inplenenters to register callback nmethods that will be executed when a
* <code>CacheManager </ code> event occurs.
* The events include:
*
* <|i>addi ng a <code>Cache</code>
* <|i>renoving a <code>Cache</ code>
*
* <pl>
* Cal |l backs to these methods are synchronous and unsynchronized. It is the responsibil
* the inplenenter to safely handl e the potential performance and thread safety issues
* dependi ng on what their listener is doing.
* @uthor Geg Luck
* @ersion $ld: cachemanager _event |isteners. apt 3744 2011-03-04 02:58:18Z gluck $
* @ince 1.2
* @ee CacheEvent Li st ener
*

/

public interface CacheManager Event Li st ener {

/*

*

L T S R B N N R N N N N

*

Called i mediately after a cache has been added and acti vated.

<p/ >

Not e that the CacheManager calls this nmethod froma synchroni zed nethod. Any attenpt
call a synchronized nmethod on CacheManager fromthis method will cause a deadl ock
<p/ >

Note that activation will also cause a CacheEventListener status change notification
from{@ink net.sf.ehcache. St at us#STATUS_UNI NI Tl ALI SED} to

{@ink net.sf.ehcache. St at us#STATUS_ALI VE}. Care shoul d be taken on processing that
notificati on because:

the cache will not yet be accessible fromthe CacheManager

t he addCaches net hods whi h cause this notification are synchronized on the
CacheManager. An attenpt to call {@ink net.sf.ehcache. CacheManager #get Cache(Stri ng)
wi Il cause a deadl ock

The calling method will block until this nethod returns.

<p/ >

@ar am cacheNane the nane of the <code>Cache</

code> the operation relates to

*

©2

@ee CacheEventLi st ener

011, Terracotta, Inc. » ALL RIGHTS RESERVED.

31 CacheManager Event Listeners 153

*/

voi d notifyCacheAdded(Stri ng cacheNane);

/**

*

* % 3k X X X X %

Called i mediately after a cache has been di sposed and renoved. The calling nethod w
bl ock until this method returns.

<p/ >

Not e that the CacheManager calls this nmethod froma synchroni zed nethod. Any attenpt
call a synchroni zed nethod on CacheManager fromthis nmethod will cause a deadl ock.
<p/ >

Note that a {@ink CacheEventLi stener} status changed will also be triggered. Any
attenpt fromthat notification to access CacheManager will also result in a deadl ock
@ar am cacheNane the nane of the <code>Cache</

code> the operation relates to

*/

voi d notifyCacheRenoved(String cacheNane);

}

The implementations need to be placed in the classpath accessible to ehcache. Ehcache uses the
ClassL oader returned by Thr ead. curr ent Thr ead() . get Cont ext Cl assLoader () to load
classes.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

32

32 Cache Event Listeners 154

Cache Event Listeners

32.1 Cache Event Listeners

Cache listeners allow implementers to register callback methods that will be executed when a cache
event occurs. Cache listeners implement the CacheEventListener interface.

The events include:

» an Element has been put

* an Element has been updated. Updated means that an Element exists in the Cache with the same
key as the Element being put.

* an Element has been removed
» an Element expires, either because timeToLive or timeToldle have been reached.

Callbacks to these methods are synchronous and unsynchronized. It is the responsibility of the
implementer to safely handle the potential performance and thread safety issues depending on what
their listener is doing.

Listeners are guaranteed to be notified of eventsin the order in which they occurred.

Elements can be put or removed from a Cache without notifying listeners by using the putQuiet and
removeQuiet methods.

In clustered environments event propagation can be configured to be propagated only locally, only
remotely, or both. The default is both, to be backwardly compatible.

32.1.1 Configuration
Cache event listeners are configured per cache. Each cache can have multiple listeners.
Each listener is configured by adding a cacheEventListenerFactory element as follows:

<cache ...>
<cacheEvent Li st ener Factory class="" properties="" listenFor=""/>
</ cache>

The entry specifies a CacheManagerEventListenerFactory which is used to create a
CachePeerProvider, which then receives notifications.

The attributes of CacheManagerEventListenerFactory are:

» class- afully qualified factory class name

» properties - an optional comma separated properties having meaning only to the factory.

« listenFor - describes which events will be delivered in a clustered environment, defaultsto ‘all’.
These are the possible values:

 all - thedefault isto deliver all local and remote events
* locdl - deliver only events originating in the current node
» remote - deliver only events originating in other nodes

Callbacks to listener methods are synchronous and unsynchronized. It is the responsibility of the
implementer to safely handle the potential performance and thread safety issues depending on
what their listener is doing.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

32 Cache Event Listeners 155

32.1.2 Implementing a CacheEventListenerFactory and CacheEventListener

CacheEventListenerFactory is an abstract factory for creating cache event listeners. Implementers
should provide their own concrete factory, extending this abstract factory. It can then be configured in
ehcache.xml

The factory class needs to be a concrete subclass of the abstract factory class
CacheEventListenerFactory, which is reproduced below:

/**

* An abstract factory for creating listeners. |nplenmenters should provide their own
* concrete factory extending this factory. It can then be configured in ehcache. xn
*
* @ut hor Greg Luck
* @ersion $ld: cache_event _|isteners.apt 3789 2011-03-17 00: 01: 427 gl uck $
*
/
public abstract class CacheEventLi stenerFactory {

/**

* Create a <code>CacheEvent Li st ener </ code>

@aram properties inplenentation specific properties. These are configured as comm
separ ated nanme val ue pairs in ehcache. xm
@eturn a constructed CacheEventLi stener
/
public abstract CacheEventlLi stener createCacheEventListener(Properties properties);

}

The factory creates a concrete implementation of the CacheEventListener interface, whichis
reproduced below:

/**

* % kX X

* Allows inplenenters to register callback nethods that will be executed when a cache
* occurs.

* The events include:

*

* <|i>put El ement

* <|i>update El enent

* <|i>renove El enent

* an El ement expires, either because tineToLive or tinmeToldl e has been reached.
*

* <pl>

* Cal |l backs to these methods are synchronous and unsynchronized. It is the responsibil
* the inmplenenter to safely handl e the potential performance and thread safety issues
* dependi ng on what their listener is doing.
* <pl>

* Events are guaranteed to be notified in the order in which they occurred.

* <pl>

* Cache al so has put Quiet and renobveQui et methods which do not notify |listeners.
*

*

*

*

*

*

@ut hor Greg Luck
@ersion $ld: cache_event _|isteners.apt 3789 2011-03-17 00:01: 42Z gluck $
@ee CacheManager Event Li st ener

@ince 1.2
/
public interface CacheEventListener extends Cl oneable {
/**

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

32 Cache Event Listeners 156

o B N T R R

/
Vo

/**

L T N R T T

~

Vo

/**

L T S A T R N .

~

Vo

/**

*

¥ 0% kX X X X X X F

Called i mediately after an el ement has been renpved. The renpve nmethod will block u
this nethod returns.

<p/ >

Ehcache does not chech for

<p/ >

As the {@ink net.sf.ehcache. El ement} has been renoved, only what was the key of the
el enent is known.

<p/ >

@ar am cache the cache emtting the notification
@aram el enent just deleted

d notifyEl ement Renoved(final Ehcache cache, final Elenment elenent) throws CacheExcep

Called i mediately after an el enent has been put into the cache. The

{@ink net.sf.ehcache. Cache#put (net. sf. ehcache. El enent)} nethod

will block until this method returns.

<p/ >

| mpl enenters may wi sh to have access to the Elenent's fields, including value, so th
el ement is provided. |Inplenenters should be careful not to nodify the elenent. The
ef fect of any nodifications is undefined.

@ar am cache the cache emtting the notification
@aram el enent the el ement which was just put into the cache.

d notifyEl erent Put (fi nal Ehcache cache, final El enent elenment) throws CacheException

Called i mediately after an el ement has been put into the cache and the el enent alre
existed in the cache. This is thus an update.

<p/ >

The { @i nk net.sf.ehcache. Cache#put (net.sf.ehcache. El enent)} nethod
will block until this method returns.

<p/ >

| mpl enenters may wi sh to have access to the Elenent's fields, including value, so th
el ement is provided. |Inplenenters should be careful not to nodify the elenent. The
ef fect of any nodifications is undefined.

@ar am cache the cache emtting the notification
@aram el enent the el ement which was just put into the cache.

d notifyEl emrent Updat ed(final Ehcache cache, final Elenment elenent) throws CacheExcep

Called i mediately after an elenment is <i>found</i> to be expired. The

{@ink net.sf.ehcache. Cache#renove(CObject)} nmethod will block until this method retu
<p/ >
As the {@ink Elenent} has been expired, only what was the key of the elenent is kno
<p/ >

El ements are checked for expiry in Ehcache at the follow ng tines:

<l i >\When a get request is nmde

<l i >\When an el enent is spooled to the diskStore in accordance with a MenoryStore
eviction policy

In the DiskStore when the expiry thread runs, which by default is

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

32 Cache Event Listeners 157

* {@ink net.sf.ehcache. Cache#DEFAULT_EXPI RY_THREAD_ | NTERVAL_SECONDS}
* <ful >
* |f an elenent is found to be expired, it is deleted and this nethod is notified.
*
* @aram cache the cache emtting the notification
* @aram el enment the el enent that has just expired
* <p/ >
* Deadl ock Warning: expiry will often conme fromthe <code>Di skStore</
code>
* expiry thread. It holds a lock to the DiskStorea the tinme the
* notification is sent. If the inplenmentation of this nethod calls into a
* synchroni zed <code>Cache</
code> nmethod and that subsequently calls into
* Di skStore a deadl ock will result. Accordingly inplenmenters of this nethod
* shoul d not call back into Cache.

*/
voi d notifyEl enment Expi red(fi nal Ehcache cache, final Elenent elenent);
/**
* Gve the replicator a chance to cleanup and free resources when no | onger needed
*/
voi d di spose();
/**
* Creates a clone of this listener. This nethod will only be called by Ehcache before
* cache is initialized
<p/ >
This may not be possible for listeners after they have been initialized. |nplenentat
shoul d throw C oneNot Support edException if they do not support clone
@eturn a clone
@ hrows Cl oneNot SupportedException if the Iistener could not be cloned.
/
public Object clone() throws Cl oneNot SupportedException

}
The implementations need to be placed in the classpath accessible to Ehcache.

* % %k X % *

See the chapter on Classloading for details on how classloading of these classes will be done.

32.1.3 FAQ

32.1.3.1 Can | add a listener to an already running cache?
Yes.

cache. get CacheEvent Noti fi cati onService().registerlListener(nmyListener);

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

33

33 Cache Exception Handlers 158

Cache Exception Handlers

33.1 Cache Exception Handlers

By default, most cache operations will propagate a runtime CacheException on failure. An
interceptor, using a dynamic proxy, may be configured so that a CacheExceptionHandler can be
configured to intercept Exceptions. Errors are not intercepted.

Caches with ExceptionHandling configured are of type Ehcache. To get the exception
handling behaviour they must be referenced using CacheManager . get Encache() , not
CacheManager . get Cache() , which returns the underlying undecorated cache.

CacheExceptionHandlers may be set either declaratively in the ehcache.xml configuration file or
programmatically.

33.1.1 Declarative Configuration
Cache event listeners are configured per cache. Each cache can have at most one exception handler.

An exception handler is configured by adding a cacheExceptionHandlerFactory element as shown in
the following example:

<cache ...

</ cach

>

<cacheExcepti onHandl er Fact ory
cl ass="net. sf. ehcache. excepti onhandl er. Count i ngExcepti onHandl er Fact ory"
properties="l ogLevel =FI NE"/ >

e>

33.1.2 Implementing a CacheExceptionHandlerFactory and CacheExceptionHandler

CacheExceptionHandlerFactory is an abstract factory for creating cache exception handlers.
Implementers should provide their own concrete factory, extending this abstract factory. It can then be
configured in ehcache.xml

The factory class needs to be a concrete subclass of the abstract factory class
CacheExceptionHandlerFactory, which is reproduced below:

/**

* An abstract factory for creating <code>CacheExcepti onHandl er </
code>s at configuration

* tine,

* <p/

>

in ehcache. xni .

* Extend to create a concrete factory

E I 3

/

@ut hor Greg Luck
@ersion $Id:

cache_excepti on_handl ers. apt 3744 2011-03-04 02:58:18Z gluck $

public abstract class CacheExcepti onHandl er Factory {

/**

* Create an <code>CacheExcepti onHandl er </ code>

b T

/

©2011,

Terracotta,

Inc. »

@aram properties inplenentation specific properties. These are configured as comm

separ ated name val ue pairs in ehcache. xm

@eturn a constructed CacheExcepti onHandl er

ALL RIGHTS RESERVED.

33 Cache Exception Handlers 159

public abstract CacheExcepti onHandl er creat eExcepti onHandl er (Properties properties);
}

The factory creates a concrete implementation of the CacheExceptionHandler interface, which is
reproduced below:
/ * %
* A handl er which may be registered with an Ehcache, to handl e exception on Cache oper
* <pl>
* Handl ers may be registered at configuration tine in ehcache.xm , using a
* CacheExceptionHandl er Factory, or * set at runtine (a strategy).
* <pl>
* | f an exception handler is registered, the default behaviour of throw ng the excepti
* will not occur. The handler * nethod <code>onExcepti on</
code> will be called. O course, if
* the handler decides to throw the exception, it will * propagate up through the cal
* |f the handl er does not, it won't.
* <pl>
* Some common Exceptions thrown, and which therefore should be considered when inplene
* this class are listed bel ow
*
* {@ink Illegal StateException} if the cache is not
* {@ink net.sf.ehcache. St at us#STATUS_ALI| VE}
* {@ink Illegal Argument Exception} if an attenpt is made to put a nul
* elenent into a cache
* {@ink net.sf.ehcache.distribution. RenoteCacheException} if an issue occurs
* in renote synchronous replication
* <>
* <>
* <ful >
*
*
*
*

@ut hor G eg Luck
@ersion $ld: cache_exception_handl ers. apt 3744 2011-03-04 02:58:18Z gluck $
/
public interface CacheExceptionHandl er {
/**
* Called if an Exception occurs in a Cache nmethod. This method is not called
if an <code>Error</code> occurs.

@ar am Ehcache the cache in which the Exception occurred
@ar am key the key used in the operation, or null if the operation does not us
key or the key was nul
@ar am excepti on the exception caught
/
voi d onExcepti on(Ehcache ehcache, Object key, Exception exception);

}
The implementations need to be placed in the classpath accessible to Ehcache.

E o I I

See the chapter on Classloading for details on how classloading of these classes will be done.
33.1.3 Programmatic Configuration

The following example shows how to add exception handling to a cache then adding the cache back
into cache manager so that all clients obtain the cache handling decoration.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

33 Cache Exception Handlers

©2011,

160

CacheManager cacheManager = ..

Ehcache cache = cacheManger. get Cache(" exanpl eCache");

Excepti onHandl er handl er = new Exanpl eExcepti onHandl er(...);

cache. set CachelLoader (handl er);

Ehcache proxi edCache = Excepti onHandl i ngDynam cCachePr oxy. cr eat eProxy(cache);
cacheManager . r epl aceCacheW t hDecor at edCache(cache, proxi edCache);

Terracotta, Inc. « ALL RIGHTS RESERVED.

34

34 Cache Extensions 161

Cache Extensions

34.1 Cache Extensions
CacheExtensions are a general purpose mechanism to allow generic extensionsto a Cache.

CacheExtensions are tied into the Cache lifecycle. For that reason this interface has the lifecycle
methods.

CacheExtensions are created using the CacheExtensionFactory which has a
codecreateCacheCacheExtension() /code method which takes as a parameter a Cache and properties.
It can thus call back into any public method on Cache, including, of course, the load methods.

CacheExtensions are suitable for timing services, where you want to create a timer to perform cache
operations. The other way of adding Cache behaviour is to decorate a cache.

See @link net.sf.ehcache.constructs.blocking.BlockingCache for an example of how to do this.

Because a CacheExtension holds areference to a Cache, the CacheExtension can do things such
asregistering a CacheEventListener or even a CacheManagerEventListener, al from within a
CacheExtension, creating more opportunities for customisation.

34.1.1 Declarative Configuration
Cache extension are configured per cache. Each cache can have zero or more.

A CacheExtension is configured by adding a cacheExceptionHandlerFactory element as shown in the
following example:

<cache ...>
<cacheExt ensi onFactory cl ass="com exanpl e. Fi | eWat chi ngCacheRef r esher Ext ensi onFact or y"
properties="refreshlnterval MI1is=18000, | oader Ti meout=3000,
fl ushPeri od=what ever, soneQ her Property=sonmeValue ..."/>
</ cache>

34.1.2 Implementing a CacheExtensionFactory and CacheExtension

CacheExtensionFactory is an abstract factory for creating cache extension. |mplementers should
provide their own concrete factory, extending this abstract factory. It can then be configured in
ehcache.xml

The factory class needs to be a concrete subclass of the abstract factory class CacheExtensionFactory,
which is reproduced below:

/**

* An abstract factory for creating <code>CacheExt ensi on</
code>s. | nplementers should
* provide their own * concrete factory extending this factory. It can then be configur
* in ehcache. xm .
*
* @uthor G eg Luck
* @ersion $ld: cache_extensions. apt 3744 2011-03-04 02:58:18Z gluck $
*/
public abstract class CacheExtensionFactory {
/**
* @aram cache the cache this extension should hold a reference to, and to whose
* |ifecycle it should be bound.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

34 Cache Extensions 162

* @aram properties inplenentation specific properties configured as delimter separat
* nanme val ue pairs in ehcache. xm

*/

public abstract CacheExtension createCacheExt ensi on(Ehcache cache, Properties propertie
}

The factory creates a concrete implementation of the CacheExtension interface, which is reproduced

below:

/**
* This is a general purpose nmechanismto allow generic extensions to a Cache.
* <pl>
* CacheExtensions are tied into the Cache lifecycle. For that reason this interface ha
* lifecycle methods.
* <pl>
* CacheExtensions are created using the CacheExtensi onFactory which has a
*

<code>cr eat eCacheCacheExt ensi on() </
code> et hod which takes as a paranmeter a Cache and

* properties. It can thus call back into any public nmethod on Cache, including, of cou
* the | oad nethods.

