Ehcache Guide & Reference

Version 1.7.1

Contents

1 Preface

1.1 Mersion e

1.2 Audience

1.3 Acknowledgements e

1.4 Aboutthe Ehcachenameandlogoua.....

Introduction

2.1 AboutCaches

2.2 Whycachingworks e
2.2.1 LocaltyofReference.
222 ThelongTail. e

2.3 Will an Application Benefit from Caching?
2.3.1 Speedingup CPU bound Applications
2.3.2 Speedingup I/O bound Applications
2.3.3 Increased Application Scalability oo,

2.4 How much will an application speed up with Caching?
2.4.1 Theshortanswer
2.4.2 Applying Amdahl'sLaw e
2.4.3 CacheEfficiency e
2.4.4 Cluster Efficiency e
2.45 Acacheversionof Amdahl'slaw
246 WebPageexample

Getting Started

3.1 GeneralPurposeCaching e
3.2 Hibernate e
3.3 JavaEE ServletCaching
3.4 RESTful and SOAP Caching with the Cache Server
3.5 JCachestylecaching e e

3.6 Spring, Cocoon, Acegi and other frameworks

1

15
15
15
15
16

17
17
17
17
17
18
18
18
19
19
19
19
20
21
21
22

4 Features
4.1 FastandLightWeight. e
411 Fast
4.1.2 Simple . . .
4.1.3 Smallfootprint e
4.1.4 Minimaldependencies e
4.2 Scalable e
4.2.1 Provides Memory and Disk stores for scalabilty ingafpytes
4.2.2 Scalableto hundredsofcaches, .
4.2.3 Tuned for high concurrent load on large multi-cpueesv.
4.2.4 Multiple CacheManagers per virtual machine
4.3 Flexible e
4.3.1 Supports Object or Serializablecaching
4.3.2 Support cache-wide or Element-based expiry policies
4.3.3 Provides LRU, LFU and FIFO cache eviction policies
4.3.4 Provides Memory and Diskstores oL
4.3.5 Distributed
4.4 StandardsBased.
4.4.1 Fullimplementation of JSR107 JCACHEAPI
45 Extensible
45.1 Listenersmaybepluggedin
45.2 Peer Discovery, Replicators and Listeners may begeldgn
4.5.3 Cache Extensionsmay be pluggedin
4.5.4 Cache Loaders may be pluggedin
45.5 Cache Exception Handlers may be pluggedin
4.6 Application Persistence e
4.6.1 Persistent disk store which stores data betweenVtdrtes
46.2 Flushtodiskondemand
A7 LISteners. e e
4.7.1 CacheManagerlisteners e
4.7.2 Cacheeventlisteners e e
4.8 JMXEnabled e
4.9 Distributed Caching e
4.9.1 Support for replication via RMl or JGroups
4.9.2 PeerDiSCOVEIY i
4.9.3 Reliable Delivery e
4.9.4 Synchronous Or Asynchronous Replication
4.9.5 Copy Orlnvalidate Replication
4.9.6 TransparentReplication e
4.9.7 Extensible.

4.9.8 BootstrappingfromPeers L

4.10 Cache Server e e

4.10.1 RESTfulcacheserver @ @ i i i .
4.10.2 SOAP cacheserver i i i e e e
4.10.3 comesasaWAR orasacompleteserver. aau. ...

4.11 JavaEE and Applied Caching e

4.11.1 Blocking Cache to avoid duplicate processing foccorent operations
4.11.2 SelfPopulating Cache for pull through caching ofemgive operations
4.11.3 Java EE Gzipping ServletFilter L
4.11.4 CacheableCommands
4.11.5 WorkswithHibernate
4.11.6 Works with Google App Engine o

4.12 HighQuality e e

4.12.1 HighTestCoverage i ittt e e e e
4.12.2 Automated Load, Limit and Performance SystemTests
4.12.3 Specific Concurrency Testing o e
4.12.4 Productiontested e
4.12.5 Fullydocumented e
4.12.6 Trusted by Popular Frameworks
4.12.7 Conservative Commitpolicyo
4.12.8 Full public information on the history ofeverybug
4.12.9 Responsiveness to serious bugs

4.13 Open SourcelLicensing e

4.13.1 Apache2.0license e

Key Ehcache Concepts

51

5.2

Key Ehcache Classes e
5.1.1 CacheManager e
5.1.2 Ehcache
51.3 Element.
Cache UsagePatterns e e e
5.2.1 DirectManipulation
5.22 SelfPopulating

Architecture

Configuration

7.1
7.2
7.3
7.4

ehcache.xsd L e
ehcache-failsafe.xml e
ehcache.xml and other configurationfiles
Special System Properties. e

37
37
38
40
41
42
42
42

43

7.5

7.6

8.1

7.4.1 netsf.ehcachedisabled e
7.4.2 net.sf.ehcache.use.classic.lru e
Memory Store L e e

7.5.1 Memory Use, Spooling and Expiry Strategyo L

9 Code Samples

9.1

9.2

DiskStore e
7.6.1 DiskStoresareOptional
7.6.2 Suitable ElementTypes.
7.6.3 Storage e
7.6.4 EXPINY. . . o o
7.6.5 Eviction. e
7.6.6 Serializable Objects e
7.6.7 Safety e
7.6.8 Persistence
8 Cache Eviction Algorithms

Eviction e
8.1.1 Supportetienor ySt or e Eviction Algorithmso
8.1.2 MenoryStore Eviction Algorithmso oo
8.1.3 DiskStore Eviction Algorithms L L
Using the CacheManager e
9.1.1 SingletonversusInstance Lo e
9.1.2 Ways of loading Cache Configuration
9.1.3 Adding and Removing Caches Programmatically
9.1.4 Shutdownthe CacheManager uuno..
UsingCaches e
9.2.1 Obtaining areferencetoaCache oo
9.2.2 Performing CRUD operations i
9.2.3 Disk Persistenceondemand e
9.2.4 ObtainingCache Sizes e

9.3
9.4
9.5
9.6
9.7
9.8
9.9

9.2.5 Obtaining Statistics of Cache Hitsand Misses
Creating a new cache fromdefaults
Creating a new cache with custom parameters
Registering CacheStatistics in an MBeanServer
Browsethe JUnitTests e
JCache Examples e
Terracotta Example e
Cache ServerExamples e

10 Java Requirements and Dependencies

69

69
69
69
70

71
71
72
72
72
73
73
73
73
74
74
75
75
75
76
76
76
76
76

77

11

12

13

14

15

16

17

10.1 Java Requirements
10.2 Mandatory Dependencies

Logging

11.1 Java UtilLogging o
11.2 Recommended LoggingLevels

Remote Network debugging and monitoring for DistributedCaches

12.1 Introduction
12.2 Packaging e
12.3 Limitations e
124 Usage o o e e e
12,41 Output
12.4.2 Providing more Detailed Logging
12.4.3 Yes, butl still have a clusterproblem

Garbage Collection

13.1 Detecting Garbage Collection Problems
13.2 Garbage Collection Tuning e
13.3 Distributed Caching Garbage Collection Tuning

JMX Management and Monitoring

14.1 Terracotta MonitoringProducts
14.2 IMXOVEIVIEW o
14.3 MBEANS e
14.4 JIMXRemoting o
14.5 Qbj ect Nane namingscheme
14.6 The ManagementService it
14.7 JConsole Example
14.8 IMX Tutorial

Class loading and Class Loaders

15.1 Pluginclassloading e
15.2 Loading of ehcache.xmlresources o ..

Performance Considerations

16.1 DiskStore e
16.2 Replication

Cache Decorators

17.1 CreatingaDecorator e
17.2 Accessing the decoratedcache

79
79
79

81
81
81
81
81
82
82
82

83
83
83
84

91
91
92

93
93
93

18

19

20

17.2.1 Using CacheManager to access decoratedcaches
17.3 Built-in Decorators e e e
17.3.1 BlockingCache e
17.3.2 SelfPopulatingCache
17.3.3 Caches with ExceptionHandling

Shutting Down Ehcache

18.1 ServletContextListener e e

18.2 The Shutdown Hook e
18.2.1 Whento use the shutdownhook «.....
18.2.2 What the shutdown hookdoes¢.o....
18.2.3 When a shutdown hook will run, and whenitwillnot