* <pl>

* CacheExtensions are suitable for timng services, where you want to create a timer t
* perform cache operations. The other way of addi ng Cache behaviour is to decorate a c
* See {@ink net.sf.ehcache. constructs. bl ocki ng. Bl ocki ngCache} for an exanple of how t
* this.

* <pl>

* Because a CacheExtension holds a reference to a Cache, the CacheExtension can do thi
* such as registering a CacheEventListener or even a CacheManager Event Li stener, all fr
* within a CacheExtension, creating nore opportunities for custonisation

*
*
*
*

@ut hor Greg Luck
@ersion $ld: cache_extensions. apt 3744 2011-03-04 02:58:18Z gluck $
/
public interface CacheExtension {

/**
* Notifies providers to initialise thenselves.
* <pl>
* This method is called during the Cache's initialise nethod after it has changed it's
* status to alive. Cache operations are legal in this nethod
*
* @hrows CacheException
*/
void init();
/**
* Providers may be doing all sorts of exotic things and need to be able to clean up on
* di spose.
* <pl>
* Cache operations are illegal when this nethod is called. The cache itself is partly
* di sposed when this nmethod is called.
*
* @hrows CacheException
*

/
voi d di spose() throws CacheException

/**

* Creates a clone of this extension. This nethod will only be called by Ehcache before

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

34 Cache Extensions 163

cache is initialized.

<p/ >

| mpl enent ati ons shoul d throw C oneNot Support edException if they do not support clone
but that will stop them from being used with defaultCache.

@eturn a clone

@hrows Cl oneNot SupportedException if the extension could not be cloned.
pui)l i ¢ CacheExtension clone(Ehcache cache) throws O oneNot Support edExcepti on;
* %

/* @eturn the status of the extension

*

pui)l ic Status getStatus();

}

The implementations need to be placed in the classpath accessible to ehcache.

* % 3k X X X X %

See the chapter on Classloading for details on how class loading of these classes will be done.

34.1.3 Programmatic Configuration
Cache Extensions may also be programmeatically added to a Cache as shown.

Test CacheExt ensi on t est CacheExt ensi on = new Test CacheExt ensi on(cache, ...);
t est CacheExtension.init();
cache. regi st er CacheExt ensi on(t est CacheExt ensi on) ;

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

35

35 Cache Loaders 164

Cache Loaders

35.1 Cache Loaders

A CacheLoader isan interface which specifies| oad and | oadAl I methods with avariety of
parameters.

Cachel oaders come from JCache, but are a frequently requested feature, so they have been
incorporated into the core Ehcache classes and can be configured in ehcache.xml.

Cachel oaders are invoked in the following Cache methods:

getWithL oader (synchronous)

getAllWithL oader (synchronous)

load (asynchronous)

loadAll (asynchronous)

They are also invoked in similar (though dlightly differently named) JCache methods.

The methods will invoke a Cachel oader if there is no entry for the key or keys requested. By
implementing Cachel oader, an application form of loading can take place. The get... methods follow
the pull-through cache pattern. The load... methods are useful as cache warmers.

Cachel oaders are similar to the CacheEntryFactory used in SelfPopulatingCache. However
SelfPopulatingCache is a decorator to encache. The Cachel oader functionality is availableright in a
Cache, Ehcache or JCache and follows a more industry standard convention.

Cachel oaders may be set either declaratively in the ehcache.xml configuration file or
programmatically. This becomes the default Cachel. oader. Some of the methods invoking loaders
enable an override Cacheloader to be passed in as a parameter.

More than one cachel. oader can be registered, in which case the loaders form a chain which are
executed in order. If aloader returns null, the next in chainis called.

35.1.1 Declarative Configuration

cachel oaderFactory - Specifies a Cachel oader, which can be used both asynchronously and
synchronously to load objects into a cache. More than one cachel. oaderFactory element can be added,
in which case the loaders form a chain which are executed in order. If aloader returns null, the next in
chainiscalled.

<cache ...>
<cachelLoader Fact ory cl ass="com exanpl e. Exanpl eCachelLoader Fact ory"
properties="type=int, startCounter=10"/
>
</ cache>

35.1.2 Implementing a CacheLoaderFactory and CacheLoader

Cachel oaderFactory is an abstract factory for creating Cachel oaders. |mplementers should provide
their own concrete factory, extending this abstract factory. It can then be configured in ehcache.xml

The factory class needs to be a concrete subclass of the abstract factory class Cachel oaderFactory,
which is reproduced below:
/ * *

* An abstract factory for creating cache | oaders. Inplenmenters should provide their ow
* concrete factory extending this factory.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

35 Cache Loaders 165

<p/ >
There is one factory nmethod for JSR107 Cache Loaders and one for Ehcache ones. The E
| oader is a sub interface of the JSRL07 Cache Loader
<p/ >
Note that both the JCache and Ehcache APls also allow the CacheLoader to be set
progranmatical ly.
@ut hor Greg Luck
@ersion $ld: cache_| oaders. apt 3744 2011-03-04 02:58:18Z gl uck $
/
public abstract class CachelLoaderFactory {
/**
* Creates a CachelLoader using the JSR107 creational nechani sm
This method is called from{@ink net.sf.ehcache.jcache. JCacheFact ory}

L R A

@ar am envi ronnent the same environnent passed into

{@ink net.sf.ehcache.jcache. JCacheFactory}.

This factory can extract any properties it needs fromthe environment.

@eturn a constructed CachelLoader
/

public abstract net.sf.jsrl07cache. CacheLoader createCachelLoader(Map environnent);
/**

* Creates a CachelLoader using the Ehcache configuration nechanismat the tine

* the associ ated cache is created.

*

* @aram properties inplenentation specific properties. These are configured as comm

* % %k X % X X

* separ ated nanme val ue pairs in ehcache. xn
* @eturn a constructed CachelLoader
*/

public abstract net.sf.ehcache. | oader. CacheLoader createCachelLoader (Properties properti
/**
* @aram cache the cache this extension should hold a reference to,
* and to whose lifecycle it should be bound.
* @aram properties inplementation specific properties configured as delimter
* separated nane value pairs in ehcache. xn
* @eturn a constructed CachelLoader
*/
public abstract CachelLoader createCacheLoader (Ehcache cache, Properties properties);

}

The factory creates a concrete implementation of the Cachel oader interface, which is reproduced
below.

A Cachel oader is bound to the lifecycle of acache, sothati nit () iscalled during cache
initialization, and di spose() iscalled on disposal of acache.
/**
* Extends JCache CacheLoader with | oad nmethods that take an argument in addition to a
* @uthor Geg Luck
* @ersion $ld: cache_l oaders. apt 3744 2011-03-04 02:58:18Z gl uck $
*/
public interface CacheLoader extends net.sf.jsrl07cache. CacheLoader ({
/**
* Load using both a key and an argunent.
* <pl>
* JCache will call through to the |oad(key) method, rather than this nethod,

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

35 Cache Loaders 166

where the argunment is null.

* @ar am key the key to |oad the object for

* @aram argunment can be anything that makes sense to the | oader
* @eturn the Object |oaded

* @hrows CacheException

*/

Ooj ect | oad(Obj ect key, Object argunent) throws CacheException;

/**

*

Load using both a key and an argunent.

<p/ >
JCache will use the | oadAll (key) method where the argument is null.
@ar am keys the keys to | oad objects for

@ar am argunent can be anything that nakes sense to the | oader
@eturn a nap of Cbjects keyed by the collection of keys passed in.
@ hrows CacheException

/

Map | oadAl | (Col | ection keys, nhject argunent) throws CacheException;

/**

* 0% 3k X X X X F

* Gets the name of a CachelLoader

*

* @eturn the name of this CachelLoader

*/

String get Nane();

/**

* Creates a clone of this extension. This nmethod will only be called by Ehcache before
* cache is initialized.

* <pl/ >

* | npl enmentations should throw C oneNot SupportedException if they do not support clone
* but that will stop themfrom being used with defaultCache.

*

* @eturn a clone

* @hrows O oneNot SupportedException if the extension could not be cloned.

*

/
publ i ¢ CachelLoader cl one(Ehcache cache) throws C oneNot SupportedExcepti on;

/**

* Notifies providers to initialise thenselves.

* <pl >
* This nmethod is called during the Cache's initialise nethod after it has changed it's
* status to alive. Cache operations are |legal in this nethod.
*
* @hrows net.sf.ehcache. CacheException
*
/
void init();
/**
* Providers may be doing all sorts of exotic things and need to be able to clean up on
* di spose.
* <pl >
* Cache operations are illegal when this nethod is called. The cache itself is partly
* di sposed when this nmethod is called.
*
*

@hrows net.sf.ehcache. CacheExcepti on

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

35 Cache Loaders 167

*
/
voi d di spose() throws net.sf.ehcache. CacheException
/**

* @eturn the status of the extension

*

/

public Status getStatus();
}

The implementations need to be placed in the classpath accessible to ehcache.
See the chapter on Classloading for details on how classloading of these classes will be done.

35.1.3 Programmatic Configuration

The following methods on Cache allow runtime interrogation, registration and unregistration of
loaders:

/**
* Register a {@ink CachelLoader} with the cache. It will then be tied into the cache
lifecycle.
<p/ >
If the CachelLoader is not initialised, initialise it.

@ar am cachelLoader A Cache Loader to register
/
public void registerCacheLoader (CachelLoader cachelLoader) {
regi st eredCachelLoader s. add(cachelLoader) ;

E o S I

}
/**
* Unregister a {@ink CacheLoader} with the cache. It will then be detached fromthe c
* |ifecycle.
*
* @aram cacheLoader A Cache Loader to unregister
*

/
public void unregi sterCachelLoader (CacheLoader cachelLoader) {
regi st eredCachelLoaders. renmove(cachelLoader) ;

}

/**
* @eturn the cache | oaders as a live |ist
*/
publ i c List<CachelLoader> get Regi st eredCachelLoaders() {
return registeredCachelLoaders;

}

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

36

36 Write-through and write-behind caching with CacheWriters 168

égﬁéWr?t%?Q and write-behind caching with

36.1 Write-through and Write-behind Caching with the CacheWriter

Write-through caching is a caching pattern where writes to the cache cause writes to an underlying
resource. The cache acts as a facade to the underlying resource. With this pattern, it often makes sense
to read through the cache too.

Write-behind caching uses the same client API; however, the write happens asynchronously.
Ehcache-2.0 introduced write-through and write-behind caching.

While file systems or a web-service clients can underlie the facade of awrite-through cache, the most
common underlying resource is a database. To simplify the discussion, we will use the database as the
example resource.

36.1.1 Potential Benefits of Write-Behind
The major benefit of write-behind is database offload. This can be achieved in a number of ways:

* time shifting - moving writes to a specific time or time interval. For example, writes could
be batched up and written overnight, or at 5 minutes past the hour, to avoid periods of peak
contention.

* ratelimiting - spreading writes out to flatten peaks. Say a Point of Sale network has an end-of -
day procedure where data gets written up to a central server. All POS nodesin the same time
zone will write all at once. A very large peak will occur. Using rate limiting, writes could be
limited to 100 TPS, and the queue of writes are whittled down over several hours

« conflation - consolidate writes to create fewer transactions. For example, avalue in a database
row is updated by 5 writes, incrementing it from 10 to 20 to 31 to 40 to 45. Using conflation, the
5 transactions are replaced by one to update the value from 10 to 45.

These benefits must be weighed against the limitations and constraints imposed.

36.1.2 Limitations & Constraints of Write-Behind

36.1.2.1 Transaction Boundaries

If the cache participatesin a JTA transaction (ehcache-2.0 and higher), which meansitisan
XAResource, then the cache can be made consistent with the database. A write to the database, and a
commit or rollback, happens with the transaction boundary.

In write-behind, the write to the resource happens after the write to the cache. The transaction
boundary is the write to the outstanding queue, not the write behind. In write-through mode, commit
can get called and both the cache and the underlying resource can get committed at once.

Because the database is being written to outside of the transaction, thereisawaysarisk that a
failure on the eventual write will occur. While this can be mitigated with retry counts and delays,
compensating actions may be required.

36.1.2.2 Time delay

The obvious implication of asynchronous writes is that there is a delay between when the cacheis
updated and when the database is updated. This introduces an inconsistency between the cache and
the database, where the cache holds the correct value and the database will be eventually consistent
with the cache. The data passed into the CacheWriter methods is a snapshot of the cache entry at the
time of the write to operation.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

36 Write-through and write-behind caching with CacheWriters 169

A read against the database will result in incorrect data being loaded.

36.1.2.3 Applications Tolerant of Inconsistency

The application must be tolerant of inconsistent data. The following examplesillustrate this
reguirement:

» The database islogging transactions and only appends are done.

» Reading is done by apart of the application that does not write, so thereis no way that data can
be corrupted. The application is tolerant of delays. For example, a news application where the
reader displays the articles that are written.

Noteif other applications are writing to the database, then a cache can often be inconsistent with the
database.

36.1.2.4 Node time synchronisation

Ideally node times should be synchronised. The write-behind queue is generally written to the
underlying resource in timestamp order, based on the timestamp of the cache operation, although
there is no guaranteed ordering.

The ordering will be more consistent if all nodes are using the same time. This can easily be achieved
by configuring your system clock to synchronise with atime authority using Network Time Protocol.

36.1.2.5 No ordering guarantees

The items on the write-behind queue are generally in order, but thisisn't guaranteed. In certain
situations and more particularly in clustered usage, the items can be processed out of order.
Additionally, when batching is used, write and delete collections are aggregated separately and can be
processed inside the CacheWriter in a different order than the order that was used by the queue.

Y our application must be tolerant of item reordering or you need to compensate for thisin your
implementation of the CacheWriter. Possible examples are:

» Working with versioning in the cache elements.

* Verifications with the underlying resource to check if the scheduled write-behind operation is
still relevant.

36.1.3 Using a combined Read-Through and Write-Behind Cache

For applications that are not tolerant of inconsistency, the simplest solution is for the application to
always read through the same cache that it writes through. Provided all database writes are through
the cache, consistency is guaranteed. And in the distributed caching scenario, using Terracotta
clustering extends the same guarantee to the cluster.

If using transactions, the cache is the X AResource, and acommit isacommit to the cache.

The cache effectively becomes the System Of Record ("SOR"). Terracotta clustering provides HA and
durability and can easily act as the SOR. The database then becomes a backup to the SOR.

The following aspects of read-through with write-behind should be considered:

36.1.3.1 Lazy Loading

The entire data set does not need to be loaded into the cache on startup. a read-through cache uses
aCachelLoader that loads data into the cache on demand. In this way the cache can be populated
lazily.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

36 Write-through and write-behind caching with CacheWriters 170

36.1.3.2 Caching of a Partial Dataset

If the entire dataset cannot fit in the cache, then some reads will miss the cache and fall through to
the CacheLoader which will in turn hit the database. If awrite has occurred but has not yet hit the
database due to write-behind, then the database will be inconsistent.

The simplest solution is to ensure that the entire dataset is in the cache. This then places some
implications on cache configuration in the areas of expiry and eviction.

36.Eviction

Eviction occurs when the maximum elements for the cache have been exceeded. Ensure

that the maxEl enent sI nMenor y and, if using the DiskStore or Terracotta clustering, the
maxEl ement sOnDi sk exceeds the required size, so that eviction does not not occur.
36.Expiry

Evenif al of the dataset can fit in the cache, it could be evicted if Elements expire. Accordingly, both
ti meToLi ve andti meTol dl e should be set to eternal ("0") to prevent this from happening.

36.1.4 Introduction Video
Alex Snaps the primary author of Write Behind presents an introductory video on Write Behind.

36.1.5 Sample Application

We have created a sample web application for araffle which fully demonstrates how to use write
behind.

You can aso checkout the Ehcache Raffle application, that demonstrates Cache Writers and Cache
L oaders from github.com.

36.1.6 Ehcache Versions
Both Ehcache standalone (DX) and with Terracotta Server Array (Ehcache EX and FX) are supported.

36.1.6.1 Ehcache DX (Standalone Ehcache)

The write-behind queue is stored locally in memory. It supports all configuration options, but any data
in the queue will belost on VM shutdown.

36.1.6.2 Ehcache EX and FX

36.Durable HA write-behind Queue

EX and FX when used with the Terracotta Server Array will store the queue on the Terracotta Server
Array and can thus be configured for durability and HA. The datais still kept in the originating node
for performance.

36.1.7 Configuration

There are many configuration options. See the CacheW i t er Conf i gur at i on for properties that
may be set and their effect.