18.3 Dirty Shutdown e e

Web Caching
19.1 SimplePageCachingFilter
19.2 KeYS . . o o o
19.3 Configuringthe cacheName e
19.4 ConcurentCache MiSSeS i
19.5 GzZIpPING . . - o e
19.6 CachingHeaders e e
19.7 Init-Params e e
19.8 Reentrance e
19.9 SimplePageFragmentCachingFilter L.
19.10Example web.xml configuration L L
19.11CachingFilter Exceptions e
19.11.1 FilterNonReentrantException oo
19.11.2 AlreadyGzippedException e
19.11.3 ResponseHeadersNotModifiableException
19.12Pluggable Mechanisms e e
19.13The need forshared cachedata uuu.
19.14Replicated Caches e e
19.15Usinga Cache Server e e
19.16Notification Strategies e e
19.17Potential Issues with Distributed Caching
19.17.1 Potential for InconsistentData
19.17.2Useof TimeToldle

RMI Distributed Caching
20.1 Suitable ElementTypes o e
20.2 Configuring the Peer Provider

99
99
99
99
100
100
100

101
101
101
102
102
102
102
103
103
103
103
105
105
106
106
106
106
106
107
107
107
107
108

20.2.1 PeerDiscovery e e 110

20.2.2 Automatic Peer DiSCOVErY i e 110
20.2.3 Manual PeerDiSCOVery o v i e 111
20.3 Configuring the CacheManagerPeerListener 111
20.4 Configuring Cache Replicators 112
20.5 Configuring Bootstrap froma CachePeer ¢ 113
20.6 FullExample e 113
20.7 Common Problems e 114
20.7.1 Tomcaton Windows 114
20.7.2 MulticastBlocking e 114
20.7.3 Multicast Not Propagating Far Enough or PropagdioeggFar 114
21 Distributed Caching using JGroups 115
21.1 Suitable ElementTypes e e 115
21.2 PeerDISCOVEIY o e e e e 115
21.3 Configuration e 115
21.4 Example configuration using UDP Multicast 116
21.5 Example configurationusing TCP Unicast 116
21.6 Protocol considerations. e e 116
21.7 Configuring CacheReplicators 116
21.8 Complete Sample configuration 117
21.9 CommonProblems e 118
22 Distributed Caching using JMS 119
22.1 Ehcache Replication and External Publishers 119
22.1.1 Configuration e e 120
22.1.2 External JMS Publishers 123
22.2 Using the IMSCacheLoader 126
22.2.1 Example Configuration Using Active MQ 127
22.2.2 Example ConfigurationUsingOpenMQ 128
22.3 Configuring Clients for Message Queue Reliability 128
22.4 Tested Message QUEUES o o i it it e e e e e e 129
2241 SunOpenMQ 129
22.4.2 Active MQ L 129
22.4.3 Oracle AQ e e 129
22.4.4 JBOSSQUEUE e e e e e 129
225 KNOWNJIMS ISSUES o o o i e e e e e e 129
22.5.1 Active MQ Temporary Destinatons e 129
22.5.2 WebSphere5and6 e 129
23 Distributed Caching Using Terracotta 131

24

25

26

27

28

23.1 Worked Example e 131

23.2 Terracotta Configuration e 132
23.2.1 CacheManager Configuration ue ... 132
23.2.2 Terracotta Server Configuration oL 133
23.2.3 Enabling Terracotta clusteringpercache 134

23.3 Behaviour differences witbacheEvent Li st ener s when using Terracotta Clustering . . 134
23.3.1 Cachelisteners e e 135
23.3.2 Overflowto Disk e 135

23.4 More Information 135

235 FAQ . . . 135
23.5.1 IsExpirythe samein Terracotta? il oo 135
23.5.2 What Eviction strategies are supported?o ... 135
23.5.3 What Stores are available and how are they configured?. 135
23.5.4 Whendo Elementsoverflow? 135
23.5.5 How does Element equality work in Serializationnibde. 136
23.5.6 How does Element equality work in Identity mode? 136
23.5.7 What is the recommended way to write to a database? 136
23.5.8 If updates to a database bypass the Terracottareldsapplication, then how is

thatcoherent? 361
23.5.9 Do CacheEventListenerswork? 136

BlockingCache and SelfPopulatingCache 137

24.1 BlockingCache e e 137

24.2 SelfPopulatingCache 139

24.3 Configuration e 139

24.4 Implementing a CacheManagerEventListenerFactatyzatheManagerEventListener . . 139

Cache Loaders 143
25.1 Declarative Configuration e e 143
25.2 Implementing a CachelLoaderFactory and CacheLoader..... 144
25.3 Programmatic Configuration 146
Cache Event Listeners 149
26.1 Configuration 149
26.2 Implementing a CacheEventListenerFactory and CacheEistener 150
Cache Exception Handlers 153
27.1 Declarative Configuration e 153
27.2 Implementing a CacheExceptionHandlerFactory anth€xceptionHandler 153
27.3 Programmatic Configuration 155
Cache Extensions 157

28.1 Declarative Configuration e e 157

28.2 Implementing a CacheExtensionFactory and Cache&igten 157
28.3 Programmatic Configuration e 159
29 Cache Server 161
29.1 Introduction L e e 161
29.2 RESTfulWeb Services e 161
29.2.1 RESTFulWeb Services APl e 161
29.2.2 CacheManager Resource Operations. 162
29.2.3 Cache Resource Operations 162
29.2.4 ElementResource Operations o a e 162
29.2.5 Resource Representations 163
29.2.6 RESTfulCode Samples 163
29.3 Creating Massive Caches with Load BalancersandBaitiy 169
29.3.1 Non-redundant, Scalable with client hash-basetthgpu. 169
29.3.2 Redundant, Scalable with client hash-basedrouting 170
29.3.3 Redundant, Scalable with load balancer hash-baséidg 170

29.4 W3C (SOAP) Web Services o o i e 171
29.4.1 W3CWeb Services APl e 171
290.4.2 SECUMLY o 172
29.5 Requirements e 172
29.5.1 Java 172
29.5.2 Web Container (WAR packaged versiononly) 172
29.6 Downloading 172
29.6.1 Sourceforge e 173
29.6.2 MaveN 173
20.7 Installation e e 173
29.7.1 Installingthe WAR e 173
29.7.2 Configuring the Web Application, 173
29.8 Installing the Standalone Server L 174
29.8.1 Configuringthe Standalone Server o 174
29.8.2 Starting and Stopping the Standalone Server. 174
29.9 MoNItoring e e 175
29.9.1 Remotely Monitoring the Standalone Server with JMX 175

30 Hibernate Caching 177
30.1 Setting Ehcache asthe cacheprovider 177
30.1.1 Using one of the two Ehcache providers from the Ehepobject 177
30.1.2 Using multiple Hibernateinstances 178
30.1.3 Using the Hibernate Ehcache provider 178

9

30.1.4 Programmatic setting of the Hibernate Cache Provide 178

30.2 Hibernate Mapping Files e 178
30.2.1 read-write 179
30.2.2 nonstrict-read-write 179
30.2.3 read-only 179

30.3 Hibernate Doclet e e 179

30.4 Configuration with ehcache.xmlu., 180
30.4.1 DomainObjects e 180
30.4.2 Hibernate 180
30.4.3 Collections e 180
30.4.4 Hibernate CacheConcurrencyStrategy o .. o 181
30.45 QUEHES o i e e e 181
30.4.6 StandardQueryCache e 181
30.4.7 UpdateTimestampsCache. 181
30.4.8 NamedQueryCaches i iinmmn 182
30.4.9 UsingQueryCaches i 182
30.4.10 Hibernate CacheConcurrencyStrategy 182

30.5 Hibernate Caching Performance Tips o o i v oo 183
30.5.1 In-ProcessCache e 183
30.5.2 Objectld 183
30.5.3 Session.doad 183
30.5.4 Session.findand Query.find 183
30.5.5 Session.iterate and Query.iterate oo oL 183

30.6 Hibernate FAQ e e 183
30.6.1 TBC OpenJPA CachingProvider. iiee v 183

30.7 Installing e 183

30.8 Configuration e 184

31 JSR107 (JCACHE) Support 185

31.1 JSR107 Implementation. e 185

31.2 UsingJCACHE e 185
31.2.1 CreatingJCaches e 185
31.2.2 GettingaJdCache 186
31.2.3 UsingaJCache e 186

31.3 Problems and Limitations in the early draft of JSR107..... 187
31.3.1 net.sfjsrl07cache.CacheManager 187
31.3.2 net.sf.jsrl07cache.CacheFactory 187
31.3.3 net.sfjsrl07cache.Cache e 188
31.3.4 netsfjsrlO7cache.CacheEntry e i 189
31.3.5 net.sf.jsrl07cache.CacheStatistics 189

10

31.3.6 net.sf.jsrl07cache.CachelListener. 190

31.3.7 net.sfjsrl07cache.CacheLoader 191
31.4 Other Areas e e e 191
3141 IMX . e an
32 Glassfish HowTo & FAQ 193
32.1 VEISIONS . . . o o e e e e e 193
322 HOWTO o o e e 193
32.2.1 HowTo Get A Sample Application using Ehcache pactagel Deployed to Glass-
fish . 193
32.2.2 How to get around the EJB Container restrictions cgetthcreation 194
32.2.3 How To Enable Read Behind Page Caching in Glassfish 194
32.3 Glassfish FAQ e e 194
32.3.1 Ehcache page caching versions below Ehcache 1.8 fktgalStateException in
Glassfish. 194

32.3.2 lget&oul d not ungzip. Heartbeat will not be working. Not in
&I P format reported from PayloadUtil exception when using Ehcachb miy

Glassfish cluster. Why? 194
33 Google App Engine HowTo 195
331 Why? . 195
33.2 Compatibility e 195
33.3 Limitations e 195
33.4 VersiONS e 195
33.5 Configuringehcache.xml e 195
33.6 RECIPES e 196
33.6.1 Setting up Ehcache as a local cache in frontof menegach 196
33.6.2 Using memcacheg in place dbiasskStore 197
33.6.3 Distributed Caching e 197
33.6.4 Dynamic Web ContentCaching ien ... 197
33.7 Google App Engine FAQ e 197
33.7.1 lgetanerrgrava. | ang. NoCl assDef FoundError: java.rm.server.U D
is arestricted class e 197
34 Tomcat Issues and Best Practices 199
34.1 TomcatKnown ISsues e e 199
34.1.1 Problem rejoining a cluster afterareload 199
34.1.2 In development, there appear to be class loader nydaadras | continually rede-
ploy my web application. L 199
34.1.3 net.sf.ehcache.CacheException: Problem stdisteger for RMICachePeer 199
34.1.4 Multiple Host Entries in Tomcat's server.xml stopplication from occurring . . . 200
35 Building from Source 201

11

36

35.1 Building an Ehcache distribution fromsource oL 201

35.2 Running TestsforEhcache 201
35.3 Deploying Maven Artifacts 201
35.4 Buildingthe Site 202
35.5 Deployingarelease e e 202
35.5.1 MavenRelease 202
35.5.2 SourceforgeRelease e 202
Frequently Asked Questions 203
36.1 There are a lot of product choices? Which one should2use 203
36.2 What are the software licensesused., 203
36.3 Does Ehcache runon JDK1.3/IJDK1.4? i i e 203
36.4 Can you use more than one instance of Ehcacheinasife V. 203
36.5 Can you use Ehcache with Hibernate and outside of Hilbeat the same time? 203
36.6 What happens when maxElementsinMemory is reachedthAmr@dest items are expired
When new ones come in? o e 204
36.7 Is it thread safe to modify Element values after reaiédnoma Cache? 204
36.8 Can non-Serializable objects be storedinacache? 204
36.9 Why is there an expiry thread for the DiskStore but notie MemoryStore? 204
36.10What elements are mandatory in ehcachexml? 205
36.11Can | use Ehcache as amemory cacheonly? 205
36.12Can | use Ehcache as adisk cacheonly? 205

36.13Where is the source code? The source code is disttilmutee root directory of the download. 205

36.14How do you get statistics on an Element without affecthem? 205
36.15How do you get WebSphere to work with ehcache? 205
36.16Do you need to call CacheManager.getinstance(fistwai) when you finish with ehcache? 205
36.17Can you use Ehcache after a CacheManager.shutdown()?. 206
36.181 have created a new cache and its status is STATUS_IOINNISED. How do Il initialise
1072 oe
36.19Is there a simple way to disable Ehcache whentesting? 206
36.20How do | dynamically change Cache attributes at rieftim 206

36.211 get net.sf.ehcache.distribution.RemoteCacheifitian: Error doing put to remote peer.
Message was: Error unmarshaling return header; nestegtéxtés: java.net.SocketTimeoutException:

Read timed out. Whatdoesthismean. 207
36.22Should | use this directive when doing distributechaag? cacheManagerEventListener-

Factory class=""properties=""/ e 207
36.23What is the minimum config to get distributed cachingpg® 207
36.24How can | see if distributed caching isworking? 208
36.25Why can’t | run multiple applications using Ehcacheoae machine? 208
36.26How many threads does Ehcache use, and how much meoesytiit consume? 208
36.271 am using Tomcat 5, 5.5 or 6 and | am having a problem.t\6émal do? 208

12

36.281 am using Java 6 and getting a java.lang.VerifyErrothe Backport Concurrent classes.

Why? 20
36.29How do | get a memory only cache to persist to disk betwéd restarts? 209
36.30I1 get a javax.servlet.ServletException: Could ndtalise servlet filter when using Sim-

plePageCachingFilter. Why? 209
36.31l see, inmy application'slog: 209

36.32How do | add a CacheReplicator to a cache that alreadis@xThe cache event listening
works but it does not get plumbed into the peering mechanism. 209

36.331 am using the RemoteDebugger to monitor cluster ngesdaut all | see is "Cache size: 0" 210

36.34With distributed replication on Ubuntu or Debian, ¢ $ke following warning, 210
36.35I1 see log messages about SoftReferences. What aeeatihest and how do | stop getting
themessages? o e e 210
36.36My Hibernate Query caches entries are replicatinghmibther caches in the cluster are
notusingthem. 211
36.37Active MQ Temporary Destinatons e 211
36.38Is Ehcache compatible with Google App Engine? 211
36.39Can my app server use JMS Replication?, 211
36.40Why does Ehcache 1.6 use more memorythan1.5? 211

13

14

Chapter 1

Preface

This is a book about Ehcache, a widely used open source Jelva.dghcache has grown in size and scope
since it was introduced in October 2003. As people usedyt dften noticed it was missing a feature they
wanted. Over time, the features that were repeatedly asikedrid make sense for a Cache, have been
added.

Ehcache is now used for Hibernate caching, data accesst @ajting, security credential caching, web
caching, SOAP and RESTful server caching, applicationigtersce and distributed caching.

In August 2009, Ehcache was acquired by Terracotta, Inc.

1.1 \ersion

This book is for Ehcache version 1.7.1.

1.2 Audience

The intended audience for this book is developers who usachlec It should be able to be used to start
from scratch, get up and running quickly, and also be usefutfe more complex options.

Ehcache is about performance and load reduction of underkdgsources. Another natural audience is
performance specialists.

It is also intended for application and enterprise archétecSome of the features of ehcache, such as
distributed caching and Java EE caching, are alternatiMes tonsidered along with other ways of solving
those problems. This book discusses the trade-offs in Eletmaapproach to help make a decision about
appropriateness of use.

1.3 Acknowledgements

Ehcache has had many contributions in the form of forum disicuns, feature requests, bug reports, patches
and code commits.

Rather than try and list the many hundreds of people who hamtributed to Ehcache in some way it is
better to link to the web site where contributions are ackedged in the following ways:

e Bug reports and features requests appear in the changesheps

15

e Patch contributors generally end up with an author tag irsthece they contributed to

e Team members appear on the team list page here:
Thanks to Denis Orlov for suggesting the need for a book iffiteeplace.

1.4 About the Ehcache name and logo
B EH HE

Adam Murdoch (an all round top Java coder) came up with theeriara moment of inspiration while we
were stuck on the SourceForge project create page. Ehcaehpalindrome. He thought the name was
wicked cool and we agreed.

The logo is similarly symmetrical, and is evocative of thagtam symbol for a doubly-linked list. That
structure lies at the heart of ehcache.

16

Chapter 2

Introduction

Ehcache is a cache library. Before getting into ehcaches wadrth stepping back and thinking about
caching generally.

2.1 About Caches

Wiktionary defines a cache asstore of things that will be required in future, and can beieved rapidly
That is the nub of it.

In computer science terms, a cache is a collection of tennpalata which either duplicates data located
elsewhere or is the result of a computation. Once in the ¢dbkealata can be repeatedly accessed inex-
pensively.

2.2 Why caching works

2.2.1 Locality of Reference

While Ehcache concerns itself with Java objects, cachingésl throughout computing, from CPU caches
to the DNS system. Why? Because many computer systems elaiblity of referenceData that is near
other data or has just been used is more likely to be used.again

2.2.2 The Long Tall

Chris Anderson, of Wired Magazine, coined the térhe Long Tailto refer to Ecommerce systems. The
idea that a small number of items may make up the bulk of salesall number of blogs might get the
most hits and so on. While there is a small list of popular gethere is a long tail of less popular ones.

The Long Talil

17

The Long Tail is itself a vernacular term for a Power Law piaibgy distribution. They don't just appear
in ecommerce, but throughout nature. One form of a Power Liatilotion is the Pareto distribution,
commonly know as the 80:20 rule.

This phenomenon is useful for caching. If 20% of objects arxllB0% of the time and a way can be found
to reduce the cost of obtaining that 20%, then the systenopeance will improve.