Below is an example of how to configure the cache writer in XML:

<cache nane="cacheNane" eternal ="fal se" maxEl enent sl nMenor y="1000" overfl owToDi sk="fal s
<cacheWiter witeMde="wite_behind" naxWiteDel ay="8" ratelinitPerSecond="5"
writeCoal esci ng="true" witeBatching="true" witeBatchSi ze="20"
retryAttenpts="2" retryAttenptDel aySeconds="2">

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://vimeo.com/21193026
https://github.com/alexsnaps/Ehcache-Raffle

36 Write-through and write-behind caching with CacheWriters 171

<cacheWiterFactory class="com conpany. MyCacheW it er Fact ory"
properties="just.sone. property=test; another.property=test?2
>
</ cacheWiter>
</ cache>

Further examples:

<cache nanme="witeThroughCachel" eternal ="fal se" maxEl enentsl nMenory="1000" overfl owToD
>
<cache nanme="witeThroughCache2" eternal ="fal se" maxEl enentsl nMenory="1000" overfl owToD
<cacheWiter/>
</ cache>
<cache nanme="witeThroughCache3" eternal ="fal se" maxEl enent sl nMenory="1000" overfl owToD
<cacheWiter witeMde="wite_through" notifyListenersOnException="true" maxWiteDel a
rateLi mt Per Second="10" writeCoal escing="true" witeBatching="true" wit
retryAttenpts="20" retryAttenptDel aySeconds="60"/>
</ cache>
<cache nanme="witeThroughCache4" eternal ="fal se" maxEl enent sl nMenory="1000" overfl owToD
<cacheWiter witeMde="wite_through" notifyListenersOnException="fal se" maxWiteDel .
rateLi mt Per Second="0" writeCoal esci ng="fal se" witeBatching="fal se" wi:
retryAttenmpts="0" retryAttenptDel aySeconds="0">
<cacheWiterFactory class="net.sf.ehcache.witer. WiteThroughTest CacheWiterFacto
>
</ cacheWiter>
</ cache>
<cache nanme="witeBehi ndCache5" eternal ="fal se" maxEl enent sl nMenory="1000" overf| owToDi
<cacheWiter witeMde="wite-
behi nd" notifyLi stenersOnException="true" maxWiteDel ay="8" rateLintPerSecond="5"
writeCoal esci ng="true" witeBatching="fal se" witeBatchSi ze="20"
retryAttenpts="2" retryAttenptDel aySeconds="2">
<cacheWiterFactory class="net.sf.ehcache.witer. WiteThroughTest CacheWiterFacto
properties="just.some. property=test; another.property=test?2"
>
</ cacheWiter>
</ cache>

This configuration can aso be achieved through the Cache constructor in Java:

Cache cache = new Cache(
new CacheConfi gurati on("cacheNane", 10)
.cacheWiter(new CacheWiterConfiguration()

.writeMode(CacheWiterConfiguration. WiteMde. WRI TE_BEHI ND)

. maxWi t eDel ay(8)

. rateLi m t Per Second(5)

.writeCoal escing(true)

.writeBatching(true)

.writeBatchSi ze(20)

.retryAttenpts(2)

.retryAttenptDel aySeconds(2)

.cacheWiterFactory(new CacheWiterConfiguration. CacheWiterFactoryConfiguration()
. cl assNane("com conpany. M\yCacheW i ter Factory")
.properties("just.some. property=test; another.property=test2")
. propertySeparator(";"))));

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

36 Write-through and write-behind caching with CacheWriters 172

Instead of relying onaCacheW it er Fact oryConfi gurati on>> to create a
<<<CacheWi t er, it'saso possible to explicitly register aCacheW i t er instance from within Java
code. Thisalowsyou to refer to local resources like database connections or file handles.

Cache cache = manager. get Cache("cacheNane");
MyCacheWiter witer = new MyCacheWiter(jdbcConnection);
cache.regi sterCacheWiter(witer);

36.1.7.1 Configuration Attributes
The CacheWriterFactory supports the following attributes:

36.All modes

» write-mode [write-through | write-behind] - Whether to run in write-behind or write-through
mode. The default is write-through.

36.write-through mode only

* notifyListenersOnException - Whether to notify listeners when an exception occurs on a store
operation. Defaults to false. If using cache replication, set this attribute to "true" to ensure that
changes to the underlying store are replicated.

36.write-behind mode only

» writeBehindMaxQueueSize - The maximum number of elements allowed per
gueue, or per bucket (if the queue has multiple buckets). "0" means unbounded
(default). When an attempt to add an element is made, the queue size (or bucket
size) is checked, and if full then the operation is blocked until the size drops by one.
Note that elements or a batch currently being processed (and coalesced elements)
are not included in the size value. Programmatically, this attribute can be set with
net. sf. ehcache. confi g. CacheWiterConfiguration.setWiteBehi ndvaxQueueSi ze().

» writeBehindConcurrency - The number of thread-bucket pairs on the node
for the given cache (default is 1). Each thread uses the settings configured for
write-behind. For example, if rateLimitPerSecond is set to 100, each thread-
bucket pair will perform up to 100 operations per second. In this case, setting
writeBehindConcurrency="4" means that up to 400 operations per second will occur
on the node for the given cache. Programmatically, this attribute can be set with
net. sf. ehcache. confi g. CacheWiterConfiguration.setWiteBehi ndConcurrency().

» maxWriteDelaySeconds - The maximum number of seconds to wait before writing behind.
Defaultsto 0. If set to avalue greater than 0, it permits operations to build up in the queue to
enable effective coa escing and batching optimisations.

 rateLimitPerSecond - The maximum number of store operationsto alow per second.

» writeCoalescing - Whether to use write coalescing. Defaultsto false. When set to true, if multiple
operations on the same key are present in the write-behind queue, then only the latest writeis
done (the others are redundant). This can dramatically reduce load on the underlying resource.

» writeBatching - Whether to batch write operations. Defaults to false. If set to true, storeAll and
deleteAll will be called rather than store and delete being called for each key. Resources such as
databases can perform more efficiently if updates are batched to reduce load.

* writeBatchSize - The number of operations to include in each batch. Defaultsto 1. If there are
less entries in the write-behind queue than the batch size, the queue length size is used. Note that
batching is split across operations. For example, if the batch size is 10 and there were 5 puts and
5 deletes, the CacheWriter isinvoked. It does not wait for 10 puts or 10 deletes.

* retryAttempts - The number of times to attempt writing from the queue. Defaultsto 1.
* retryAttemptDelaySeconds - The number of secondsto wait before retrying.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

36 Write-through and write-behind caching with CacheWriters 173

36.1.8 AP

Cachel oaders are exposed for API use through thecache. get Wt hLoader (. . .)
method. CacheWriters are exposed with cache. put Wt hwWiter(...) and
cache. renoveWthWiter(...) methods.

For example, following is the method signature for cache. putWthwWiter(...).

/**

*

Put an elenent in the cache witing through a CacheWiter. If no CacheWiter has bee

* set for the cache, then this nethod has the sane effect as cache. put().

* <pl >

* Resets the access statistics on the elenment, which would be the case if it has previ
* been gotten froma cache, and is now bei ng put back.

* <pl >

* Also notifies the CacheEventListener, if the witer operation succeeds, that:

* <yl >

* the element was put, but only if the El enent was actually put.

* f the elenent exists in the cache, that an update has occurred, even if the ele
* would be expired if it was requested

* <ful >

*

* @aramelement An object. If Serializable it can fully participate in replication an
* Di skStore.

* @hrows |11 egal StateException if the cache is not {@ink net.sf.ehcache. Stat us#ST
* @hrows |l egal Argument Exception if the elenent is null

* @hrows CacheException

*/

void putWthWiter(El ement elenent) throws |1l egal Argument Exception, |11l egal StateExcept

CacheExcepti on;
See the Cache JavaDac for the complete API.

36.1.9 SPI

The Ehcache write-through SPI isthe CacheW i t er interface. Implementers perform writes to the
underlying resource in their implementation.

/**

* A CacheWiter is an interface used for wite-through and wite-
behi nd caching to a
* underlying resource.
<p/ >
If configured for a cache, CacheWiter's methods will be called on a cache operation
A cache put will cause a CacheWiter wite
and a cache renove will cause a witer delete.
<p>
| mpl enenters should create an inplementation which handles storing and deleting to a
under | yi ng resource.
</ p>
<h4>W it e- Thr ough</ h4>
*In wite-
t hrough node, the cache operation will occur and the witer operation will occur
* pefore CacheEventlListeners are notified. If
* the wite operation fails an exception will be thrown. This can result in a cache wh
* is inconsistent with the underlying resource.

EE B T R

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

36 Write-through and write-behind caching with CacheWriters 174

*
*
*
*
*
*

To avoid this, the cache and the underlying resource should be configured to partici|
in atransaction. In the event of a failure

a roll back can return all conponents to a consistent state.

<p/ >

<h4>W it e- Behi nd</ h4>

In wite-behind node, wites are witten to a wite-

behi nd queue. They are written by a

e
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

separate execution thread in a configurable

way. When used with Terracotta Server Array, the queue is highly available. In addit
any node in the cluster may performthe

write-behind operations.

<p/ >

<h4>Creation and Configuration</h4>

CacheWiters can be created using the CacheWiterFactory.

<p/ >

The manner upon which a CacheWiter is actually called is determ ned by the

{@ink net.sf.ehcache.config. CacheWiterConfiguration} that is set up for cache

that is using the CacheWiter.

<p/ >

See the CacheWiter chapter in the docunentation for nore information on how to use

@ut hor Greg Luck
@ut hor Ceert Bevin
@ersion $Id: $

public interface CacheWiter {

/**

*

Creates a clone of this witer. This method will only be called by ehcache befor
cache is initialized.

<p/ >

| mpl enent ati ons should throw C oneNot Support edException if they do not support c
but that will stop them from being used with defaultCache.

@eturn a clone

@hrows Cl oneNot SupportedException if the extension could not be cloned.
/
public CacheWiter clone(Ehcache cache) throws C oneNot SupportedExcepti on;

/**

* % %k X X X X %

* Notifies witer to initialise thenselves.

* <pl >
* This nmethod is called during the Cache's initialise nethod after it has changed |
* status to alive. Cache operations are |legal in this nethod.
*
* @hrows net.sf.ehcache. CacheException
*
/
void init();
/**
* Providers may be doing all sorts of exotic things and need to be able to clean u
* di spose.
* <pl >
* Cache operations are illegal when this nethod is called. The cache itself is par
* di sposed when this nmethod is called.
*

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

36 Write-through and write-behind caching with CacheWriters 175

voi d di spose() throws CacheException
/**
* Wite the specified value under the specified key to the underlying store.
* This nmethod is intended to support both key/
val ue creation and val ue update for a
* specific key.
*
* @aramelenment the elenent to be witten
*/
void wite(El ement el enment) throws CacheException
/**
* Wite the specified Elenments to the underlying store. This nethod is intended to
* support both insert and update.
* |f this operation fails (by throwing an exception) after a partial success,
* the convention is that entries which have been witten successfully are to be re
* fromthe specified mapEntries, indicating that the wite operation for the entri
* in the nmap has failed or has not been attenpted.
*
*
*

@aram el enents the Elenents to be witten

/
void witeAl |l (Collection<El ement> el enents) throws CacheException
/**

* Delete the cache entry fromthe store

*

* @aramentry the cache entry that is used for the del ete operation

*/
voi d del ete(CacheEntry entry) throws CacheException
/**

* Renove data and keys fromthe underlying store for the given collection of keys,
* present. If this operation fails * (by throwing an exception) after a partial su
* the convention is that keys which have been erased successfully are to be renove
* the specified keys, indicating that the erase operation for the keys left in the
* has failed or has not been attenpted.
*
*
*

@aramentries the entries that have been renoved fromthe cache
/
voi d del eteAll (Coll ecti on<CacheEntry> entries) throws CacheException

36.1.10 FAQ

36.1.10.1 Is there a way to monitor the write-behind queue size?

Use the method

net . sf.ehcache. statistics. Li veCacheSt ati stics#get WiterQeuelLengt h(). This
method returns the number of elements on the local queue (in all local buckets) that are waiting to
be processed, or -1 if no write-behind queue exists. Note that elements or a batch currently being
processed (and coalesced elements) are not included in the returned val ue.

36.1.10.2 What happens if an exception occurs when the writer is called?
In the clustered async implementation inside the Terracotta Toolkit thisis implemented as such:

try {

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

36 Write-through and write-behind caching with CacheWriters 176

processltens();
} catch (final Throwable e) {

error Handl er. onError (Processi ngBucket.this, e);
conti nue;

}

Thisworks since there's a concept of error handlers that isn't present in the non-clustered write behind
implementation in Ehcache core. The default error handler simply logs the exceptions that occurred.

In standalone Ehcache, users should be careful to catch Exceptions. One solution isto put the item
back on the queue with acall tocache. wite().

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

37

37 Cache Server with SOAP and RESTful Web Services 177

37.1 Cache Server

37.1.1 Introduction

Ehcache now comes with a Cache Server, available asa WAR for most web containers, or as a
standalone server. The Cache Server hastwo APIs; RESTful resource oriented, and SOAP. Both
support clientsin any programming language.

(A Note on terminology: Leonard Richardson and Sam Ruby have done a great job of clarifying the
different Web Services architectures and distinguishing them from each other. We use their taxonomy
in describing web services. See http://www.oreilly.com/catal og/9780596529260/.)

37.1.2 RESTful Web Services

Roy Fielding coined the acronym REST, denoting Representational State Transfer, in his PhD thesis.
The Ehcache implementation strictly follows the RESTful resource-oriented architecture style.
Specificaly:

e The HTTP methods GET, HEAD, PUT/POST and DELETE are used to specify the method of
the operation. The URI does not contain method information.

 The scoping information, used to identify the resource to perform the method on, is contained in
the URI path.

e The RESTful Web Serviceis described by and exposes a WADL (Web Application Description
Language) file. It contains the URIs you can call, and what data to pass and get back. Use the
OPTIONS method to return the WADL.

Roy ison the JSR311 expert group. JSR311 and Jersey, the reference implementation, are used
to deliver RESTful web servicesin Ehcache server.

37.1.2.1 RESTFul Web Services API

The Ehcache RESTFul Web Services APl exposes the singleton CacheManager, which typically has
been configured in ehcache.xml or an 1oC container. Multiple CacheManagers are not supported.

Resources are identified using a URI template. The value in parentheses should be substituted with a
literal to specify aresource.

Response codes and response headers strictly follow HTTP conventions.

37.1.2.2 CacheManager Resource Operations

37.0PTIONS /{cache}}
Retrieves the WADL for describing the available CacheManager operations.

37. GET/
Lists the Caches in the CacheManager.
37.1.2.3 Cache Resource Operations

37.0PTIONS /{cache}}
Retrieves the WADL describing the available Cache operations.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://www.oreilly.com/catalog/9780596529260/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

37 Cache Server with SOAP and RESTful Web Services 178

37.HEAD /{cache}}

Retrieves the same metadata a GET would receive returned as HT TP headers. There is no body
returned.

37.GET /cache}

Gets a cache representation. Thisincludes useful metadata such as the configuration and cache
statistics.

37. PUT /{cache}

Creates a Cache using the defaultCache configuration.

37. DELETE / {cache}
Deletes the Cache.

37.1.2.4 Element Resource Operations

37.0PTIONS /{cache}}
Retrieves the WADL describing the available Element operations.

37.HEAD /{cache}/{element}

Retrieves the same metadata a GET would receive returned as HTTP headers. There is no body
returned.

37.GET /{cache}/{element}
Gets the element value.

37.HEAD /{cache}/{element}
Getsthe element's metadata.

37.PUT /{cache}/{element}
Puts an element into the Cache.

Thetimeto live of new Elements defaults to that for the cache. This may be overridden by setting the
HTTP request header ehcacheTi meToLi veSeconds. Values of 0to 2147483647 are accepted. A
value of 0 means eternal.

37.DELETE / {cache}/{element}
Deletes the element from the cache.

The resource representation for all elementsis*. DELETE/ {cache}/* will call
<<<cache.renoveAl | ().

37.1.2.5 Resource Representations
We deal with resource representations rather than resources themselves.

37.Element Resource Representations

When Elements are PUT into the cache, a MIME Type should be set in the request header. The
MIME Typeis preserved for later use.

Thenew M meTypeByt eAr r ay isused to storethe byt e[] and the M neType inthe valuefield of
El ement .

Some common MIME Types which are expected to be used by clients are:

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

37 Cache Server with SOAP and RESTful Web Services 179

text/plain Plain text
text/xml Extensible Markup Language. Defined in RFC 3023
application/json JavaScript Object Notation
JSON. Defined in RFC 4627
application/x-java-serialized-object A serialized Java object

Because Ehcacheis a distributed Java cache, in some configurations the Cache server may contain
Javaobjectsthat arrived at the Cache server via distributed replication. In this case no MIME Type
will be set and the Element will be examined to determine its MIME Type.

Because anything that can be PUT into the cache server must be Serializable, it can also be distributed
in acache cluster i.e. it will be Serializable.

37.1.2.6 RESTful Code Samples
These are RESTful code samples in multiple languages.

37.Curl Code Samples
These samples use the popular curl command line utility.