2.3 Will an Application Benefit from Caching?

The short answer is that it often does, due to the effectslratieve.

The medium answer is that it often depends on whether it is 68Whd or 1/O bound. If an application
is 1/0 bound then then the time taken to complete a computtaépends principally on the rate at which
data can be obtained. If it is CPU bound, then the time takewipally depends on the speed of the CPU
and main memory.

While the focus for caching is on improving performance,di$o worth realizing that it reduces load. The
time it takes something to complete is usually related tcettpeense of it. So, caching often reduces load
on scarce resources.

2.3.1 Speeding up CPU bound Applications
CPU bound applications are often sped up by:

e improving algorithm performance
e parallelizing the computations across multiple CPUs (SktRhultiple machines (Clusters).

e upgrading the CPU speed.
The role of caching, if there is one, is to temporarily stavenputations that may be reused again.

An example from Ehcache would be large web pages that havgharbndering cost. Another
caching of authentication status, where authenticatiquires cryptographic transforms.

2.3.2 Speeding up I/0O bound Applications

Many applications are 1/0 bound, either by disk or networkragions. In the case of databases they can
be limited by both.

There is no Moore’s law for hard disks. A 10,000 RPM disk was) years ago and is still fast. Hard
disks are speeding up by using their own caching of blocksrim¢mory.

Network operations can be bound by a number of factors:

¢ time to set up and tear down connections
e latency, or the minimum round trip time
e throughput limits

e marshalling and unmarhshalling overhead

The caching of data can often help a lot with I/O bound appbcs. Some examples of Ehcache
uses are:

e Data Access Object caching for Hibernate

e Web page caching, for pages generated from databases.

18

2.3.3 Increased Application Scalability

The flip side of increased performance is increased scjaldly you have a database which can do 100
expensive queries per second. After that it backs up andifiections are added to it it slowly dies.

In this case, caching may be able to reduce the workload redjuif caching can cause 90 of that 100 to
be cache hits and not even get to the database, then the siatatvascale 10 times higher than otherwise.

2.4 How much will an application speed up with Caching?

2.4.1 The short answer

The short answer is that it depends on a multitude of facteirsg

e how many times a cached piece of data can and is reused byjfiliesdipn

¢ the proportion of the response time that is alleviated byicer

In applications that are 1/0 bound, which is most businegdiegtions, most of the response time is
getting data from a database. Therefore the speed up mestgnds on how much reuse a piece of
data gets.

In a system where each piece of data is used just once, itas lrea system where data is reused a
lot, the speed up is large.

The long answer, unfortunately, is complicated and mathieaialt is considered next.

2.4.2 Applying Amdahl's Law

Amdabhl’s law, after Gene Amdahl, is used to find the systenedpg from a speed up in part of the system.
1/ ((1 - Proportion Sped Up) + Proportion Sped Up / Speed up)

The following examples show how to apply Amdahl’s law to coomsituations. In the interests of sim-
plicity, we assume:

e asingle server

e a system with a single thing in it, which when cached, get94088che hits and lives forever.

Persistent Object Relational Caching

A Hibernate Session.load() for a single object is about 1008s faster from cache than from a database.

A typical Hibernate query will return a list of IDs from the tdbase, and then attempt to load each. If
Session.iterate() is used Hibernate goes back to the datadréoad each object.

Imagine a scenario where we execute a query against theadatalhich returns a hundred IDs and then
load each one.

The query takes 20% of the time and the roundtrip loadingstétke rest (80%). The database query itself
is 75% of the time that the operation takes. The proportiongsped up is thus 60% (75% * 80%).

The expected system speedup is thus:

19

1/ ((1- .6) + .6/ 1000)

1/ (.4 + .006)

2.5 tines system speedup

Web Page Caching

An observed speed up from caching a web page is 1000 timesackéaan retrieve a page from its
SimplePageCachingFilter in a few ms.
Because the web page is the end result of a computation, & pesportion of 100%.

The expected system speedup is thus:

1/ ((1- 1) + 1/ 1000)

1/ (0 + .001)

1000 tines system speedup

Web Page Fragment Caching

Caching the entire page is a big win. Sometimes the liverexpginements vary in different parts of the
page. Here the SimplePageFragmentCachingFilter can ke use

Let’s say we have a 1000 fold improvement on a page fragmantaking 40% of the page render time.
The expected system speedup is thus:

1/ ((1- .4) + .4/ 1000)

1/ (6 + .004)

1.6 tinmes system speedup

2.4.3 Cache Efficiency

In real life cache entrie do not live forever. Some examphet tome close are "static" web pages or
fragments of same, like page footers, and in the databab®e,resference data, such as the currencies in
the world.

Factors which affect the efficiency of a cache are:

liveness how live the data needs to be. The less live the more it can deeda

proportion of data cached what proportion of the data can fit into the resource limitthefmachine. For
32 bit Java systems, there was a hard limit of 2GB of addressespWhile now relaxed, garbage
collection issues make it harder to go a lot large. Variousti®n algorithms are used to evict excess
entries.

Shape of the usage distribution|f only 300 out of 3000 entries can be cached, but the Parstdlalition
applies, it may be that 80% of the time, those 300 will be thesorequested. This drives up the
average request lifespan.

Read/Write ratio The proportion of times data is read compared with how ottenwiritten. Things such
as the number of rooms left in a hotel will be written to quitlt However the details of a room

20

sold are immutable once created so have a maximum write ofHLaypotentially large number of
reads.

Ehcache keeps these statistics for each Cache and eacmtleméhey can be measured directly
rather than estimated.

2.4.4 Cluster Efficiency

Also in real life, we generally do not find a single server?
Assume a round robin load balancer where each hit goes teetttesarver.

The cache has one entry which has a variable lifespan of ségjusay caused by a time to live. The
following table shows how that lifespan can affect hits anssss.

Server 1 Server 2 Server 3 Server 4
M M M M
H H H H
H H H H
H H H H
H H H H

The cache hit ratios for the system as a whole are as follows:

Entry

Lifespan Hit Ratio Ht Ratio Ht Ratio Ht Ratio
in Hts 1 Server 2 Servers 3 Servers 4 Servers
2 1/ 2 0/ 2 0/ 2 0/ 2

4 3/4 2/ 4 1/ 4 0/ 4
10 9/ 10 8/ 10 7/ 10 6/ 10
20 19/ 20 18/ 20 17/ 20 16/ 10
50 49/ 50 48/ 50 47/ 20 46/ 50

The efficiency of a cluster of standalone caches is generally

(Li fespan in requests - Nunber of Standal one Caches) / Lifespan in requests

Where the lifespan is large relative to the number of stardalcaches, cache efficiency is not much
affected.

However when the lifespan is short, cache efficiency is dtaally affected.
(To solve this problem, Ehcache supports distributed cahwhere an entry put in a local cache is also

propagated to other servers in the cluster.)
2.4.5 A cache version of Amdahl’s law

From the above we now have:

1/ ((1 - Proportion Sped Up * effective cache efficiency) +
(Proportion Sped Up =* effective cache efficiency)/ Speed up)

effective cache efficiency = cache efficiency * cluster edficy

21

2.4.6 Web Page example

Applying this to the earlier web page cache example whereave bache efficiency of 35% and average
request lifespan of 10 requests and two servers:

cache efficiency = .35

cluster efficiency = .(10 - 1) / 10
=.9

effective cache efficiency = .35 x .9
= .315

1/ ((1- 1+ .315) + 1« .315/ 1000)

1/ (.685 + .000315)

1.45 tines system speedup

What if, instead the cache efficiency is 70%; a doubling otedficy. We keep to two servers.

cache efficiency = .70
cluster efficiency = .(10 - 1) / 10
=.9

.70 * .9
. 63

ef fective cache efficiency

1/ ((1- 1+ .63) + 1+« .63/ 1000)

1/ (.37 + .00063)

2.69 tinmes system speedup

What if, instead the cache efficiency is 90%; a doubling otedficy. We keep to two servers.

cache efficiency = .90

cluster efficiency .(10 - 1) / 10

.9

.9+ .9
.81

ef fective cache efficiency

1/ ((1- 1+ .81) + 1+« .81/ 1000)

1/ (.19 + .00081)

5.24 tines system speedup

Why is the reduction so dramatic? Because Amdahl’s law i serssitive to the proportion of the system
that is sped up.

22

Chapter 3

Getting Started

Ehcache can be used directly. It can also be used with thdgrdpilbernate Object/Relational tool. Finally,
it can be used for Java EE Servlet Caching.

This quick guide gets you started on each of these. The rebeadocumentation can be explored for a
deeper understanding.

3.1 General Purpose Caching

Make sure you are using a supported Java version.

Place the Ehcache jar into your classpath.