37.0PTIONS

This example shows how calling OPTIONS causes Ehcache server to respond with the WADL for
that resource

curl --request OPTIONS http://1 ocal host: 8080/ ehcache/ rest/ sanpl eCache2/ 2
The server responds with:

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<application xm ns="http://research. sun. com wadl / 2006/ 10" >
<resources base="http://|ocal host: 8080/ ehcache/rest/">
<resource path="sanpl eCache2/2">

<nmet hod name="HEAD' ><r esponse><r epresent ati on nedi aType="

</resource>

</resources>

</ application>

37.HEAD

curl --head http://Iocal host: 8080/ ehcache/rest/sanpl eCache2/2

The server responds with:

HTTP/ 1.1 200 K

X- Power ed-By: Servlet/2.5

Server: d assFish/v3

Last- Modi fied: Sun, 27 Jul 2008 08:08:49 GVI
ETag: "1217146129490"

Content - Type: text/plain; charset=iso-8859-1
Cont ent - Lengt h: 157

Date: Sun, 27 Jul 2008 08:17:09 GVI

37.PUT

echo "Hello World" | «curl -S-T - http://1|ocal host: 8080/ ehcache/rest/
sampl eCache2/ 3

The server will put Hel | o Wor | d into sanpl eCache?2 using key 3.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

37 Cache Server with SOAP and RESTful Web Services 180

37.GET
curl http://1ocal host: 8080/ ehcache/rest/sanpl eCache2/ 2
The server responds with:

<?xm version="1.0"?>

<ol dj oke>

<bur ns>Say <quot e>goodni ght </ quot e>,
Graci e. </ burns>

<al | en><quot e>Goodni ght ,

Graci e. </ quot e></ al | en>

<appl ause/ >

37.Ruby Code Samples

37.GET

require 'rubygens'

require 'open-uri'

require 'rexnl /docunent

response = open('http://1ocal host: 8080/ ehcache/rest/sanpl eCache2/2")
xm = response.read

puts xm

The server responds with:

<?xm version="1.0"?>

<ol dj oke>

<bur ns>Say <quot e>goodni ght </ quot e>,
Graci e. </ burns>

<al | en><quot e>Goodni ght ,

Graci e. </ quot e></ al | en>

<appl ause/ >

</ ol dj oke>

37.Python Code Samples
37.GET

i mport urllib2
f = urllib2.urlopen('http://1ocal host: 8080/ ehcache/rest/sanpl eCache2/2")
print f.read()

The server responds with:

<?xm version="1.0"7?>

<ol dj oke>

<bur ns>Say <quot e>goodni ght </ quot e>,
Graci e. </ burns>

<al | en><quot e>Goodni ght ,

Graci e. </ quot e></al | en>

<appl ause/ >

</ ol dj oke>

37.Java Code Samples
37.Create and Get a Cache and Entry

package sanpl es;

i mport java.io.lnputStream

i mport java.io.Qutput Stream

i mport java. net. Ht pURLConnecti on

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

37 Cache Server with SOAP and RESTful Web Services 181

i mport java. net. URL;
/**
* A sinple exanple Java client which uses the built-
in java.net.URLConnection
*
* @ut hor BryantR
* @uthor Greg Luck
*/
public class Exanpl eJavad ient {
private static String TABLE COLUW BASE =
"http://1ocal host: 8080/ ehcache/rest/tabl eCol um";
private static String TABLE COLUWN ELEMENT =
"http://1ocal host: 8080/ ehcache/rest/tabl eCol uim/ 1";

/**

* Creates a new i nstance of EHCacheREST
*/

public Exanpl eJavadient () {

}

public static void main(String[] args) {

URL url;
Ht t pURLConnecti on connection = null
InputStreamis = null
Qut put Streamos = nul | ;
int result = 0;
try {
[/ create cache
URL u = new URL(TABLE_COLUWN_BASE)
Ht t pURLConnecti on url Connection = (HttpURLConnection) u.openConnection();
url Connecti on. set Request Met hod(" PUT") ;
int status = url Connection. get ResponseCode();
Systemout.println("Status: " + status);
ur | Connecti on. di sconnect () ;
/1 get cache
url = new URL(TABLE_COLUWMN_BASE)
connection = (HttpURLConnection) url.openConnection();
connecti on. set Request Met hod(" GET") ;
connecti on. connect () ;
is = connection.getlnputStrean();
byte[] responsel = new byt e[4096];

result = is.read(responsel);
while (result '=-1) {
System out.wite(responsel, 0, result);
result = is.read(responsel);
}
if (is!=null) try {
is.close();
} catch (Exception ignore) {
}
Systemout.println("readi ng cache: " + connection. get ResponseCode()
+ " " + connection. get ResponseMessage());
if (connection != null) connection.disconnect();

/lcreate entry
url = new URL(TABLE_COLUWMN_ELEMENT)

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

37 Cache Server with SOAP and RESTful Web Services 182

}

connection = (HttpURLConnection) url.openConnection();

connecti on. set Request Property("Content-Type", "text/plain");

connecti on. set DoCQut put (true);

connecti on. set Request Met hod(" PUT") ;

connecti on. connect () ;

String sanpl eData = "Ehcache is way cool!!!";

byte[] sanpl eBytes = sanpl eDat a. get Bytes();

0S = connection. get Qutput Strean();

os.wite(sanpl eBytes, 0, sanpleBytes.length);

os.flush();

Systemout.println("result=" + result);

Systemout.println("creating entry: " + connection. get ResponseCode()
+ " " + connection. get ResponseMessage());

if (connection !'= null) connection.disconnect();

/1get entry

url = new URL(TABLE_COLUWMN_ELEMENT)

connection = (HttpURLConnection) url.openConnection();

connecti on. set Request Met hod(" GET") ;

connecti on. connect () ;

is = connection. getlnputStrean();

byte[] response2 = new byt e[4096];

result = is.read(response2);
while (result '=-1) {
System out.wite(response2, 0, result);
result = is.read(response2);
}
if (is!=null) try {
is.close();
} catch (Exception ignore) {
}
Systemout.println("reading entry: " + connection. get ResponseCode()
+ " " + connection. get ResponseMessage());
if (connection !'= null) connection.disconnect();

} catch (Exception e) {

e.printStackTrace();

} finally {
if (os !=null) try {
os. close();
} catch (Exception ignore) {
}
if (is!=null) try {
is.close();
} catch (Exception ignore) {
}
if (connection != null) connection.disconnect();

37.Scala Code Samples

37.GET

i mport java.net.URL
i mport scal a.i 0. Source. fromnl nput St r eam

©2011,

Terracotta, Inc. « ALL RIGHTS RESERVED.

37 Cache Server with SOAP and RESTful Web Services 183

obj ect Exanpl eScal aGet extends Application {
val url = new URL("http://I|ocal host: 8080/ ehcache/ rest/sanpl eCache2/2")
from nput Strean{url.openStream. getLines.foreach(print)

}
Run it with

scal a -e Exanpl eScal aCet
The program outputs:

<?xm version="1.0"?>

<ol dj oke>

<bur ns>Say <quot e>goodni ght </ quot e>,
Graci e. </ burns>

<al | en><quot e>Goodni ght ,

Graci e. </ quot e></ al | en>

<appl ause/ >

37.PHP Code Samples
37.GET

<?php

$ch = curl _init();

curl _setopt ($ch, CURLOPT_URL, "http://Iocal host: 8080/ ehcache/rest/
sampl eCache2/ 3");

curl _setopt ($ch, CURLOPT_HEADER, 0);

curl _exec ($ch);

curl _close ($ch);
?>

The server responds with:

Hel l o I ngo
37.PUT
<?php
$url = "http://1ocal host: 8080/ ehcache/rest/sanpl eCache2/ 3";
$localfile = "localfile.txt";

$fp = fopen ($localfile, "r");
$ch = curl _init();
curl _setopt($ch, CURLOPT_VERBCSE, 1);
curl _setopt($ch, CURLOPT_URL, $url);
curl _setopt($ch, CURLOPT_PUT, 1);
curl _setopt($ch, CURLOPT_RETURNTRANSFER, 1);
curl _setopt($ch, CURLOPT_INFILE, $fp);
curl _setopt ($ch, CURLOPT_I NFILESI ZE, filesize($localfile));
$http_result = curl _exec($ch);
$error = curl _error($ch);
$http_code = curl _getinfo($ch , CURLI NFO_HTTP_CODE)
curl _cl ose($ch);
fcl ose($fp);
print $http_code;
print "

$http_result"”;
if ($error) {
print "

$error";
}

?>

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

37 Cache Server with SOAP and RESTful Web Services 184

The server responds with:

* About to connect() to |ocal host port 8080 (#0)
* Trying ::1... * connected

* Connected to | ocal host (::1) port 8080 (#0)

> PUT /ehcache/rest/sanpl eCache2/3 HITP/ 1.1
Host: | ocal host: 8080

Accept: */*

Content-Length: 11

Expect: 100-conti nue

< HTTP/ 1.1 100 Conti nue

HTTP/ 1.1 201 Created

Location: http://1ocal host: 8080/ ehcache/ rest/sanpl eCache2/ 3
Content-Length: O

Server: Jetty(6.1.10)

Connection #0 to host | ocal host |eft intact
Cl osing connection #0

* AN NNA

37.1.3 Creating Massive Caches with Load Balancers and Partitioning

The RESTful Ehcache Server is designed to achieve massive scaling using data partitioning - al from
aRESTful interface. The largest Ehcache single instances run at around 20GB in memory. The largest
disk stores run at 100Gb each. Add nodes together, with cache data partitioned across them, to get
larger sizes. 50 nodes at 20GB gets you to 1 Terabyte.

Two deployment choices heed to be made:

» whereis partitoning performed, and
* isredundancy required?
These choices can be mixed and matched with a number of different deployment topologies.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

37 Cache Server with SOAP and RESTful Web Services

37.1.3.1 Non-redundant, Scalable with client hash-based routing

185

MNon-redundant Scalable Cache Server Topology
with client hash-based URI routing

Cluster 1

o Ehcache Server 1

/

Hashing
RESTiul
Cache
Client
(Java, PHP,
Ruby,
Python, G ...

HTTF

|
\

HTTF

S

Clustar n

[Ehcache Server 2

Thistopology isthe simplest. It does not use aload balancer. Each node is accessed directly by the
cache client using REST. No redundancy is provided.

The client can be implemented in any language because it issimply aHTTP client.

It must work out a partitioning scheme. Simple key hashing, as used by memcached, is sufficient.

Here is a Java code sample:

String[] cacheservers = new String[]

{"cacheserver 0. conpany. cont,
"cacheserver 2. conpany. cont',

"cacheserver5. company. cont'}

key = "123231";

i nt hash = Mat h. abs(key. hashCode());

i nt cacheserverlndex = hash % cacheservers. | ength;
String cacheserver = cacheservers[cacheserverl ndex];

nj ect

©2011,

Terracotta, Inc. e

ALL RIGHTS RESERVED.

"cacheserver 1. conpany. cont',
"cacheserver 3. conpany. coni', "cacheserver4. conpany. conf

37 Cache Server with SOAP and RESTful Web Services 186

37.1.3.2 Redundant, Scalable with client hash-based routing

Redundant Scalable Cache Server Topology
with client hash-based URI routing

Cluster 1
Load |
Balancer | Ehcache Sanver]
i - _r e | AMUIMSGroups
_ Replcation
~ I »| Encache Server 2 |
HITF — S
Hashing ,.'-"f e
BESTiul
Cache
Client ves
(Java, PHP, et
Rulby,
Fython, C ... \\ LR
HITP
e
\ | Ehcache Server 1 |
= ——— RMUJMS/Groups
VIE [Replication
] Ehcache Sanar & |
—_r

Redundancy is added as shown in the above diagram by: Replacing each node with a cluster of two
nodes. One of the existing distributed caching options in Ehcache is used to form the cluster. Options
in Ehcache 1.5 are RMI and JGroups-based clusters. Ehcache-1.6 will add JIM S as a further option.
Put each Ehcache cluster behind VIPs on aload balancer.

©2011, Terracotta, Inc. » ALL RIGHTS RESERVED.

37 Cache Server with SOAP and RESTful Web Services 187

37.1.3.3 Redundant, Scalable with load balancer hash-based routing

Redundant Scalable Cache Server Topology
with Load Balancer hash-based URI routing

Clustar 1
L |_p| Ehcache Sarver 1 |
Balancer VIE = BMUJMEMGroups
Replication
—| Ehcache Server 2 |
RESTIUI Lot
Cache
G’Ilﬂ nt " ==
(Java, FHF, HTTF —= VIF
Auby, _
Python, G,
Hashing Cluster n
IRute
- |_w| Ehcache Server 1 !
Vi RMUJMSGroups
Replication
| Ehcache Server 2 |
5 &
e

Many content-switching load balancers support URI routing using some form of regular expressions.

So, you could optionally skip the client-side hashing to achieve partitioning in the load balancer itself.

For example:

/ ehcache/ rest/sanpl eCachel/[a-h]* => clusterl
/ ehcache/ rest/sanpl eCachel/[i-z]* => cluster2

Things get much more sophisticated with F5 load balancers, which let you create iRulesin the TCL

language. So rather than regular expression URI routing, you could implement key hashing-based
URI routing. Remember in Ehcache's RESTful server, the key forms the last part of the URI. e.g. In

the URI http://cacheserver.company.com/ehcache/rest/sampleCachel/3432 , 3432 isthe key.

Y ou hash using the last part of the URI.

See http://devcentral .f5.com/Default.aspx?
tabid=63& Pagel D=153& Articlel D=135& articleType=ArticleView for how to implment a URI
hashing iRule on F5 load balancers.

37.1.4 W3C (SOAP) Web Services
The W3C (http://lwww.w3.org/ is a standards body that defines Web Services as

©2011, Terracotta,

Inc. »

ALL RIGHTS RESERVED.

37 Cache Server with SOAP and RESTful Web Services 188

The World Wde Wb is nore and nore used for application to application conmunication.
The programmatic interfaces nade available are referred to as Wb services.

They provide a set of recommendations for achieving this. See http://www.w3.0rg/2002/wg/.
An interoperability organisation, WS-I http://www.ws-i.org/, seeks to achieve interoperabilty between

W3C Web Services. The W3C specifications for SOAP and WSDL are required to meet the WS-
definition.

Ehcache isusing Glassfish's libraries to provide it's W3C web services. The project known as Metro
follows the WS-I definition.

Finally, OASIS (http://oasis-open.org), defines a Web Services Security specification for SOAP:
WS-Security. The current version is 1.1. It provides three main security mechanisms: ability to send
security tokens as part of a message, message integrity, and message confidentiality.

Ehcache's W3C Web Services support the stricter WS-I definition and use the SOAP and WSDL
specfications.

Specificaly:
» The method of operation isin the entity-body of the SOAP envelope and aHTTP header. POST

is aways used as the HTTP method.

» The scoping information, used to identify the resource to perform the method on, is contained
in the SOAP entity-body. The URI path is always the same for a given Web Service - it isthe
service "endpoint".

» The Web Serviceis described by and exposes a WSDL (Web Services Description Language)
file. It contains the methods, their arguments and what data types are used.

» The WS-Security SOAP extensions are supported

37.1.4.1 W3C Web Services API

The Ehcache RESTFul Web Services APl exposes the singleton CacheManager, which typically has
been configured in ehcache.xml or an 10C container. Multiple CacheManagers are not supported.
The API definition is asfollows:

* WSDL - EhcacheWebServiceEndpointService.wsdl
» Types- EhcacheWebServiceEndpointService schemal.xsd

37.1.4.2 Security

By default no security is configured. Because it isssimply a Servlet 2.5 web application, it can be
secured in all the usual ways by configuration in the web.xml.

In addition the cache server supports the use of XWSS 3.0 to secure the Web Service. See https://
xwss.dev.java.net/. All required libraries are packaged in the war for XWSS 3.0.

A sample, commented out server_security _config.xml is provided in the WEB-INF directory. XWSS
automatically looks for this configuration file.

A simple example, based on an XWSS example,

net . sf. ehcache. server. soap. Securit yEnvi r onment Handl er , which looks for a password
in a System property for a given username isincluded. Thisis not recommended for production use
but is handy when you are getting started with XWSS.

To use XWSS:

Add configuration in accordance with XWSS to the server_security_config.xml file. Create a class
which implements the Cal | backHandl er interface and provide its fully qualified path in the
Securi t yEnvi r onnent Handl er element.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://ehcache.org/wsdl/EhcacheWebServiceEndpointService.wsdl
http://ehcache.org/wsdl/EhcacheWebServiceEndpointService_schema1.xsd
https://xwss.dev.java.net/
https://xwss.dev.java.net/

37 Cache Server with SOAP and RESTful Web Services 189

The integration test EhcacheWebSer vi ceEndpoi nt test shows how to use the XWSS client side.
On the client side, configuration must be provided in afilecalledcl i ent _security_confi g. xnl
must be in the root of the classpath.

To add client credentias into the SOAP request do:

cacheServi ce = new EhcacheWebSer vi ceEndpoi nt Servi ce() . get EhcacheWebSer vi ceEndpoi nt Port (|

//add security credentials

((Bi ndi ngProvi der) cacheServi ce) . get Request Cont ext (). put (Bi ndi ngProvi der . USERNAVE _PROPER
"Ron");

((Bi ndi ngProvi der) cacheServi ce) . get Request Cont ext (). put (Bi ndi ngProvi der . PASSWORD PROPER
"noR");

String result = cacheService. ping();

37.1.5 Requirements

37.1.5.1 Java
Java5or 6

37.1.5.2 Web Container (WAR packaged version only)
The standal one server comes with its own embedded Glassfish web container.

The web container must support the Servlet 2.5 specification.
The following web container configuration have been tested:

e GlassfishV2/V3
e Tomcat 6
o Jeity 6

37.1.6 Downloading
The server is available as follows:

37.1.6.1 Sourceforge
Download here.

There are two tarball archivesin tar.gz format:

 ehcache-server - this contains the WAR file which must be deployed in your own web container.

» ehcache-standalone-server - this contains a complete standal one directory structure with an
embedded Glassfish V3 web container together with shell scripts for starting and stopping.

37.1.6.2 Maven

The Ehcache Server isin the central Maven repository packaged as type war. Use the following
Maven pom snippet:

<dependency>
<groupl d>net . sf . ehcache</ gr oupl d>
<artifactld>ehcache-server</artifactld>
<ver si on>ent er _ver si on_her e</ver si on>
<type>war </ type>

</ dependency>

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://sourceforge.net/project/showfiles.php?group_id=93232

37 Cache Server with SOAP and RESTful Web Services 190

It isalso available as ajaronly version, which makes it easier to embed. This version excludes all
META-INF and WEB-INF configuration files, and also excludes the ehcache.xml. Y ou need to
provide these in your maven project.