Ensure that any libraries required to satisfy dependemeialso in the classpath.

e Configure ehcache.xml and place it in your classpath.

Optionally, configure an appropriate logging level.
See the Code Samples chapter for more information on dimearisiction with ehcache.

3.2 Hibernate

e Perform the same steps as for General Purpose Caching.

Create caches in ehcache.xml.

See the Hibernate Caching chapter for more information.

3.3 Java EE Servlet Caching

e Perform the same steps as for General Purpose Caching.

Configure a cache for your web page in ehcache.xml.

To cache an entire web page, either use SimplePageCachéngficreate your own subclass of
CachingFilter

To cache a jsp:Include or anything callable from a Requastiicher, either use SimplePageFrag-
mentCachingFilter or create a subclass of PageFragmehmitgdlter.

23

e Configure the web.xml. Declare the filters created above asake filter mapping associating the
filter with a URL.

See the Web Caching chapter for more information.

3.4 RESTful and SOAP Caching with the Cache Server

e Download the standalone cache server from http://sourgefoet/project/showfiles.php?group_id=93232
e cd to the bin directory

e Typest art up. sh to start the server with the log in the foreground.

By default it will listen on port 8080, will have both RESTfahd SOAP web services enabled, and
will use a sample Ehcache configuration from the WAR module.

e See the code samples in the Cache Server chapter. You camausserJany other programming
language to the use the Cache Server.

See the Cache Server chapter for more information.
3.5 JCache style caching
Ehcache contains an early draft implementation of JCachtagwd in the net.sf.ehcache.jcache package.
See the JSR107 chapter for usage.
3.6 Spring, Cocoon, Acegi and other frameworks

Usually, with these, you are using Ehcache without everisiaglit. The first steps in getting more control
over what is happening are:

e discover the cache names used by the framework

e create your own ehcache.xml with settings for the cachepkue it in the application classpath.

24

Chapter 4

Features

Fast and Light Weight
— Fast
— Simple
— Small foot print

— Minimal dependencies

Scalable

— Provides Memory and Disk stores for scalabilty into gigaisyt
— Scalable to hundreds of caches

— Tuned for high concurrent load on large multi-cpu servers
— Multiple CacheManagers per virtual machine

Flexible

— Supports Object or Serializable caching

— Support cache-wide or Element-based expiry policies
— Provides LRU, LFU and FIFO cache eviction policies
— Provides Memory and Disk stores

— Distributed Caching

Standards Based
— Full implementation of JSR107 JCACHE API

Extensible

— Listeners may be plugged in

— Peer Discovery, Replicators and Listeners may be plugged in
— Cache Extensions may be plugged in

— Cache Loaders may be plugged in

— Cache Exception Handlers may be plugged in

Application Persistence

25

— Persistent disk store which stores data between VM restarts
— Flush to disk on demand

e Supports Listeners

— CacheManager listeners
— Cache event listeners

e JMX Enabled

e Distributed

— Support for replication via RMI, JGroups, JMS or Terracotta
— Peer Discovery

— Reliable Delivery

— Synchronous Or Asynchronous Replication

— Copy Or Invalidate Replication

— Transparent Replication

— Extensible

— Bootstrapping from Peers

e Cache Server

— #RESTful cache server
— #SOAP cache server
— #comes as a WAR or as a complete server

e Java EE and Applied Caching

— Blocking Cache to avoid duplicate processing for concuroperations
— SelfPopulating Cache for pull through caching of expensperations
— Java EE Gzipping Servlet Filter

— Cacheable Commands

— Works with Hibernate

— Works with Google App Engine

e High Quality

— High Test Coverage

— Automated Load, Limit and Performance System Tests
— Production tested

— Fully documented

— Trusted by Popular Frameworks

— Conservative Commit policy

— Full public information on the history of every bug

— Responsiveness to serious bugs

e Open Source Licensing

— Apache 2.0 license

26

4.1 Fastand Light Weight

411 Fast

Over the years, various performance tests have shown Eddache one of the fastest Java caches.
Ehcache’s threading is designed for large, high concuyrepstems.

Extensive performance tests in the test suite keep ehcapbdbrmance consistent between releases.
As an example, some guys have created a java cache testiledlc@che4| perfomance_tester.
The results for ehcache-1.1 and ehcache-1.2 follow.

ehcache-1.1

[Java] ---mmmmm i m o e
[java] java.version=1.4.2_09

[java] java.vm name=Java Hot Spot (TM Cient VM

[java] java.vmversion=1.4.2-54

[java] java.vminfo=m xed node

[java] java.vm vendor="Apple Conputer, Inc."

[java] os.nane=Mac OS X

[java] os.version=10.4.5

[java] os.arch=ppc

[JAVA] === == mmmm e e m e e e e e e e a
[java] This test can take about 5-10 minutes. Please wait

[JAVA] === - mmmm e e m e e e e e e e e e oo
[java] | Get Put RemoveT | Get Put Renove | Get |

I R e

[java] cached4j 0.4 | 9240 | 9116 | 5556

[java] oscache 2.2 | 33577 | 30803 | 8350

[java] Ehcache 1.1 | 7697 | 6145 | 3395

[java] jcs 1.2.7.0 | 8966 | 9455 | 4072

[Java] - mmmmmm e e -

ehcache-1. 2

[Java] ---mmmmm e m e e e e i
[java] java.version=1.4.2_09

[java] java.vm nane=Java Hot Spot (TM Cdient VM

[java] java.vmversion=1.4.2-54

[java] java.vminfo=m xed node

[java] java.vm vendor="Appl e Conputer, Inc."

[java] os.nanme=Mac OS X

[java] os.version=10.4.5

[java] os.arch=ppc

[JAVA] === == mmmm e e m e e e e e e e e
[java] This test can take about 5-10 minutes. Please wait

[JAVA] === == mmmm e e m e e e e e e e e eee oo
[java] | Get Put RenoveT | Get Put Renove | Get |

I R e

[java] cached4j 0.4 | 9410 | 9053 | 5865

[java] oscache 2.2 | 28076 | 30833 | 8031

[java] Ehcache 1.2 | 8753 | 7072 | 3479

[javal jcs 1.2.7.0 | 8806 | 9522 | 4097

[Java] - mmmmmmm e e -

27

4.1.2 Simple

Many users of Ehcache hardly know they are using it. Sendigfieults require no initial configuration.

The APl is very simple and easy to use, making it possible tag@nd running in minutes. See the Code
Samples for details.

4.1.3 Small foot print

Ehcache 1.2 is 110KB making it convenient to package.

4.1.4 Minimal dependencies

The only dependency for core use is the JCACHE API.

4.2 Scalable

4.2.1 Provides Memory and Disk stores for scalabilty into gjabytes

The largest Ehcache installations use memory and disksstoithe gigabyte range. Ehcache is tuned for
these large sizes.

4.2.2 Scalable to hundreds of caches

The largest Ehcache installations use hundreds of caches.

4.2.3 Tuned for high concurrent load on large multi-cpu senrers

There is a tension between thread safety and performancacké’s threading started off coarse-grained,
but has increasingly made use of ideas from Doug Lea to aelgimater performance. Over the years there
have been a number of scalability bottlenecks identifiedfexed.

4.2.4 Multiple CacheManagers per virtual machine

Ehcache 1.2 introduced multiple CacheManagers per vinizahine. This enables completely difference
ehcache.xml configurations to be applied.

4.3 Flexible

4.3.1 Supports Object or Serializable caching

As of ehcache-1.2 there is an API for Objects in addition ® @he for Serializable. Non-serializable
Objects can use all parts of Ehcache except for DiskStoreepitation. If an attempt is made to persist
or replicate them they are discarded and a WARNING level legsage emitted.

The APIs are identical except for the return methods fronmtelet. Two new methods on Element: getO-
bjectValue and getKeyValue are the only API differencesveen the Serializable and Object APIs. This
makes it very easy to start with caching Objects and thengshgaur Objects to Seralizable to participate
in the extra features when needed. Also a large number ofclasses are simply not Serializable.

28

4.3.2 Support cache-wide or Element-based expiry policies

Time to lives and time to idles are settable per cache. Intiatdifrom ehcache-1.2.1, overrides to these
can be set per Element.

4.3.3 Provides LRU, LFU and FIFO cache eviction policies

Ehcache 1.2 introduced Less Frequently Used and First $h ®Girt caching eviction policies. These round
out the eviction policies.

4.3.4 Provides Memory and Disk stores

Ehcache, like most of the cache solutions, provides higfopmeance memory and disk stores.

4.3.5 Distributed

Flexible, extensible, high performance distributed caghiThe default implementation supports cache
discovery via multicast or manual configuration. Updates @elivered either asynchronously or syn-
chronously via custom RMI connections. Additional disagver delivery schemes can be plugged in by
third parties.