<dependency>
<gr oupl d>net . sf. ehcache</ gr oupl d>
<artifactld>ehcache-server</artifactld>
<versi on>ent er _versi on_here</versi on>
<type>j ar </ type>
<cl assifier>jaronly</classifier>

</ dependency>

37.1.7 Installation

37.1.7.1 Installing the WAR

Use your Web Container's instructions to install the WAR or include the WAR in your project with
Maven'swar plugin.

Web Container specific configuration is provided in the WAR as follows:
* sun-web.xml - Glassfish V2/V3 configuration

* jetty-web.xml - Jetty V5/V6 configuration
Tomcat V6 passes al integration tests. It does not require a specific configuration.

37.1.7.2 Configuring the Web Application
Expand the WAR.

Edit the web.xml.

37.Disabling the RESTful Web Service
Comment out the RESTful web service section.

37.Disabling the SOAP Web Service
Comment out the RESTful web service section.

37.Configuring Caches
The ehcache.xml configuration fileis located in WEB-INF/classes/ehcache.xml.
Follow the instructionsin this config file, or the core Ehcache instructions to configure.

37.SOAP Web Service Security

37.1.8 Installing the Standalone Server
The WAR aso comes packaged with a standal one server, based on Glassfish V3 Embedded.
The quick start is:

e Untar the download

* bin/start.sh to start. By default it will listen on port 8080, with IMX listening on port 8081,
will have both RESTful and SOAP web services enabled, and will use a sample Ehcache
configuration from the WAR module.

* bin/stop.sh to stop

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

37 Cache Server with SOAP and RESTful Web Services 191

37.1.8.1 Configuring the Standalone Server
Configuration is by editing the war/web.xml file as per the instructions for the WAR packaging.

37.1.8.2 Starting and Stopping the Standalone Server

37.Using Commons Daemon jsvc

jsvc creates a daemon which returns once the service is started. jsvc works on all common Unix-based
operating systemsincluding Linux, Solaris and Mac OS X.

It creates apid filein the pid directory.
ThisisaUnix shell script that starts the server as a daemon.

To use jsvc you must install the native binary jsvc from the Apache Commons Daemon project. The
source for thisis distributed in the bin directory as jsvc.tar.gz. Untar it and follow the instructions for
building it or download a binary from the Commons Daemon project.

Convenience shell scripts are provided as follows:

start - daenmon_start. sh

Stop - daenon_st op. sh

jsvc is designed to integrate with Unix System 5 initialization scripts. (/etc/rc.d)

Y ou can aso send Unix signalsto it. Meaningful ones for the Ehcache Standal one Server are:

No Meaning
1 HUP
2 INT
9 KILL
15 TERM

37.Executable jar

The server is also packaged as an executable jar for developer convenience which will work on all
operating systems.

A convenience shell script is provided as follows:
start - startup.sh
From the bin directory you can a so invoke the following command directly:

uni x - java -jar ../lib/ehcache-standal one-server-0.7.jar 8080 ../
war

wi ndows - java -jar ..\lib\ehcache-standal one-server-0.7.jar 8080 ..
\ war

37.1.9 Monitoring
The CacheServer registers Ehcache MBeans with the platform MBeanServer.

Remote monitoring of the MBeanServer isthe responsibility of the Web Container or Application
Server vendor.

For example, some instructions for Tomcat are here: https://wiki.internet2.edu/confluence/display/
CPD/Monitoring+Tomcat+with+IJM X

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

https://wiki.internet2.edu/confluence/display/CPD/Monitoring+Tomcat+with+JMX
https://wiki.internet2.edu/confluence/display/CPD/Monitoring+Tomcat+with+JMX

37 Cache Server with SOAP and RESTful Web Services 192

See your Web Container documentation for how to do this for your web container.

37.1.9.1 Remotely Monitoring the Standalone Server with IMX

The standal one server automatically exposes the MBeanServer on a port 1 higher than the HTTP
listening port.

To connect with JConsol e simply fire up JConsole, enter the host in the Remote field and portin the
above examplethat is

192.168. 1. 108: 8686
Then click Connect .

To see the Ehcache MBeans, click on the Mbeans tab and expand the net . sf . ehcache tree node.
Y ou will see something like the following.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

37 Cache Server with SOAP and RESTful Web Services

193

J25E 5.0 Monitoring & Management Console: 3075@localhost

f
| Summary

Memory Threads Classes MBeans "n.-"l'n"l1

lementation
Ang
til.logging
.ehcache
chestatistics

net.sf.ehcache.CacheManager@88 1ch3
@ CachedLogin

@ FooterPageCache

@ SimplePageCachingFilter
f# SimplePageCachingFilterWithBlankPageProblem

i@ SimplePageFragmentCachingFilter

6@ net.sf.ehcache.constructs.asynchronous.MessageCache
6@ persistentLongExpirylntervalCache

@ sampleCachel

@ sampleCache2

@ sampleCacheNoldle
f# sampleCacheNotEternalButNoldleOrExpiry

6@ sampleldlingExpiringCache

_r Attributes Operations j—‘

Mame
AssociatedCacheName sample
CacheHits
CacheMisses
InMemoryHits
ObjectCount
OnDiskHits
StatisticsAccuracy
StatisticsAccuracyDescription Best Eff

= I =

CacheSatistics MBeans in JConsole

Of course, from there you can hook the Cache Server up to your monitoring tool of choice. See the
chapter on IMX Management and Monitoring for more information.

37.1.10 Download

Download the ehcache-standal one-server from http://sourceforge.net/proj ects/ehcache/files/ehcache-

server.

©2011, Terracotta, Inc. =

ALL RIGHTS RESERVED.

http://sourceforge.net/projects/ehcache/files/ehcache-server
http://sourceforge.net/projects/ehcache/files/ehcache-server

37 Cache Server with SOAP and RESTful Web Services 194

37.1.11 FAQ

37.1.11.1 Does Cache Server work with WebLogic?

Y es (we have tested 10.3.2), but the SOAP libraries are not compatible. Either comment out the
SOAP service from web.xml or do the following:

1 Unzip ehcache-server.war to afolder called ehcache

2 Remove the following jars from WEB-INF/lib: jaxws-rt-2.1.4.jar metro-webservices-api-1.2.jar
metro-webservices-rt-1.2.jar metro-webservices-tools-1.2.jar

3 Deploy the folder to WebL ogic.

4 Usethe soapUl GUI in WebL ogic to add a project from: http:// hostname: port/ehcache/soap/
EhcacheWebServiceEndpointwsdl

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

38

38 Explicit Locking API 195

Explicit Locking API

38.1 Explicit Locking

This package contains an implementation of an Ehcache which provides for explicit locking, using
Read and Write locks.

It is possible to get more control over Ehcache's locking behaviour to allow business logic to apply
an atomic change with guaranteed ordering across one or more keysin one or more caches. It can
theefore be used as a custom alternative to XA Transactions or Local transactions.

With that power comes a caution. It is possible to create deadlocks in your own business logic using
thisAPI.

Note that prior to Ehcache 2.4, this APl was implemented as a CacheDecorator and was available in
theehcache- expli ci t| ocki ng module. It is now built into the cor e module.

38.1.1 The API
The following methods are available on Cache and Ehcache.
/**

* Acquires the proper read |ock for a given cache key
*

* @aram key - The key that retrieves a value that you want to protect via |ocking

*/

public voi d acqui reReadLockOnKey(Obj ect key) {
t hi s. acqui reLockOnKey(key, LockType. READ)

}

/**

* Acquires the proper wite lock for a given cache key
*

* @aram key - The key that retrieves a value that you want to protect via | ocking

*/
public void acquireWiteLockOnKey(Chject key) {
t hi s. acqui reLockOnKey(key, LockType.WRl TE)

}
/**
* Try to get a read lock on a given key. If can't get it in timeout mllis then
* return a boolean telling that it didn't get the |ock
*
* @aram key - The key that retrieves a value that you want to protect via | ocking
* @aramtimeout - millis until giveup on getting the [ock
* @eturn whether the [ock was awarded
* @hrows | nterruptedException
*

~

public bool ean tryReadLockOnKey(hject key, long timeout) throws InterruptedExcepti

Sync s = get LockFor Key(key);
return s.tryLock(LockType. READ, tineout);

}

/**

* Try to get a wite lock on a given key. If can't get it in timeout mllis then

* return a boolean telling that it didn't get the |ock
*

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

38 Explicit Locking API 196

*
* @aramtinmeout - mllis until giveup on getting the | ock
* @eturn whether the | ock was awarded

* @hrows | nterruptedException

*/

@aram key - The key that retrieves a value that you want to protect via | ocking

public boolean tryWitelLockOnKey(Object key, long tineout) throws InterruptedExcept

Sync s = get LockFor Key(key);
return s.tryLock(LockType. WRI TE, ti neout);

}

/**

* Release a held read lock for the passed in key

*

* @aram key - The key that retrieves a value that you want to protect via | ocking

*/

public void rel easeReadLockOnKey(Cbj ect key) {
rel easeLockOnKey(key, LockType. READ);

}

/**

* Release a held wite lock for the passed in key

*

* @aram key - The key that retrieves a value that you want to protect via | ocking

*/

public void rel easeWiteLockOnKey(hject key) {
rel easeLockOnKey(key, LockType.\WRl TE)

}

38.1.2 Example
Hereisabrief example:
String key = "123";

Foo val = new Foo();
cache. acqui reWiteLockOnKey(key);
try {

cache. put (new El enent (key, val));
} finally {

cache.rel easeWitelLockOnKey(key);
}

...sonetime |later

String key = "123";

cache. acqui reWiteLockOnKey(key);

try {
hj ect cachedVal = cache. get (key). get Val ue();
cachedVal . set Sonet hi ng("abc");
cache. put (new El enent (key, cachedVval));

} finally {

cache.rel easeWiteLockOnKey(key);
}

38.1.3 Supported Topologies

Explicit Locking is supported in Ehcache standalone and aso in Distributed Ehcache when the cache
is configured with consi st ency=st r ong.

It is not supported in Replicated Ehcache.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

38 Explicit Locking API 197

38.1.4 How it works

A READ lock does not prevent other READers from also acquiring a READ lock and reading. A
READ lock cannot be obtained if there is an outstanding WRITE lock - it will queue.

A WRITE lock cannot be obtained while there are outstanding READ locks - it will queue.

In each case the lock should be released after use to avoid locking problems. The lock release should
beinafinal | y block.

If before each read you acquire a READ lock and then before each write you acquire aWRITE lock,
then anisolation level akinto READ_COMMITTED is achieved.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

39

39 BlockingCache and SelfPopulatingCache 198

BlockingCache and SelfPopulatingCache

39.1 BlockingCache and SelfPopulatingCache

Thenet . sf. ehcache. const r uct s package contains some applied caching classes which use the
core classes to solve everyday caching problems.

39.1.1 Blocking Cache

Imagine you have avery busy web site with thousands of concurrent users. Rather than being evenly
distributed in what they do, they tend to gravitate to popular pages. These pages are not static, they
have dynamic data which goes stale in afew minutes. Or imagine you have collections of data which
go stale in afew minutes. In each case the data is extremely expensive to calculate.

Let's say each request thread asks for the same thing. That isalot of work. Now, add a cache. Get
each thread to check the cache; if the datais not there, go and get it and put it in the cache. Now,
imagine that there are so many users contending for the same data that in the time it takes the first
user to request the data and put it in the cache, 10 other users have done the same thing. The upstream
system, whether a JSP or velocity page, or interactions with a service layer or database are doing 10
times more work than they need to.

Enter the BlockingCache.

It is blocking because all threads requesting the same key wait for the first thread to complete. Once
the first thread has completed the other threads simply obtain the cache entry and return.

The BlockingCache can scale up to very busy systems. Each thread can either wait indefinitely, or
you can specify atimeout using thet i meout M | | i s constructor argument.

39.1.2 SelfPopulatingCache

Y ou want to use the BlockingCache, but the requirement to always release the lock creates gnarly
code. Y ou also want to think about what you are doing without thinking about the caching.

Enter the SelfPopulatingCache. The name SelfPopulatingCache is synonymous with Pull-through
cache, which is a common caching term. SelfPopulatingCache though awaysisin addition to a
BlockingCache.

SelfPopulatingCache uses a CacheEnt r yFact or y, that given a key, knows how to populate the
entry.

Note: JCache inspired getWithL oader and getAllWithLoader directly in Encache which work with a
CachelLoader may be used as an aternative to SelfPopulatingCache.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

40

40 OpenJPA Caching 199

OpenJPA Caching

40.1 OpenJPA Caching Provider
Ehcache easily integrates with the OpenJPA persistence framework.

40.1.1 Installing
Touseit, add a Maven dependency for ehcache-openjpa.

<groupl d>net . sf . ehcache</ gr oupl d>
<artifactld>ehcache-openjpa</artifactld>
<versi on>0. 1</ versi on>

or download from downloads.

40.1.2 Configuration

Set OpenJPA#s openj pa. Quer yCache to ehcache and openj pa. Dat aCacheManager to
ehcache. That#sit!

See http://openjpa.apache.org/builds/1.0.2/apache-openjpa-1.0.2/docs/manual/
ref_guide_caching.html for more on caching in OpenJPA.

40.1.3 Default Cache

Aswith Hibernate, Ehcache's OpenJPA module (from 0.2) usesthe def aul t Cache configured in
ehcache.xml to create caches.

For production, we recommend configuring a cache configuration in ehcache.xml for each cache, so
that it may be correctly tuned.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://openjpa.apache.org/
http://openjpa.apache.org/builds/1.0.2/apache-openjpa-1.0.2/docs/manual/ref_guide_caching.html
http://openjpa.apache.org/builds/1.0.2/apache-openjpa-1.0.2/docs/manual/ref_guide_caching.html

41

41 Grails Caching 200

Grails Caching

41.1 Using Grails and Ehcache

41.1.1 Using Ehcache as a Second Level Caching Provider for Hibernate within Grails

Grails 1.2RC1 and higher use Ehcache as the default Hibernate second level cache. However earlier
versions of Grails ship with the Ehcache library and are very smple to enable.

The following steps show how to configure Grails to use Ehcache. For 1.2RC1 and higher some of
these steps are already done for you.

41.1.2 Configuring Ehcache as the second level Hibernate cache
Edit Dat aSour ce. gr oovy asfollows:

hi bernate {

cache. use_second_| evel cache=true

cache. use_query_cache=true

cache. provi der_cl ass=' or g. hi ber nat e. cache. EhCachePr ovi der'

41.1.3 Overriding defaults by specifying cache configurations

Asisusual with Hibernate, it will use the def aul t Cache configuration as atemplate to create new
caches as required. For production use you often want to customise the cache configuration. To do
s0, add an ehcache.xml configuration file to the conf directory (the same directory that contains
Dat aSour ce. gr oovy).

A sample ehcache.xml which works with the Book demo app and is good as a starter configuration for
Grailsis shown below:

<?xm version="1. 0" encodi ng="UTF-8"?>
<ehcache xm ns: xsi="http://ww.w3. org/ 2001/ XM_Schema- i nst ance”
xsi : noNanmespaceSchenmaLocat i on="ehcache. xsd" >
<di skStore path="java.io.tnmpdir"/>
<cacheManager Event Li st ener Factory cl ass=
<def aul t Cache
maxEl ement s| nMenor y="10000"
eternal ="fal se”
ti meToLi veSeconds="120"
over f| owToDi sk="f al se"
di skPersi stent="fal se"
/>
<cache nane="Book"
maxEl ement s| nMenor y="10000"
ti meTol dl eSeconds="300"
/>
<cache nane="org. hi ber nat e. cache. Updat eTi nest anpsCache
maxEl ement s| nMenor y="10000"
ti meTol dl eSeconds="300"
/>
<cache nane="org. hi ber nat e. cache. St andar dQuer yCache"
maxEl ement s| nMenor y="10000"

properties=""/>

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

41 Grails Caching 201

ti meTol dl eSeconds="300"
/>
</ ehcache>

41.1.4 Springcache Plugin

The Springcache plugin allows you to easily add the following functionality to your Grails project:
» Caching of Spring bean methods (typically Grails service methods).
» Caching of page fragments generated by Grails controllers.

 Cache flushing when Spring bean methods or controller actions are invoked.
The plugin depends on the EhCache and EhCache-Web libraries.

See Springcache Plugin}, part of the Grails project for more information.

41.1.5 Clustering Web Sessions
Thisis not handled by Ehcache, but by a sister product from Terracotta, web sessions.

See http://gquick.blogspot.com/2010/03/clustering-grail s-app-with-terracotta.html for a great intro on
getting this going with Grails and Tomcat.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://grails.org/plugin/springcache
http://gquick.blogspot.com/2010/03/clustering-grails-app-with-terracotta.html

42

42 JRuby Caching 202

JRuby Caching

42.1 Rails and JRuby Caching

jruby-ehcache is a JRuby Ehcache library which makes a commonly used subset of Ehcache's AP
available to JRuby. All of the strength of Ehcache is there, including BigMemory and the ability to
cluster with Terracotta.

It can be used directly viaits own AP, or as a Rails caching provider.

42.1.1 Installation

Ehcache JRuby integration is provided by the jruby-ehcache gem. Toinstall it simply execute (note:
you may need to use "sudo" to install gems on your system):

jgeminstall jruby-ehcache

If you also want Rails caching support, also install the correct gem for your Rails version:

jgeminstall jruby-ehcache-rails2 # for Rails 2
jgeminstall jruby-ehcache-rails3 # for Rails 3

42.1.2 Configuring Ehcache

Configuring Ehcache for JRuby is done using the same ehcache.xml file as used for native Java
Ehcache. The ehcache.xml file can be placed either in your CLASSPATH or, alternatively, can be
placed in the same directory as the Ruby file in which you create the CacheManager object from your
Ruby code. In a Rails application, the ehcache.xml file should reside in the config directory of the
Rails application.

42.1.3 Dependencies

* JRuby 1.5 and higher

» Rails 2 for the jruby-ehcache-rails2

» Rails 3 for the jruby-ehcache-rails3

» Ehcache 2.4.2 is the declared dependency, although any version of Ehcache will work
As usual these should all be installed with jgem

42.1.4 Using the jruby-ehcache API directly

42.1.4.1 To make Ehcache available to JRuby
requi re 'ehcache’

Note that, because jruby-ehcache is provided as a Ruby Gem, you must make your Ruby interpreter
aware of Ruby Gems in order to load it. Y ou can do this by either including -rubygems on your jruby
command line, or you can make Ruby Gems available to JRuby globally by setting the RUBY OPT
environment variable as follows:

export RUBYOPT=r ubygens

42.1.4.2 Creating a CacheManager
To create a CacheManager, which you do once when the application starts:

manager = Ehcache: : CacheManager . new

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

42 JRuby Caching 203

42.1.4.3 Accessing an existing Cache
To access a cache called "sampleCachel":

cache = manager. cache("sanpl eCachel")

42.1.4.4 Creating a Cache
To create a new cache from the defaultCache

cache = manager. cache

42.1.4.5 Putting in a cache
cache. put ("key", "value", {:ttl => 120})

42.1.4.6 Getting from a cache

cache. get("key") # Returns the Ehcache El enent object
cache["key"] # Returns the value of the elenment directly

42.1.4.7 Shutting down the CacheManager
Thisis only when you shut your application down.

Itisonly necessary to call thisif the cacheisdi skPer si st ent or isclustered with Terracotta, but it
isawaysagood ideato do it.

manager . shut down

42.1.5 Complete Example

cl ass Si mpl eEhcache
#Code here
requi re 'ehcache’
manager = Ehcache:: CacheManager . new
cache = manager. cache
cache. put ("answer", "42", {:ttl => 120})
answer = cache. get ("answer")
puts "Answer: #{answer.val ue}"
guestion = cache["question"] || 'unknown'
puts "Question: #{question}"
manager . shut down

end

Asyou can see from the example, you create a cache using CacheManager.new, and you can control
the "timeto live" value of acache entry using the :ttl option in cache.put. Note that not al of the
Ehcache API is currently exposed in the JRuby API, but most of what you need is available and we
plan to add a more complete APl wrapper in the future.

42.1.6 Using ehcache from within Rails

42.1.6.1 The ehcache.xml file

Configuration of Ehcache is still done with the ehcache.xml file, but for Rails applications you must
place thisfilein the config directory of your Rails app.

Also note that you must use JRuby to execute your Rails application, as these gems utilize JRuby's
Javaintegration to call the Ehcache API.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

42 JRuby Caching 204

With this configuration out of the way, you can now use the Ehcache API directly from your Rails
controllers and/or models. Y ou could of course create a new Cache object everywhere you want to
useit, but it is better to create a single instance and make it globally accessible by creating the Cache
object in your Rails environment.rb file.

For example, you could add the following lines to config/environment.rb:

require 'ehcache'

EHCACHE = Ehcache: : CacheManager . new. cache

By doing so, you make the EHCACHE constant available to al Rails-managed objectsin your
application. Using the Ehcache API is now just like the above JRuby example.

If you are using Rails 3 then you have a better option at your disposal: the built-in Rails 3 caching
API. This API provides an abstraction layer for caching underneath which you can plug in any one of
anumber of caching providers. The most common provider to date has been the memcached provider,
but now you can also use the Ehcache provider.

Switching to the Ehcache provider requires only one line of code in your Rails environment file (e.g.
development.rb or production.rb):

config.cache_store = :ehcache_store, {
:cache_nane => 'rails_cache'
: ehcache_config => 'ehcache. xm"
}

This configuration will cause the Rails.cache API to use Ehcache asits cache store. The :cache_name
and :ehcache_config are both optional parameters, the default values for which are shown in the
above example. The value of the :ehcache_config parameter can be either an absolute path or a
relative path, in which case it isinterpreted relative to the Rails app's config directory.

A very simple example of the Rails caching APl isasfollows:
Rai |l s. cache.write("answer", "42")
Rai | s. cache.read("answer") # => '42
Using this API, your code can be agnostic about the underlying provider, or even switch providers
based on the current environment (e.g. memcached in development mode, Ehcache in production).
The write method also supports options in the form of a Hash passed as the final parameter. The
following options are supported:
* unlesskxist, ifAbsent (boolean) - If true, use the putlfAbsent method
» elementEvictionData (ElementEvictionData)
* eternal (boolean)
 timeToldle, tti (int)
 timeToLive, ttl, expiresin (int)
* version (long)
These options are passed to the write method as Hash options using either camel Case or underscore
notation, as in the following example:

Rail s. cache.write(' key', 'value', :time_to_idle => 60.seconds, :tinmeToLive => 600.secon

42.1.6.2 Turn on caching in your controllers

Y ou can also configure Rails to use Ehcache for its automatic action caching and fragment caching,
which is the most common method for caching at the controller level. To enable this, you must
configure Rails to perform controller caching, and then set Ehcache as the provider in the same way
asfor the Rails cache API:

config.action_controller.performcaching = true

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

42 JRuby Caching 205

config.action_controller.cache store = :ehcache_store

42.1.7 Sample Rails application

The easiest way to get started is to play with a ssimple sample app. We provide asimple Rails
application which stores an integer value in a cache along with increment and decrement operations.

The sample app shows you how to use Ehcache as a caching plugin and how to useit directly from
the Rails caching API. It is a simple demo application demonstrating the use of Ehcachein a Rails 3
environment. This demo requires JRuby 1.5.0 or later.

42.1.7.1 Checking it out

svn checkout http://svn.terracotta.org/svn/forge/projects/ehcache-rails-
deno/ trunk ehcache-rail s-denp

42.1.7.2 Dependencies
To start the demo, make sure you are using JRuby 1.5.0 or later.

The demo uses sglite3 which needs to beinstalled on your OS (it is by default on Mac OS X).
Thereis a Gemfile which will pull down al of the required Ruby dependencies using Bundler.
From the ehcache-rails-demo directory:

jgeminstall bundler
jruby -S bundle install

42.1.7.3 Starting the demo
Y ou can start the demo application with the following command:

jruby -Srails server -e production

42.1.7.4 Exploring the demo
To use the demo application, open aweb browser to the following URL.:

http://local host: 3000/cache/index

Thiswill display a simple screen alowing you to manipulate cached values either through the
Ehcache API directly, or through the Rails.cache API backed by Ehcache.

42.1.8 Leveraging the power of Ehcache

Once you have the Ruby/Rails caching modules up and running with Ehcache you can then go on to
leverage the power of Ehcache through for example creating a distributed cache backed by Terracotta.

There are no limits on what you can do. Please see the rest of this documentation.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://localhost:3000/cache/index

43

43 Glassfish HowTo 206

Glassfish HowTo

43.1 Glassfish How To & FAQ

The maintainer uses Ehcache in production with Glassfish. This chapter provides a Glassfish
HOWTO.

43.1.1 Versions
Ehcache has been tested with and is used in production with Glassfish V1, V2 and V3.
In particular:

e Ehcache 1.4 - 1.7 has been tested with Glassfish 1 and 2.
» Ehcache 2.0 has been tested with Glassfish 3.

43.1.2 Usage and Troubleshooting

43.1.2.1 How To Package A Sample Application Using Ehcache and Deploy to Glassfish

Ehcache comes with a sample web application which is used to test the page caching. The page
caching isthe only areathat is sensitive to the Application Server. For Hibernate and general caching,
it is only dependent on your Javaversion.

From a checkout of Ehcache run the following from the cor e directory:

Y ou need:

» aGlassfishinstalation.
* aGLASSFI SH_HOME environment variable defined.
* $G_ASSFI SH_HOVE/ bi n added to your PATH

Do the following:

To package and depl oy to donainl:

ant depl oy-def aul t - web- app- gl assfi sh

Start domai nl:

asadmi n start-domain domai nl

Stop donmmi nl:

asadnmi n stop-domai n domai nl

Overwrite the config with our own which changes the port to 9080:
ant gl assfish-configuration

Start domai nl:

asadmi n start-domain domai nl

Y ou can then run the web tests in the web package or point your browser at ht t p: //
| ocal host : 9080.

See for aquickstart to Glassfish.

43.1.2.2 How to get around the EJB Container restrictions on thread creation

When Ehcache is running in the EJB Container, for example for Hibernate caching, it isin technical
breach of the EJB rules. Some app servers let you override this restriction.

| am not exactly sure how thisin done in Glassfish. For anumber of reasons we run Glassfish without
the Security Manager, and we do not have any issues.

In domain.xml ensure that the following is not included.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

https://glassfish.dev.java.net/downloads/quickstart/index.html

43 Glassfish HowTo 207

<j vm opti ons>-Dj ava. security. manager</jvm opti ons>
43.1.3 Glassfish FAQ

43.1.3.1 Ehcache page caching versions below Ehcache 1.3 get an IllegalStateException in Glassfish.
Thisissue was fixed in Ehcache 1.3.

43.1.3.21getaCoul d not ungzip. Heartbeat will not be working. Not in &ZIP
f or mat reported from PayloadUtil exception when using Ehcache with my Glassfish cluster. Why?

Ehcache and Glassfish clustering have nothing to do with each other. The error is caused because
Ehcache has received a multicast message from the Glassfish cluster. Ensure that Ehcache clustering
has its own unique multicast address different to Glassfish.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

44 Google App Engine Caching 208

Google App Engine Caching

44.1 Google App Engine Caching

44.1.1 Using Ehcache on Google App Engine (GAE)

The ehcache-googl eappengine module combines the speed of Ehcache with the scale of Google's
memcache and provide the best of both worlds:
* Speed - Ehcache cache operations take a few microseconds, versus around 60ms for Google's
provided client-server cache, memcacheg.

» Cost - Because it uses way less resources, it is also cheaper.
» Object Storage - Ehcache in-process cache works with Objects that are not Serializable.

44.1.2 Compatibility
Ehcache is compatible and works with Google App Engine.

Google App Engine provides a constrained runtime which restricts networking, threading and file
system access.

44.1.3 Limitations

All features of Ehcache can be used except for the DiskStore and replication. Having said that, there
are workarounds for these limitations. See the Recipes section below.

As of June 2009, Google App Engine appears to be limited to a heap size of 100MB. (See http://
gregluck.com/blog/?s=limitations for the evidence of this).

44.1.4 Dependencies
Version 2.3 and higher of Ehcache are compatible with Google App Engine.
Older versions will not work.

44.1.5 Configuring ehcache.xml
Make sure the following elements are commented out:
» diskSore path="java.io.tmpdir"/
» cacheManagerPeerProviderFactory class= ../
» cacheManagerPeerListenerFactory class= ../
Within each cache element, ensure that:
» overFlowToDisk=false or overFlowToDisk is omitted
* diskPersistent=false or diskPersistent is omitted
* no replicators are added
* thereis no bootstrapCachel oaderFactory
* thereisno Terracotta configuration
Copy and past this one to get started.
<?xm version="1.0" encodi ng="UTF-8"?>
<Ehcache xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"

xsi : noNanmespaceSchemalLocat i on="ehcache. xsd" >
<cacheManager Event Li st ener Factory cl ass="" properties=""/>

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://gregluck.com/blog/?s=limitations
http://gregluck.com/blog/?s=limitations

44 Google App Engine Caching 209

<def aul t Cache
maxEl emrent sl nMenor y="10000"
et ernal ="f al se"
ti meTol dl eSeconds="120"
ti meToLi veSeconds="120"
over f | owToDi sk="f al se"
di skPersi stent="f al se"
menor ySt or eEvi cti onPol i cy="LRU"
/>
<!--Exanpl e sanpl e cache-->
<cache nane="sanpl eCachel”
maxEl emrent sl nMenor y="10000"
maxEl ement sOnDi sk="1000"
et ernal ="f al se"
ti meTol dl eSeconds="300"
ti meToLi veSeconds="600"
menor ySt or eEvi cti onPol i cy="LFU"
/>
</ ehcache>

44.1.6 Recipes

44.1.6.1 Setting up Ehcache as a local cache in front of memcacheg

The idea hereisthat your caches are set up in a cache hierarchy. Ehcache sitsin front and memcacheg
behind. Combining the two lets you el egantly work around limitations imposed by Googe App
Engine. Y ou get the benefits of the #s speed of Ehcache together with the umlimited size of
memcached.

Ehcache contains the hooks to easily do this.
To update memcached, use aCacheEvent Li st ener .

To search against memcacheg on alocal cache miss, usecache. get Wt hLoader () together with a
CachelLoader for memcacheg.

44.1.6.2 Using memcacheg in place of a Di skSt ore

Inthe CacheEvent Li st ener, ensure that when not i f yEl ement Evi ct ed() iscalled, which it will
be when a put exceeds the MemoryStore's capacity, that the key and value are put into memcacheg.

44.1.6.3 Distributed Caching
Configure all notificationsin CacheEvent Li st ener to proxy throught to memcacheg.

Any work done by one node can then be shared by all others, with the benefit of local caching of
frequently used data.

44.1.6.4 Dynamic Web Content Caching
Google App Engine provides acceleration for files declared static in appengine-web.xml.

eg.
<static-files>
<i nclude path="/**.png" />
<excl ude path="/data/**.png" />
</static-fil es>

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

44 Google App Engine Caching 210

Y ou can get acceleration for dynamic files using Ehcache's caching filters as you usually would.
See the Web Caching chapter.

44.1.7 Google App Engine FAQ

44.1.7.1 1 getan error j ava. | ang. NoCl assDef FoundError: java.rni.server.UD is a
restricted class

You are using aversion of Ehcache prior to 1.6.

44.1.8 Sample application

The easiest way to get started is to play with a simple sample app. We provide asimple Rails
application which stores an integer value in a cache along with increment and decrement operations.

The sample app shows you how to use ehcache as a caching plugin and how to use it directly from the
Rails caching API.

Checkout http://svn.terracotta.org/svn/forge/projectsehcache-rail s-demo/
terracotta_community_|login a Maven-based performance comparisons between different store
configurations.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://svn.terracotta.org/svn/forge/projects/ehcache-rails-demo/

45

45 Tomcat Issues and Best Practices 211

Tomcat Issues and Best Practices

45.1 Tomcat Issues and Best Practices

Ehcache is probably used most commonly with Tomcat. This chapter documents some known issues
with Tomcat and recommended practices.

Ehcache's own caching and gzip filter integration tests run against Tomcat 5.5 and Tomcat 6. Tomcat
will continue to be tested against ehcache. Accordingly Tomcat istier one for ehcache.

45.1.1 Tomcat Known Issues

Because Tomcat is so widely used, over time alist of known issues has been compiled. These issues
and their solutions are listed below.

45.1.1.1 Problem rejoining a cluster after a reload

If | restart/reload aweb application in Tomcat that has a CacheManager that is part of a cluster, the
CacheManager is unable to rejoin the cluster. If | set logging for net.sf.encache.distribution to FINE |
see the following exception: "FINE: Unable to lookup remote cache peer for Removing from peer
list. Cause was: error unmarshalling return; nested exception is: java.io.EOFException.

The Tomcat and RMI class loaders do not get along that well. Move ehcache.jar to
$TOMCAT_HOME/common/lib. This fixes the problem. This issue happens with anything that uses
RMI, not just ehcache.

45.1.1.2 In development, there appear to be class loader memory leak as | continually redeploy my web
application.

There are lots of causes of memory |eaks on redeploy. Moving Ehcache out of the WAR and into
$TOMCAT/common/lib fixes this leak.

45.1.1.3 net.sf.ehcache.CacheException: Problem starting listener for RMICachePeer ...

| get net.sf.ehcache.CacheException: Problem starting listener for RM I CachePeer ...
java.rmi.Unmarshal Exception: error unmarshalling arguments; nested exception is:
java.net.MalformedURL Exception: no protocol: Files/Apache. What is going on?

Thisissue occursto any RMI listener started on Tomcat whenever Tomcat has spacesin its
installation path.

ItisisaJDK bug which can be worked around in Tomcat.

See http://archives.java.sun.com/cgi-bin/wa?A2=ind0205& L =rmi-users& P=797 and http://
www.ontotext.com/kim/doc/sys-doc/fag-howto-bugs/known-bugs.html.

The workaround is to remove the spaces in your tomcat installation path.

45.1.1.4 Multiple Host Entries in Tomcat's server.xml stops replication from occurring

The presence of multiple Host entries in Tomcat's server.xml prevents replication from occuring.
The issue is with adding multiple hosts on a single Tomcat connector. If one of the hostsis |localhost
and another starts with v, then the caching between machines when hitting localhost stops working
correctly.

The workaround isto use asingle Host entry or to make sure they don't start with "v".
Why thisissue occursis presently unknown, but is Tomcat specific.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

46

46 JSR107 (JCACHE) Support 212

JSR107 (JCACHE) Support

46.1 JSR107 (JCACHE) Support

46.1.1 JSR107 Implementation
Ehcache provides a preview implementation of JSR107 viathenet . sf . cache. j cache package.

WARNING: JSR107 is still being drafted with the Ehcache maintainer as Co Spec Lead. This
package will continue to change until JSR107 is finalised. No attempt will be made to maintain
backward compatiblity between versions of the package. It is therefore recommended to use
Ehcache's proprietary API directly.