See the Distributed Caching documentation for more featetails.

4.4 Standards Based

4.4.1 Fullimplementation of JSR107 JCACHE API

Ehcache offers the the most complete implementation of$f107 JCACHE to date.

Because JCACHE has not yet been released the JCACHE APllibatke implements has been released
as net.sf.jsr107cache.

Implementers can code to the JCACHE API which will createqdulity to other caching solutions in the
future.

The maintainer of ehcache, Greg Luck, is on the expert cormenibr JISR107.

4.5 Extensible

4.5.1 Listeners may be plugged in

Ehcache 1.2 provideGacheManager Event Li st ener and CacheEvent Li st ener interfaces. Imple-
mentations can be plugged in and configured in ehcache.xml.

4.5.2 Peer Discovery, Replicators and Listeners may be plged in

Distributed caching, introduced in Ehcache 1.2 involvesiynzhoices and tradeoffs. The Ehcache team
believe that one size will not fit all. Implementers can usiétdin mechanisms or write their own. A plugin

development guide is included for this purpose.

29

4.5.3 Cache Extensions may be plugged in

Create your own Cache Extensions, which hold a reference&alze and are bound to its lifecycle.

4.5.4 Cache Loaders may be plugged in

Create your own Cache Loaders, which are general purposela®nous methods for loading data into
caches, or use them in pull-through configuration.

4.5.5 Cache Exception Handlers may be plugged in

Create an Exception Handler which is invoked if any Excaptiocurs on a cache operation.

4.6 Application Persistence

4.6.1 Persistent disk store which stores data between VM rests

With Ehcache 1.1 in 2004, Ehcache was the first open soureecdabhe to introduce persistent storage of
cache data on disk on shutdown. The cached data is then #xbe¢ise next time the application runs.

4.6.2 Flush to disk on demand

With Ehcache 1.2, the flushing of entries to disk can be exeowith acache. f | ush() method whenever
required, making it easier to use ehcache

4.7 Listeners

4.7.1 CacheManager listeners

Register Cache Manager listeners throughtheheManager Event Li st ener interface with the follow-
ing event methods:

e notifyCacheAdded()

e noti fyCacheRenoved()

4.7.2 Cache event listeners

Register Cache Event Listeners through @aeheEvent Li st ener interfaces, which provides a lot of
flexibility for post-processing of cache events. The methac:

e noti f yEl ement Renoved
e noti f yEl ement Put
e noti f yEl ement Updat ed

e notifyEl ement Expi red

30

4.8 JMX Enabled

Ehcache is IMX enabled. You can monitor and manage the fiiipiBeans:

e CacheManager
e Cache
e CacheConfiguration

e CacheStatistics

See the net.sf.ehcache.management package.
See http://weblogs.java.net/blog/maxpoon/archive’Z0® extending_the_n_2.htmlfor an online tutorial.

4.9 Distributed Caching

Ehcache 1.2 introduced a full-featured, fine-grainedithisted caching mechanism for clusters, supporting
multiple replication mechanisms through plugins.

4.9.1 Support for replication via RMI or JGroups

Ehcache 1.6 supports replication via RMI, JGroups, JMS aiatetta.

4.9.2 Peer Discovery

Peer discovery may be either manually configured or autemaging multicast. Multicast is simple, and
adds and removes peers automatically. Manual configurghi@s fine control and is useful for situations
where multicast is blocked.

4.9.3 Reliable Delivery

The built-in delivery mechanism uses RMI with custom sosketer TCP, not UDP.

4.9.4 Synchronous Or Asynchronous Replication

Replication can be set to synchronous Or asynchronousgglec

4.9.5 Copy Or Invalidate Replication

Replication can be set to copy or invalidate, per cache, agpsopriate.

4.9.6 Transparent Replication
No programming changes are required to make use of reglicaiinly configuration in ehcache.xml.

31

4.9.7 Extensible

Distributed caching, introduced in Ehcache 1.2 involvesiynzhoices and tradeoffs. The Ehcache team
believe that one size will not fit all. Implementers can us#{inimechanisms or write their own. A plugin
development guide is included for this purpose.

4.9.8 Bootstrapping from Peers

Distributed caches enter and leave the cluster at diffdme@s. Caches can be configured to bootstrap
themselves from the cluster when they are first initialized.

An abstract factory, BootstrapCachelLoaderFactory has Heéned along with an interface Bootstrap-
CachelLoader along with an RMI based default implementation

4.10 Cache Server

Ehcache now comes with a Cache Server, available as a WARdstrweb containers, or as a standalone
server. The Cache Server has two apis: RESTful resourcetedieand SOAP. Both support clients in any
programming language.

4.10.1 RESTful cache server

The Ehcache implementation strictly follows the RESTfislnerce-oriented architecture style.
Specifically:

e The HTTP methods GET, HEAD, PUT/POST and DELETE are usedéoci§pthe method of the
operation. The URI does not contain method information.

e The scoping information, used to identify the resource tdgoen the method on, is contained in the
URI path.

e The RESTful Web Service is described by and exposes a WADLb(Afeplication Description
Language) file. It contains the URIs you can call, and whaa datpass and get back. Use the
OPTIONS method to return the WADL.

For performance, HTTP/1.1 caching features are fully sugposuch as Last-Modified, ETag and
so on. Ehcache responsds correctly to HEAD and conditioBdl (@quests.

4.10.2 SOAP cache server

The Ehcache RESTFul Web Services API exposes the singletoheBlanager, which typically has been
configured in ehcache.xml or an 1oC container. Multiple Gadhnagers are not supported.

The API definition is as follows:
e WSDL - EhcacheWebServiceEndpointService.wsdl
e Types - EhcacheWebServiceEndpointService_schemal.xsd

32

4.10.3 comes as a WAR or as a complete server

The standalone server comes with its own embedded Glassisltontainer.

It also comes packaged as a WAR for deployment to any Serdetéb container. Glassfish V2/3, Tomcat
6 and Jetty 6 have been tested.

4.11 Java EE and Applied Caching

High quality implementations for common caching scenagiod patterns.

4.11.1 Blocking Cache to avoid duplicate processing for canrrent operations

A cache which blocks subsequent threads until the first fe@t populates a cache entry.

4.11.2 SelfPopulating Cache for pull through caching of exgnsive operations

SelfPopulatingCache - a read-through cache. A cache tipalgtes elements as they are requested without
requiring the caller to know how the entries are populatealsb enables refreshes of cache entries without
blocking reads on the same entries.

4.11.3 Java EE Gzipping Servlet Filter

e CachingFilter - an abstract, extensible caching filter.

e SimplePageCachingFilter

A high performance Java EE servlet filter that caches pagssdban the request URI and Query
String. It also gzips the pages and delivers them to browestrer gzipped or ungzipped depending
on the HTTP request headers. Use to cache entire Servlet palyether from JSP, velocity, or any
other rendering technology.

Tested with Orion and Tomcat.

e SimplePageFragmentCachingFilter

A high performance Java EE filter that caches page fragmeasiesdoon the request URI and Query
String. Use with Servlet request dispatchers to cache papages, whether from JSP, velocity, or
any other rendering technology. Can be used from JSPs wsgirigglude.

Tested with Orion and Tomcat.

e Works with Servlet 2.3 and Servlet 2.4 specifications.

4.11.4 Cacheable Commands

This is the trusty old command pattern with a twist: asynabie behaviour, fault tolerance and caching.
Creates a command, caches it and then attempts to execute it.

4.11.5 Works with Hibernate

Tested with Hibernate2.1.8 and Hibernate3.1.3, which ¢éisauall of the new features except for Object
API and multiple session factories each using a differemmiEhe CacheManager.

33

A newnet . sf.ehcache. hi ber nat e. EhCachePr ovi der makes those additional features available to
Hibernate-3.1.3. A version of the new provider should maketd the Hibernate3.2 release.

4.11.6 Works with Google App Engine

Ehcache-1.6 is compatible with Google App Engine.
See the Google App Engine HowTo.

4.12 High Quality

4.12.1 High Test Coverage

The Ehcache team believe that the first and most importatitgmeeasure is a well designed and compre-
hensive test suite.

Ehcache has a relatively high 86% test coverage of sourae ddds has edged higher over time. Clover
enforces the test coverage. Most of the missing 14% is l@gajid exception paths.

4.12.2 Automated Load, Limit and Performance System Tests

The Ehcache JUnit test suite contains some long-runnirtgsytests which place high load on different
Ehcache subsystems to the point of failure and then are aekjast below that point. The same is done
with limits such as the amount of Elements that can fit in amyiveap size. The same is also done with
performance testing of each subsystem and the whole tagdthe same is also done with network tests
for cache replication.

The tests serve a number of purposes:

establishing well understood metrics and limits

preventing regressions

reproducing any reported issues in production

Allowing the design principle of graceful degradation todehieved. For example, the asynchronous
cache replicator uses SoftReferences for queued messagtst the messages will be reclaimed
before before an OutOfMemoryError occurs, thus favouriagitity over replication.

4.12.3 Specific Concurrency Testing

Ehcache also has concurrency testing, which typically 88esoncurrent threads hammering a piece of
code. The test suites are also run on multi-core or multifopehines so that concurrency is real rather
than simulated. Additionally, every concurrency relatexlie that has ever been anticipated or resulted in
a bug report has a unit test which prevents the condition fieearring. There are no reported issues that
have not been reproduced in a unit test.

Concurrency unit tests are somewhat difficult to write, aredadten overlooked. The team considers these
tests a major factor in ehcache’s quality.

4.12.4 Production tested

Ehcache came about in the first place because of productioessvith another open source cache.

34

Final release versions of Ehcache have been productiattesta very busy e-commerce site, supporting
thousands of concurrent users, gigabyte size caches @mtagi-cpu machines. It has been the experience
of the team that most threading issues do not surface uittifithe of load has been applied. Once an issue
has been identified and investigated a concurrency unitéesthen be crafted.

4.12.5 Fully documented

A core belief held by the project team is that a project needslglocumentation to be useful.
In ehcache, this is manifested by:

e comprehensive written documentation

e Complete, meaningful JavaDoc for every package, class ablicpand protected method. Check-
style rules enforce this level of documentation.

e an up-to-date FAQ

4.12.6 Trusted by Popular Frameworks

Ehcache is used extensively. See the Who is Using? pagepwséiGoogle.

4.12.7 Conservative Commit policy

Projects like Linux maintain their quality through a restieid change process, whereby changes are sub-
mitted as patches, then reviewed by the maintainer anddedliuor modified. Ehcache follows the same
process.

4.12.8 Full public information on the history of every bug

Through the SourceForge project bug tracker, the full hystdall bugs are shown, including current status.
We take this for granted in an open source project, as thypisdlly a feature that all open source projects
have, but this transparency makes it possible to gauge téygand riskiness of a library, something not
usually possible in commercial products.

4.12.9 Responsiveness to serious bugs

The Ehcache team is serious about quality. If one user is\gaviproblem, it probably means others are
too, or will have. The Ehcache team use Ehcache themselmsduction. Every effort will be made to

provide fixes for serious production problems as soon asiges3 hese will be committed to trunk. From
there an affected user can apply the fix to their own branch.

4.13 Open Source Licensing

4.13.1 Apache 2.0 license
Ehcache’s original Apachel.1 copyright and licensing veagewed and approved by the Apache Software

Foundation, making Ehcache suitable for use in Apache gijehcache-1.2 is released under the updated
Apache 2.0 license.

35

The Apache license is also friendly one, making it safe arsg &ainclude Ehcache in other open source
projects or commercial products.

36

Chapter 5

Key Ehcache Concepts

5.1 Key Ehcache Classes

net.sf.ehcache

Ehcache ElementEvictionData
| |
I I
1 = L =
Cache ‘ | DefaultElementEvictionData
: ; -
‘ CacheException ‘ | CacheManager

]

DObjectExistsException |

Element | | MimeTypeByteArray

Statistics | | Status |

generated by yDoc

Top Level Package Diagram

Ehcache consists of@GacheManager , which manages caches. Caches contain elements, whichsae-e
tially name value pairs. Caches are physically implemeatter in-memory, or on disk.

37

5.1.1 CacheManager

net.sf.ehcache

net.sf.ehcache.distribution

Java.net
Jjava.lo

net.sf.ehcache. manage ment.provider

net.sf.ehcache.util

net.sf.ehcache.store.

net.sf.ehcache.event net.sf.ehcache.event
net.sf.ehcache net.sf.ehcache

net.sf.ehcache.config

generated by yDoc

CacheManager Class Diagram

TheCacheManager comprises Caches which in turn comprise Elements.
Creation of, access to and removal of caches is controllédé@acheManager .

CacheManager Creation Modes

CacheManager supports two creation modes: singleton and instance.

Singleton Mode Ehcache-1.1 supported only obe#cheManager instance which was a singleton. Cache-
Manager can still be used in this way using the static factoethods.

38

Instance Mode From ehcache-1.2, CacheManager has constructors whiobrrthie various static create
methods. This enables multiple CacheManagers to be craatedsed concurrently. Each CacheManager
requires its own configuration.

If the Caches under management use only the MemoryStore,dhe no special considerations. If Caches

use the DiskStore, the diskStore path specified in each Géarteger configuration should be unique.
When a new CacheManager is created, a check is made thabileeme other CacheManagers using the

same diskStore path. If there are, a CacheException is thrif@a CacheManager is part of a cluster, there
will also be listener ports which must be unique.

Mixed Singleton and Instance Mode If an application creates instances of CacheManager usiog-a
structor, and also calls a static create method, there wifit @ singleton instance of CacheManager which
will be returned each time the create method is called t@getlith any other instances created via con-

structor. The two types will coexist peacefully.

39

5.1.2 Ehcache

net.sf. ehcache
PR net.sf.ehcache.exceptionhandler

Ehcache

-3 CacheExceptionHandler

+ bootstrap() - void

+ calcularelnMemorySize() - long
net.sf.ehcache.loader
+ clearStatistics() - void

+ clone() : Object —<= Cacheloader

+dispose() - void
+ evictExpiredElements() : void
+flushi) : void
net.sf.ehcache.extension
+ get(Serializable) - Element

+ get(Object) - Element -== CacheExtension

+ getallWithL cader(Collection, Object) - Map
+ getAverageGetTime() - floar
+ getBootstrapCacheloader() - BootstrapCacheloader

ava.io
+ getCacheCc : CacheCe E

+ gerC: i 0

+ getC: : G

+ getCacheManager() - CacheManager

+ getDiskStoreSize() - int
net.sf.ehcache.event

+ getGuid() - String

+ petiternalContex) < Oiect Wrr—m—

+ getKeys() - List

+ getKeysNoDuplicateCheck() : List

+ getKeysWithExpiryCheck() - List

+ getLiveCacheStatistics() : LiveCacheStatistics

+ getMemoryStoreSize() - long

net.sf.ehcache.bootstrap

- BootstrapCacheLoader
+getName() - String
+ gerQuiet(Serializable) - Element

+ getQuiet(Object) - Element
e .[’ net.sf.ehcache.statistics

: List<Cs
+ acheloaders() : List<Ci c istener
+ SampledC: =

+ getSizef) - int
+ getSizeBasedOnAccuracy(int) - int
+ gerStatistics() - Statistics

- LiveCacheStatistics

+ gerStatistiesAccuracy() - int e
+ getstatus() - Status

+ getiithLoader(Object, Cachel.cader, Object) - Element
+ initialiseq) - void

+ isDisabled() - boolean

+ isElementinMemory(Serializable) - boolean

7% CacheManager ‘

+isElementinMemory(Object) : boolean
+ isElementOnDisk(Serializable) - boolean
+ isElementOnDisk(Object) - boolean

+ isExpiredi(Element) : boolean

+ isKeyInCache(Object) : boolean

+ isSampledStatisticsEnabled() - bolean net.sf.eheache.statistics. sampled
+ isStatisticsEnabled() - boolean

+ isValueinCache(Object) - boolean
+ load(Object) - void

= SampledCacheStatistics

+ loadAli(Colfection, Object) - void)
+ putElement) - void net.sf.ehcache.canfig
+ putElement, boolean) : void

+ putQuiet(Element) : void

+ registerCacheExtension{CacheExtension) - void
+ registerCachel.oader(CacheL oader) - void

:.‘ CacheConfiguration

+ registerCachellsageListener(CacheUsageListener) - void
+ remove(Serializable) - boolean

+ remove(Serializable, boolean) : boolean

+ remove(Object) : boolean

+ remove(Object, baolean) : boolean

+ removeAll() - void

+ removeAli(boolean) - void

+ removeCachelisagelistener(Cachel/sageListener) void
+ removeQuiet(Serializable) - boolean

+ removeQuiet(Object) - boolean

+ achel. acheLoader) : void

+ setC: = void

+ setCacheManager(CacheManager) void

+ setDisabled(boalean) - void

+ setDiskStorePath(String) - void

+ setName(String) - void

+ setSampledStatistics Enabled(boofean) - void

+ satStatisticsAccuracy(ing) - void

+ setStatisticsEnabled(boolean) : void

*+ toString) - String

+ nregisterCacheExtension(CacheExtension) - void
+ unregisterCachel oader(Cachel.oader) - void

generated by yDoc

Ehcache Interface Diagram

All caches implement thehcache interface. A cache has a name and attributes. Each cachartont
Elements.