46.1.2 Using JCACHE

46.1.2.1 Creating JCaches
JCaches can be created in two ways:

 as an Ehcache decorator
» from JCache's CacheManager

46.Creating a JCache using an Ehcache decorator
manager in the following sampleis an net.sf.ehcache.CacheM anager
net.sf.jsril07cache. Cache cache = new JCache(nanager. get Cache("sanpl eCacheNol dl e"), null]

46.Creating a JCache from an existing Cache in Ehcache's CacheManager

Thisis the recommended way of using JCache. Caches can be configured in ehcache.xml and
wrapped as JCaches with the getJCache method of CacheManager.

manager in the following sampleis an net.sf.ehcache.CacheM anager

net.sf.jsrl07cache. Cache cache = nmanager. get JCache("sanpl eCacheNol dl e");
46.Adding a JCache to Ehcache's CacheManager
manager in the following sampleis an net.sf.ehcache.CacheM anager

Ehcache Ehcache = new net. sf.ehcache. Cache(...);
net.sf.jsrl07cache. Cache cache = new JCache(ehcache);
manager . addJCache(cache);

46.Creating a JCache using the JCache CacheManager

Warning: The JCache CacheManager is unworkable and will very likely be dropped in the final
JCache asaClass. It will likely be replaced with a CacheManager interface.

The JCache CacheManager only works as asingleton. Y ou obtain it with get | nst ance

The CacheManager uses a CacheFactory to create Caches. The CacheFactory is specified using the
Service Provider Interface mechanism introduced in JDK1.3.

The factory is specified in the META- | NF/ servi ces/ net . sf.j sr107cache. CacheFact ory
resource file. This would normally be packaged in ajar. The default value for the Ehcache
implementation isnet . sf. ehcache. j cache. JCacheFact ory

The configuration for a cache is assembled as a map of properties. Valid properties can be found in
the JavaDoc for the JCacheFactory.createCache() method.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://java.sun.com/j2se/1.3/docs/guide/jar/jar.html#Service%20Provider
http://java.sun.com/j2se/1.3/docs/guide/jar/jar.html#Service%20Provider
http://ehcache.org/xref/net/sf/ehcache/jcache/JCacheFactory.html#74

46 JSR107 (JCACHE) Support 213

See the following full example.

CacheManager si ngl et onManager = CacheManager. getl nstance();
CacheFactory cacheFactory = singl et onManager . get CacheFactory();
assert Not Nul | (cacheFactory);

Map config = new HashMap();

config. put("nane", "test");

confi g. put (" naxEl enent sl nMenory"”, "10");

confi g. put ("nenoryStoreEvictionPolicy", "LFU");
config. put ("overfl owlToDi sk", "true");
config.put("eternal", "false");
config.put("tinmeToLi veSeconds", "5");
config.put("tinmeToldl eSeconds", "5");

config. put("di skPersistent”, "false");

confi g. put ("di skExpi ryThr eadl nt erval Seconds", "120");
Cache cache = cacheFactory. createCache(config);
si ngl et onManager . regi st er Cache("test", cache);

46.1.2.2 Getting a JCache
Once acache is registered in CacheManager, you get it from there.

The following example shows how to get a Cache.

manager = CacheManager. getl nstance();
Ehcache Ehcache = new net. sf.ehcache. Cache("UseCache", 10,
Menor ySt or eEvi cti onPol i cy. LFU,

false, null, false, 10, 10, false, 60, null);
manager . regi st erCache("test", new JCache(ehcache, null));
Cache cache = manager. get Cache("test");

46.1.2.3 Using a JCache
The JavaDoc isthe best place to learn how to use a JCache.

The main point to remember is that JCache implements Map and that is the best way to think about it.

JCache al so has some interesting asynchronous methods such as| oad and | oadAl | which can be
used to preload the JCache.

46.1.3 Problems and Limitations in the early draft of JSR107

If you are used to the richer API that Ehcache provides, you need to be aware of some problems and
limitationsin the draft specification.

Y ou can generally work around these by getting the Encache backing cache. Y ou can then access the
extrafeatures available in ehcache.

Of course the biggest limitation is that JSR107 (as of Augut 2007) isalong way from final.
/ * %

* CGets the backi ng Ehcache
*/
publ i ¢ Ehcache get Backi ngCache() {
return cache;
}

Thefollowing is both a critique of JCache and notes on the Ehcache implementation. As a member of
the JSR107 Expert Group these notes are also intended to be used to improve the specification.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://ehcache.org/apidocs/net/sf/ehcache/jcache/JCache.html

46 JSR107 (JCACHE) Support 214

46.1.3.1 net.sf.jsrl07cache.CacheManager
CacheManager does not have the following features:

 shutdown the CacheManager - there is no way to free resources or persist. |mplementations may
utilise a shutdown hook, but that does not work for application server redeployments, where a
shutdown listener must be used.

 List cachesin the CacheManager. There is no way to iterate over, or get alist of caches.

» remove caches from the CacheManager - onceitsthere it isthere until VM shutdown. This does
not work well for dynamic creation, destruction and recreation of caches.

» CacheManager does not provide a standard way to configure caches. A Map can be populated
with properties and passed to the factory, but there is no way a configuration file can be
configured. This should be standardised so that declarative cache configuration, rather than
programmatic, can be achieved.

46.1.3.2 net.sf.jsr107cache.CacheFactory
A property is specified in the resource services/net.sf.jsr107cache.CacheFactory for a CacheFactory.

The factory then resolves the CacheManager which must be a singleton.

A singleton CacheManager works in simple scenarios. But there are many where you want multiple
CacheManagers in an application. Ehcache supports both singleton creation semantics and instances
and defines the way both can coexist.

The singleton CacheManager is alimitation of the specification.
(Alternatives: Some form of annotation and injection scheme)

Pending afinal JSR107 implementation, the Ehcache configuration mechanism is used to create
JCaches from ehcache.xml config.

46.1.3.3 net.sf.jsr107cache.Cache

» The spec is silent on whether a Cache can be used in the absence of a CacheManager. Requiring
a CacheManager makes a central place where concerns affecting all caches can be managed, not
just away of looking them up. For example, configuration for persistence and distribution.

» Cache does not have alifecycle. There is no startup and no shutdown. Thereis no way, other
than a shutdown hook, to free resources or perform persistence operations. Once again this will
not work for redeployment of applications in an app server.

» Thereisno mechanism for creating a new cache from adefault configuration such asapubl i c
voi d regi sterCache(String cacheName) on CacheManager. Thisfeatureis considered
indispensable by frameworks such as Hibernate.

» Cache does not have aget Nane() method. A cache has aname; that is how it is retrieved from
the CacheManager. But it does not know its own name. Thisforces APl usersto keep track of
the name themselves for reporting exceptions and log messages.

» Cache does not support setting a TTL override on aput. e.g. put (Obj ect key, bj ect
val ue, long tinmeToLive). Thisisauseful feature.

* The spec is silent on whether the cache accepts null keys and elements. Ehcache alows all
implementations. i.e.

cache.put(null, null);
assertNul | (cache. get(null));
cache. put (null, "val ue");

assert Equal s("val ue", cache.get(null));
cache. put ("key", null);
assert Equal s(nul |, cache. get ("key"));

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

46 JSR107 (JCACHE) Support 215

nul | iseffectively avalid key. However because nul | id not an instance of Seri al i zabl e
null-keyed entries will be limited to in-process memory.

* Thel oad(Obj ect key),l oadAl |l (Collection keys) andget Al |l (Col | ecti on
col I ecti on) methods specify in the javadoc that they should be asynchronous. Now, most
load methods work off a database or some other relatively slow resource (otherwise there would
be no need to have a cache in the first place).

To avoid running out of threads, these |oad requests need to be queued and use a finite number
of threads. The Ehcache implementation does that. However, due to the lack of lifecycle
management, there is no immediate way to free resources such as thread pools.

* Thel oad method ignores arequest if the element is already loaded in for that key.

» get andget Al | areinconsistent. get Al | throws CacheException, but get does not. They both
should.

/**

* Returns a collection view of the values contained in this map. The

* collection is backed by the nap, so changes to the map are reflected in
* the collection, and vice-versa. |If the map is nodified while an

* jteration over the collection is in progress (except through the

* jterator's own <tt>renove</tt> operation), the results of the

* jteration are undefined. The collection supports el enent renoval,

* which renoves the correspondi ng mapping fromthe map, via the

* <tt>lterator.renove</tt>, <tt>Collection.renove</tt>,

*

<tt>removeAll </tt>, <tt>retainAll</tt> and <tt>clear</
tt> operations.

* |t does not support the add or <tt>addAll</tt> operations.

* <pl>

* @eturn a collection view of the values contained in this map.

*/

public Collection values() {

It is not practical or desirable to support this contract. Ehcache has multiple maps for storage of
elements so there is no single backing map. Allowing changes to propagate from a changein
the collection maps would break the public interface of the cache and introduce subtle threading
iSsues.
The Ehcache implementation returns a new collection which is not connected to internal
structures in ehcache.

46.1.3.4 net.sf.jsrl07cache.CacheEntry

 getHits() returnsint. It should return long because production cache systems have entries hit
more than Integer. MAX_VALUE times.

Once you get to Integer. MAX_VALUE the counter rolls over. See the following test:

@est public void testlntQverflow) {
| ong val ue = I nteger. MAX VALUE
val ue += | nteger. MAX VALUE
val ue += 5;

LOG info("" + value);

int valueAslint = (int) val ue;
LOG info("" + valueAsint);
assert Equal s(3, val ueAslint);

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

46 JSR107 (JCACHE) Support

216

» get Cost () requirsthe CacheEntry to know whereitis. If it isin a DiskStore then its cost of
retrieval could be higher than if it isin heap memory. Ehcache elements do not have this concept,
and it is not implemented. i.e. getCost aways returns 0. Also, if it isin the DiskStore, when you
retrieve it isin then in the MemoryStore and its retrieval cost isalot lower. | do not see the point
of this method.

* get Last Updat eTi me() isthetimethe last "update was made". JCACHE does not support

updates, only puts

46.1.3.5 net.sf.jsrl07cache.CacheStatistics

» getObjectCount() is a strange name. How about getSize()? If a cache entry is an object graph
each entry will have more than one "object” in it. But the cache sizeiswhat isreally meant, so

why not call it that?

* Onceagain get CacheHi t s and get CacheM sses should be longs.
public interface CacheStatistics {
static final int STATI STI CS_ACCURACY_NONE = O;
static final int STATI STI CS_ACCURACY_BEST_EFFORT = 1;
static final int STATI STI CS_ACCURACY_GUARANTEED = 2;
int getStatisticsAccuracy();
i nt get Ohj ect Count ();
int getCacheHits();
i nt get CacheM sses();
void clearStatistics();

» Thereisaget StatisticsAccuracy() method but not a corresponding setStatisticsAccuracy
method on Cache, so that you can alter the accuracy of the Statistics returned.

Ehcache supports this behaviour.

» Thereisno method to estimate memory use of a cache. Ehcache serializes each Element to a
byte[] one at atime and adds the serialized sizes up. Not perfect but better than nothing and

works on older JDKs.

publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

C
C
C
C
C
C
C

C

e CacheStatisticsis obtained using cache. get CacheSt ati sti cs() It then has gettersfor
values. In thisway it feels like avalue object. The Ehcache implementation is Serializable so that
it can act asa DTO. However it also has a clearStatistics() method. This method clear counters
on the Cache. Clearly CacheStatistics must hold a reference to Cache to enable this to happen.

But what if you arereally using it as a value object and have serialized it? The Ehcache

implementation marks the Cache reference ast r ansi ent . If clearStatistics() is called when the
cache reference is no longer there, an Illegal StateException is thrown.

A much better solution would be to move clearStatistics() to Cache.

46.1.3.6 net.sf.jsrl07cache.CacheListener

/**

* Interface describing various events that can happen as elenents are added to
renoved from a cache

* or
*/

public interface CachelListener {

/

** Triggered when a cache nmapping is created due to the cache | oader

public void onLoad(nhject key);

/

bei ng consul ted */

** Triggered when a cache mapping is created due to calling Cache.put() */
public void onPut (Object key);

/** Triggered when a cache mapping is renmoved due to eviction */

©2011,

Terracotta,

Inc. »

ALL RIGHTS RESERVED.

46 JSR107 (JCACHE) Support 217

public void onEvict(Object key);
/
** Triggered when a cache mapping is renoved due to calling Cache.remove() */
public void onRenpbve(hj ect key);
public void ond ear();

* Listeners often need not just the key, but the cache Entry itself. Thislistener interfaceis
extremely limiting.

» Thereisno onUpdate notification method. These are mapped to JCACHE's onPut notification.

» Thereisno onExpired notification method. These are mapped to JCACHE's onEvict notification.

46.1.3.7 net.sf.jsrl07cache.CachelLoader

» JCache can store null values against akey. In this case, on JCache# get or get Al | should an
implementation attempt to load these values again? They might have been null in the system
the Cacheloader loads from, but now aren't. The Ehcache implementation will still return nulls,
which is probably the correct behaviour. This point should be clarified.

46.1.4 Other Areas

46.1.4.1 IMX
JSR107 is silent on IM X which has been included in the JDK since 1.5.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

47

47 Building From Source 218

Building From Source

47.1 Building from Source

These instructions work for each of the modules, except for IMS Replication, which requires
installation of a message queue. See that module for details.

47.1.1 Building an Ehcache distribution from source
To build Ehcache from source:

1 Check the source out from the subversion repository.
2 Ensureyou have avalid JDK and Maven 2 installation.
3 From within the ehcache/core directory, typemvn - Dnaven. t est . ski p=true instal |

47.1.2 Running Tests for Ehcache
To run the test suite for Ehcache:

1 Check the source out from the subversion repository.
2 Ensureyou have avaid JDK and Maven 2 installation.
3 From within the ehcache/core directory, type nvn t est

4 If some performance testsfail, add a- D net . sf. ehcache. speedAdj ust ment Fact or =x
System property to your command line, where x is how many times your machine is slower than
the reference machine. Try setting it to 5 for a start.

47.1.3 Deploying Maven Artifacts
Ehcache has a repository and snapshot repository at 0ss.sonatype.org.
The repository is synced with the Maven Central Repository.
To deploy:
mvn depl oy

Thiswill fail because SourceForge has disabled ssh exec. Y ou need to create missing directories
manually using sftp accesssft p gregl uck, ehcache@web. sour cef or ge. net

47.1.4 Building the Site
(These instructions are for project maintainers)
To build the site use:

nvn - Dmaven. t est. ski p=true package site
The site needs to be deployed from the target/site directory using:

rsync -v -r * ehcache-stage.terracotta.lan:/exportl/ehcache.org
sudo -u maven -H /usr/local/bin/syncEHcache.sh

47.1.5 Deploying a release

47.1.5.1 Maven Release
mvn depl oy

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

47 Building From Source 219

47.1.5.2 Sourceforge Release
nmvn assenbl y: assenbl y
then manually upload to SourceForge

sftp gregluck@rs. sourceforge. net

and complete the file release process

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

48

48 FAQ 220

48.1 Ehcache - Frequently Asked Questions

48.1.1 Does Ehcache run on JDK1.3/ JDK1.4?
Older versionsrun on 1.3. Ehcache 1.5 runs on 1.4. Ehcache 1.6 required JDK 1.5.

48.1.2 Can you use more than one instance of Ehcache in a single VM?

As of ehcache-1.2, yes. Create your CacheManager using new CacheManager(...) and keep hold of
the reference. The singleton approach accessible with the getlnstance(...) method is still available too.
Remember that Ehcache can support hundreds of caches within one CacheManager. Y ou would use
separate CacheManagers where you want different configurations.

The Hibernate EnCacheProvider has al so been updated to support this behaviour.

48.1.3 Can you use Ehcache with Hibernate and outside of Hibernate at the same time?

Yes. You use 1 instance of Ehcache and 1 ehcache.xml. Y ou configure your caches with Hibernate
names for use by Hibernate. Y ou can have other caches which you interact with directly outside of
Hibernate.

That is how | use Ehcachein the original project it was developed in. For Hibernate we have about 80
Domain Object caches, 10 StandardQueryCaches, 15 Domain Object Collection caches.

We have around 5 general caches we interact with directly using BlockingCacheManager. We have
15 general caches we interact with directly using SelfPopulatingCacheManager. Y ou can use one of
those or you can just use CacheManager directly.

See the tests for example code on using the caches directly. Look at CacheManagerTest, CacheTest
and SelfPopulatingCacheTest.

48.1.4 What happens when maxElementsinMemory is reached? Are the oldest items expired when
new ones come in?

When the maximum number of elementsin memory is reached, the least recently used ("LRU")
element isremoved. Used in this case means inserted with a put or accessed with a get.

If the overflowToDisk cache attribute isfalse, the LRU Element is evicted. If true, it is flushed
asynchronously to the DiskStore.

48.1.5 Is it thread-safe to modify Element values after retrieval from a Cache?

Remember that avalue in a cache element is globally accessible from multiple threads. It isinherently
not thread safe to modify the value. It is safer to retrieve a value, delete the cache element and then
reinsert the value.

The UpdatingCacheEntryFactory doeswork by modifying the contents of valuesin place in the
cache. Thisisoutside of the core of Ehcache and istargeted at high-performance CacheEntryFactories
for SelfPopul atingCaches.

48.1.6 Can non-Serializable objects be stored in a cache?
As of ehcache-1.2, they can be stored in caches with MemoryStores.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://ehcache.org/apidocs/net/sf/ehcache/constructs/blocking/UpdatingCacheEntryFactory.html

48 FAQ 221

If an attempt is made to replicate or overflow a non-serializable element to disk, the element is
removed and awarning logged.

48.1.7 Why is there an expiry thread for the DiskStore but not for the MemoryStore?

Because the memory store has a fixed maximum number of elements, it will have a maximum
memory use equal to the number of elements * the average size. When an element is added beyond
the maximum size, the LRU element gets pushed into the DiskStore.

While we could have an expiry thread to expire elements periodically, it is far more efficient to only
check when we need to. The tradeoff is higher average memory use.

The expiry thread keeps the disk store clean. There is hopefully less contention for the DiskStore's
locks because commonly used values are in the MemoryStore. We mount our DiskStore on Linux
using RAMFS so it isusing OS memory. While we have more of this than the 2GB 32 bit process size
limit it isstill an expensive resource. The DiskStore thread keepsit under control.

If you are concerned about cpu utilisation and locking in the DiskStore, you can set the
diskExpiry Threadl nterval Seconds to a high number - say 1 day. Or you can effectively turn it off by
setting the diskExpiry Threadlnterval Seconds to avery large value.

48.1.8 What elements are mandatory in ehcache.xml|?

The documentation has been updated with comprehensive coverage of the schema for Ehcache and
al elements and attributes, including whether they are mandatory. See the Declarative Configuration
chapter.

48.1.9 Can | use Ehcache as a memory cache only?
Yes. Just set the overflowToDisk attribute of cacheto false.

48.1.10 Can | use Ehcache as a disk cache only?

As of Ehcache 2.0 thisis not possible. Y ou can set the maxElementsinMemory to 1, but setting the
max size to 0 now gives an infinite capacity.

48.1.11 Where is the source code?

The source code is distributed in the root directory of the download. It is called ehcache-x.x.zip. It is
also available from SourceForge online or through SVN.

48.1.12 How do you get an Element without affecting statistics?
Usethe Cache.getQuiet() method. It returns an Element without updating statistics.

48.1.13 How do you get WebSphere to work with ehcache?

It has been reported that IBM Websphere 5.1 running on IBM JDK 1.4 requires commons-
collection.jar in its classpath even though Ehcache will not useit for JDK1.4 and JDK5. (Thisisfor
versions of Ehcache lower than 1.6)

48.1.14 Do you need to call CacheManager.getinstance().shutdown() when you finish with ehcache?

Yes, it isrecommended. If the VM keeps running after you stop using ehcache, you should call
CacheManager.getl nstance().shutdown() so that the threads are stopped and cache memory released

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://ehcache.org/documentation/#mozTocId258426
http://ehcache.svn.sourceforge.net/viewvc/ehcache/
http://sourceforge.net/svn/?group_id=93232
http://ehcache.org/apidocs/net/sf/ehcache/Cache.html#getQuiet%28java.io.Serializable%29
http://sourceforge.net/tracker/index.php?func=detail&aid=1025128&group_id=93232&atid=603559

48 FAQ 222

back to the VM. Calling shutdown also insures that your persistent disk stores get writtento disk in a
consistent state and will be usable the next time they are used.

If the CacheManager does not get shutdown it should not be a problem. There is a shutdown hook
which calls the shutdown on JVM exit. Thisis explained in the documentation here.

48.1.15 Can you use Ehcache after a CacheManager.shutdown()?

Y es. When you call CacheManager.shutdown() is sets the singleton in CacheManager to null. If you
try an use a cache after this you will get a CacheException.

Y ou need to call CacheManager.create(). It will create a brand new one good to go. Internaly the
CacheManager singleton gets set to the new one. So you can create and shutdown as many times as
you like.

There is atest which expliciyly confirms this behaviour. See
CacheManager Test#testCreateShutdownCreate()

48.1.16 | have created a new cache and its status is STATUS_UNINITIALISED. How do | initialise it?

Y ou need to add a newly created cache to a CacheManager before it gets intialised. Use code like the
following:

CacheManager manager = CacheManager.create();
Cache nyCache = new Cache("testDi skOnly", 0, true, false, 5, 2);
manager . addCache(nmyCache) ;

48.1.17 Is there a simple way to disable Ehcache when testing?

Yes. Thereis a System Property based method of disabling ehcache. If disabled no elements will be
added to acache. Set the property "net.sf.ehcache.disabled=true" to disable ehcache.

Thiscan easily bedone using - Dnet . sf . ehcache. di sabl ed=t r ue>in the command line.

48.1.18 How do | dynamically change Cache attributes at runtime?
Y ou can't but you can achieve the same result as follows:

Cache cache = new Cache("test2", 1, true, true, 0, 0, true, 120, ...);
cacheManager . addCache(cache) ;

See the JavaDoc for the full parameters, also reproduced here:

Having created the new cache, get alist of keys using cache.getKeys, then get each one and put it in
the new cache. None of thiswill use much memory because the new cache element have values that
reference the same data as the original cache. Then use cacheManager.removeCache("oldcachename™)
to remove the origina cache.

48.1.19 | get net.sf.ehcache.distribution.RemoteCacheException: Error doing put to
remote peer. Message was: Error unmarshaling return header; nested exception is:
java.net.SocketTimeoutException: Read timed out. What does this mean.

It typically means you need to increase your socketTimeoutMillis. Thisisthe amount of time a sender
should wait for the call to the remote peer to complete. How long it takes depends on the network and
the size of the Elements being replicated.

The configuration that controls this is the socketTimeoutMillis setting in
cacheM anagerPeerL istenerFactory. 120000 seems to work well for most scenarios.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://ehcache.org/documentation/#mozTocId183156

48 FAQ 223

<cacheManager Peer Li st ener Fact ory
cl ass="net. sf. ehcache. di st ri buti on. RM CacheManager Peer Li st ener Fact ory"
properties="host Nane=ful ly qualified_hostnane_or _ip,
port =40001,
socket Ti meout M | | i s=120000"/ >

48.1.20 Should | use this directive when doing distributed caching?
cacheManagerEventListenerFactory class="" properties=""/

No. It isunrelated. It isfor listening to changes in your local CacheManager.

48.1.21 What is the minimum config to get distributed caching going?
The minimum configuration you need to get distributed caching going is:

<cacheManager Peer Pr ovi der Fact ory
cl ass="net. sf. ehcache. di stri buti on. RM CacheManager Peer Provi der Fact ory
properti es="peer D scovery=automati c,
nmul ti cast G oupAddr ess=230. 0. 0. 1,
nmul ti cast G oupPort =4446"/ >
<cacheManager Peer Li st ener Fact ory
cl ass="net. sf. ehcache. di stri buti on. RM CacheManager Peer Li st ener Factory"/ >

and then at |east one cache declaration with

<cacheEvent Li st ener Fact ory
cl ass="net. sf. ehcache. di stri buti on. RM CacheRepl i cat or Fact ory"/ >>>>

init. An example cacheis:

<cache nane="sanpl eDi stri but edCachel"

maxEl ement s| nMenor y="10"

eternal ="fal se"

ti meTol dl eSeconds="100"

ti meToLi veSeconds="100"

over fl owToDi sk="f al se">

<cacheEvent Li st ener Fact ory

cl ass="net. sf. ehcache. di stri buti on. RM CacheRepl i cat or Factory"/ >

</ cache>

Each server in the cluster can have the same config.

48.1.22 How can | see if distributed caching is working?
Y ou should see the listener port open on each server.

Y ou can use the distributed debug tool to see what is going on. (See http://ehcache.org/
documentation/remotedebugger.html).

48.1.23 Why can't | run multiple applications using Ehcache on one machine?

Because of an RMI bug, in JDK's before JDK 1.5 such as JDK 1.4.2, Ehcacheis limited

to one CacheManager operating in distributed mode per virtual machine. (The bug limits

the number of RMI registries to one per virtual machine). Because thisis the expected
deployment configuration, however, there should be no practical effect. The tell tail error is
java.rm .server. Export Exception: internal error: QojlID already in use

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://ehcache.org/documentation/remotedebugger.html
http://ehcache.org/documentation/remotedebugger.html

48 FAQ 224

On JDK 1.5 and higher it is possible to have multiple CacheManagers per VM each participating in the
same or different clusters. Indeed the replication tests do this with 5 CacheManagers on the same VM
all run from JUnit.

48.1.24 How many threads does Ehcache use, and how much memory does that consume?

The amount of memory consumed per thread is determined by the Stack Size. Thisis set using -Xss.
The amount varies by OS. It is512KB for Linux. | tend to override the default and set it to 100kb.

The threads are created per cache as follows:
» DiskStore expiry thread - if DiskStoreis used
» DiskStore spool thread - if DiskStore is used
» Replication thread - if asynchronous replication is configured.
If you are not doing any of the above, no extrathreads are created

48.1.25 | am using Tomcat 5, 5.5 or 6 and | am having a problem. What can | do?

Tomcat is such acommon deployment option for applications using Ehcache that there is a chapter on
known issues and recommended practices.

See the Using Ehcache with Tomcat chapter. (http://ehcache.org/documentation/tomcat.html)

48.1.26 | am using Java 6 and getting a java.lang.VerifyError on the Backport Concurrent classes.
Why?

The backport-concurrent library is used in Ehcache to provide java.util.concurrency facilities for Java
4 - Java 6. Use either the Java 4 version which is compatible with Java 4-6 or use the version for your
JDK.

48.1.27 How do | get a memory only-cache to persist to disk between VM restarts?

While disk persistence between restarts is a feature of the DiskStore only, you can get the same
behaviour for amemory only cache by setting up a cache with maxElementsinMemory set to
Integer. MAX_VALUE, 2147483647 and diskPersistent set to true.

Y ou can manually call flush() to flush to disk. It isagood ideato set cl ear OnFl ush to false so that
the MemoryStore is not cleared each time. Y ou can then call flush() to persist whenever you wish.

48.1.28 | get a javax.servlet.ServletException: Could not initialise servlet filter when using
SimplePageCachingFilter. Why?

If you use this default implementation, the cache name is called " SimplePageCachingFilter". Y ou
need to define a cache with that name in ehcache.xml. If you override CachingFilter you are required
to set your own cache name.

48.1.29 Why is there a warning in my application's log that a new CacheManager is using a resource
already in use by another CacheManager.

WARN CacheManager ... Creating a new instance of CacheManager using the di skStorePath
"C:\temp\tenpcache" which is already used by an existing CacheManager.

This means, that for some reason, your application istrying to create a second or more instance of
Ehcache's CacheManager with the same configuration. Ehcache is automatically resolving the Disk
path conflict, which works fine.

To eliminate the warning:

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

http://ehcache.org/documentation/tomcat.html

48 FAQ 225

» Use a separate configuration per instance

* If you only want one instance use the singleton creation methodsi.e
CacheManager . get | nst ance() . In Hibernate there is a special provider for this called

net. sf. ehcache. hi ber nat e. Si ngl et onEhCachePr ovi der .
See the Hibernate page for details.

48.1.30 How do | add a CacheReplicator to a cache that already exists? The cache event listening
works but it does not get plumbed into the peering mechanism.

The current API does not have a CacheManager event for cache configuration change. Y ou can
however make it work by calling the notifyCacheAdded event.

get Cache() . get CacheManager () . get CacheManager Event Li st ener Regi stry()
.noti fyCacheAdded(" cacheNane");

48.1.31 | am using the RemoteDebugger to monitor cluster messages but all | see is "Cache size: 0"

If you see nothing happening, but cache operations should be going through, enable trace (LOGA4J) or
finest (JDK) level logging on codenet.sf.ehcache.distribution /code in the logging configuration being
used by the debugger. A large volume of log messages will appear. The normal problem isthat the
CacheManager has not joined the cluster. Look for the list of cache peers.

Finally, the debugger in ehcache-1.5 has been improved to provide far more information on the caches
that are replicated and events which are occurring.

48.1.32 With distributed replication on Ubuntu or Debian, | see the following warning,

WARN [Replication Thread] RM AsynchronousCacheReplicator.fl ushReplicati onQueue(324)

| Unable to send nmessage to renote peer.

Message was: Connection refused to host: 127.0.0.1; nested exception is:

j ava. net. Connect Excepti on: Connection refused

java.rm . Connect Exception: Connection refused to host: 127.0.0.1; nested exception is:
j ava. net. Connect Excepti on: Connection refused

Thisis caused by a 2008 change to the Ubuntu/Debian linux default network configuration.

Essentidly, thisjavacall: | net Addr ess. get Local Host () ; aways returns the loopback address,
which is 127.0.0.1. Why? Because in these recent distros, a system call of $ hostname always returns
an address mapped onto the loopback device. Which causes ehcache's RMI Peer creation logic to
always assign the loopback address, which causes the error you are seeing.

All you need to do is crack open the network config and make sure that the hostname of the machine
returns avalid network address accessible by other peers on the network.

48.1.33 | see log messages about SoftReferences. What are these about and how do | stop getting
the messages?

Ehcache uses SoftReferences with asynchronous RMI based replication, so that replicating caches
do not run out of memory if the network is interrupted. Elements scheduled for replication will be
collected instead. If thisis happening, you will see warning messages from the replicator. It isaso
possible that a SoftReference can be reclaimed during the sending in which case you will see adebug
level message in the receiving CachePeer.

Some things you can do to fix them:

» Set -Xms equal to -Xms. SoftReferences are also reclaimed in preference to increasing the heap
size, which is a problem when an application is warming up.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

48 FAQ 226

 Set the -XmXx to a high enough value so that SoftReferences do not get reclaimed.

Having done the above, SoftReferences will then only be reclaimed if there is some interruption
to replication and the message queue gets dangerously high.

48.1.34 My Hibernate Query caches entries are replicating but the other caches in the cluster are
not using them.

ThisisaHibernate 3 bug. See http://opensource.atlassian.com/projects/hibernate/browse/HHH-3392
for tracking. It isfixed in 3.3.0.CR2 which was released in July 2008.

48.1.35 Active MQ Temporary Destinatons

ActiveMQ seemsto have abug in at least ActiveMQ 5.1 where it does not cleanup temporary gueues,
even though they have been deleted. That bug appears to be long standing but was though to have
been fixed.

See:

* http://www.nabble.com/Memory-L eak-Using-Temporary-Queues-td11218217.html#al1218217
* http://issues.apache.org/activemag/browse/ AM Q-1255

The IM SCachel_oader uses temporary reply queues when loading. The Active MQ issueis
readily reproduced in Ehcache integration testing. Accordingly, use of the JM SCachel oader with
ActiveMQ is not recommended. Open MQ testsfine.

48.1.36 Is Ehcache compatible with Google App Engine?
Version 1.6 is compatible. See Google App Engine Caching.

48.1.37 Can my app server use JMS Replication?

Some App Servers do not permit the creation of message listeners. Thisissue has been reported on
Websphere 5. Websphere 4 did allow it. Tomcat allowsiit. Glassfish Allowsit. Jetty allowsiit.

Usually thereisaway to turn off strict EJB compliance checks in your app server. See your vendor
documentation.

48.1.38 Why does Ehcache 1.6 use more memory than 1.5?

ConcurrentHashMap does not provide an eviction mechanism. We add that ourselves. For caches
larger than 5000 elements, we create an extra ArrayList equal to the size of the cache which holds
keys. This can be an issue with larger keys. An optimisation which cache clients can useis:

htt p: // ww. codei nst ructi ons. com 2008/ 09/ i nst ance- pool s-wi t h-
weakhashmap. ht m
To reduce the nunber of key instances in menory to just one per |ogical
key, all puts to the underlying ConcurrentHashMap coul d be repl aced by
map. put (pool . repl ace(key), value), as well as keyArray. set (index,
pool . repl ace(key))
You can take this approach when produci ng the keys before handing them over to EhCa

Even with this approach thereis still some added overhead consumed by a reference consumed by
each ArrayList element.

Update: Ehcache 2.0 will introduce a new implementation for MemoryStore based on a custom
ConcurrentHashMap. This version provides fast iteration and does away with the need for
the keyArray thus bringing memory use back down to pre 1.6 levels. And with other memory

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

48 FAQ 227

optimisations made to Element in 1.7, memory use will actually be considerably lower than pre 1.6
levels.

48.1.39 What does this mean? "Caches cannot be added by name when default cache config is not
specified in the config. Please add a default cache config in the configuration."

From Ehcache 2.4, we have made the def aul t Cache optional. When you try to add a cache
by name, CacheManager . add(St ri ng nane), adefault cacheis expected to exist in the
CacheManager configuration.

©2011, Terracotta, Inc. « ALL RIGHTS RESERVED.

	Table of Contents
	Preface
	Introduction
	Getting Started
	Dependencies
	Cache Concepts
	Configuration
	Storage Options
	Cache Consistency Options
	Cache Eviction Algorithms
	Big Memory:Off-Heap Store
	JDBC Caching
	Spring Caching with Ehcache
	Code Samples
	Class loading and Class Loaders
	Tuning Garbage Collection
	Cache Decorators
	Hibernate Caching
	Web Caching
	Using ColdFusion with Ehcache
	Cache Topologies
	Replicated Caching With RMI
	Replicated Caching With JGroups
	Replicated Caching With JMS
	Shutting Down Ehcache
	Logging
	Remote Network replication debugging: RMI Replicated Caches
	JMX Management And Monitoring
	JTA And Transactions
	Search
	Ehcache Monitor
	CacheManager Event Listeners
	Cache Event Listeners
	Cache Exception Handlers
	Cache Extensions
	Cache Loaders
	Write-through and write-behind caching with CacheWriters
	Cache Server with SOAP and RESTful Web Services
	Explicit Locking API
	BlockingCache and SelfPopulatingCache
	OpenJPA Caching
	Grails Caching
	JRuby Caching
	Glassfish HowTo
	Google App Engine Caching
	Tomcat Issues and Best Practices
	JSR107 (JCACHE) Support
	Building From Source
	FAQ