A Cache in Ehcache is analogous to a cache region in otheincpsystems.

Cache elements are stored in t¥ror y St or e. Optionally they also overflow to @ skSt or e.

40

5.1.3 Element

net.sf.ehcache Jjava.io

generated by yDoc
Element Class Diagram

An element is an atomic entry in a cache. It has a key, a valdeaarecord of accesses. Elements are

put into and removed from caches. They can also expire andrbeved by the Cache, depending on the
Cache settings.

As of ehcache-1.2 there is an API for Objects in addition ® dhe for Serializable. Non-serializable
Objects can use all parts of Ehcache except for DiskStoreepitation. If an attempt is made to persist
or replicate them they are discarded without error and wiHEBUG level log message.

41

The APIs are identical except for the return methods fronmiglet. Two new methods on Element: getO-
bjectValue and getKeyValue are the only API differencesveen the Serializable and Object APIs. This
makes it very easy to start with caching Objects and thengthgaur Objects to Seralizable to participate
in the extra features when needed. Also a large number ofclasses are simply not Serializable.

5.2 Cache Usage Patterns

Caches can be used in different ways. Each of these ways/daache usage pattern. Ehcache supports
the following:

e direct manipulation
e pull-through

e self-populating

5.2.1 Direct Manipulation

Here, to put something in the cache youadehe. put (El ement el enent) and to get something from
the cache you doache. get (bj ect key).

You are aware you are using a cache and you are doing so caslycio

5.2.2 Self Populating

Here, you just do gets to the cache usitezhe. get (bj ect key). The cache itself knows how to
populate an entry.

See the SelfPopulatingCache for more on this pattern.

42

Chapter 6

Architecture

This diagram shows the architecture of Ehcache. It is cuagf Ehcache-1.6.2.

m
leu)
r

Cache Replication

Architecture

—_

Network
APls RESTiul API ' SOAP API l
JsrioT ARl || gRuby ARl || Hicernate api || JMX AP s“"_‘ﬂ":;f:;?m JMS APL .‘

Encache AP

Tarracotta Clustering

RAMI Replication

JMS Replication

JGroups
Raplication

&
g
g
S
o
2
(5]

|

CacheManager Cache 1:
‘Cacna Manager Cache Extension Cacha Listanar ‘Gache Exception
Listener SP| J SP1 SPI Handler SPI

43

44

Chapter 7

Configuration

Caches can be configured in Ehcache either declarativeyninor by creating them programmatically
and specifying their parameters in the constructor.

While both approaches are fully supported it is generallpadgidea to separate the cache configuration
from runtime use. There are also these benefits:

e It is easy if you have all of your configuration in one place.cl@s consume memory, and disk
space. They need to be carefully tuned. You can see the ffaat i a configuration file. You could
do this code, but it would not as visible.

e Cache configuration can be changed at deployment time.

e Configuration errors can be checked for at start-up, rattear tausing a runtime error.

This chapter covers XML declarative configuration. See tbdeCsamples for programmatic configuration.

Ehcache is redistributed by lots of projects. They may or matyprovide a sample Ehcache XML config-
uration file. If one is not provided, download Ehcache frompifehcache.org. It, and the ehcache.xsd is
provided in the distribution.

7.1 ehcache.xsd

Ehcache configuration files must be comply with the Ehcachd X¢hema, ehcache.xsd, reproduced
below.

It can also be downloaded from http://ehcache.org/ehcastie

<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schena" el ement For nDef aul t =" qual i fi ed"
version="1.7">

<xs: el enent nane="ehcache" >
<xs:conpl exType>
<Xs:sequence>
<xs: el ement m nCccurs="0" naxQccurs="1" ref="di skStore"/>
<xs: el ement m nCccurs="0" naxCccurs="1"
ref =" cacheManager Event Li st ener Factory"/ >
<xs: el ement m nCccurs="0" naxQccur s="unbounded"
r ef =" cacheManager Peer Provi der Factory"/ >
<xs:elenment m nCccurs="0" maxCccur s="unbounded"

45

r ef =" cacheManager Peer Li st ener Factory"/ >
<xs:el ement m nCccurs="0" maxCccurs="1"
ref="terracottaConfig"/>
<xs: el ement ref="defaultCache"/>
<xs: el ement m nCccurs="0" maxQOccur s="unbounded" ref="cache"/>
</ xs: sequence>
<xs:attribute name="name" use="optional"/>
<xs:attribute name="updat eCheck" use="optional" type="xs:bool ean" defaul t="true"/>
<xs:attribute name="nonitoring" use="optional" type="nonitoringType"
def aul t =" aut odet ect"/ >
</ xs: conpl exType>
</ xs: el emrent >
<xs: el ement nane="di skStore">
<xs:conpl exType>
<xs:attribute name="path" use="optional" />
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nane="cacheManager Event Li st ener Fact ory" >
<xs:conpl exType>
<xs:attribute name="cl ass" use="required"/>
<xs:attribute name="properties" use="optional"/>
<xs:attribute name="propertySeparator" use="optional"/>
</ xs: conpl exType>
</ xs: el emrent >
<xs: el ement nane="cacheManager Peer Pr ovi der Fact ory" >
<xs:conpl exType>
<xs:attribute name="cl ass" use="required"/>
<xs:attribute name="properties" use="optional"/>
<xs:attribute name="propertySeparator" use="optional"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nane="cacheManager Peer Li st ener Fact ory" >
<xs: conpl exType>
<xs:attribute name="cl ass" use="required"/>
<xs:attribute name="properties" use="optional"/>
<xs:attribute name="propertySeparator" use="optional"/>
</ xs: conpl exType>
</ xs: el ement >
<xs:el ement nane="terracottaConfig">
<xs:conpl exType>
<Xs:sequence>
<xs: el ement nanme="tc-config" m nCccurs="0" maxCccurs="1">
<xs:conpl exType>
<Xs:sequence>
<xs:any m nCccurs="0" nmaxCccur s="unbounded" processContents="skip" />
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >
</ xs: sequence>
<xs:attribute name="url" use="optional" default="Iocal host:9510"/>
<xs:attribute name="regi st erStatsMBean" type="xs:bool ean" use="optional"/>
</ xs: conpl exType>
</ xs: el ement >
<!-- add clone support for addition of cacheExceptionHandl er. Inportant! -->
<xs: el ement nane="def aul t Cache" >
<xs: conpl exType>
<Xs:sequence>
<xs: el ement m nQccurs="0" naxCccur s="unbounded" ref="cacheEventLi stenerFactory"/>

46

<xs: el ement m nQccurs="0" maxCOccur s="unbounded" ref="cacheExtensi onFactory"/>
<xs: el ement m nQccurs="0" naxQOccur s="unbounded" ref="cachelLoader Factory"/>
<xs:element m nQccurs="0" maxCccurs="1" ref="bootstrapCacheLoader Factory"/>
<xs: el ement mi nCccurs="0" maxCccurs="1" ref="cacheExcepti onHandl er Factory"/>
<xs: el ement m nCccurs="0" maxCccurs="1" ref="terracotta"/>
</ xs: sequence>
<xs:attribute name="di skExpi ryThreadl nt erval Seconds" use="optional" type="xs:integer"/>
<xs:attribute name="di skSpool Buf fer Si zeMB" use="optional" type="xs:integer"/>
<xs:attribute name="di skPersistent" use="optional" type="xs:bool ean"/>
<xs:attribute name="eternal" use="required" type="xs:bool ean"/>
<xs:attribute name="nmaxEl enent sl nMenory" use="required" type="xs:integer"/>
<xs:attribute name="cl ear OnFl ush" use="optional" type="xs:bool ean"/>
<xs:attribute name="nenoryStoreEvictionPolicy" use="optional" type="xs:string"/>
<xs:attribute name="overfl owlToDi sk" use="required" type="xs:bool ean"/>
<xs:attribute name="ti meTol dl eSeconds" use="optional" type="xs:integer"/>
<xs:attribute name="ti meTolLi veSeconds" use="optional" type="xs:integer"/>
<xs:attribute nanme="nmaxEl enent sOnDi sk" use="optional" type="xs:integer"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nane="cache">
<xs: conpl exType>
<Xs:sequence >
<xs: el ement
<xs: el emrent
<xs: el ement
<xs: el ement
<xs: el emrent
<xs: el ement
</ xs: sequence>
<xs:attribute name="di skExpi ryThreadl nt erval Seconds" use="opti onal "
type="xs:integer"/>
<xs:attribute name="di skSpool Buf fer Si zeMB" use="optional" type="xs:integer"/>
<xs:attribute name="di skPersistent" use="optional" type="xs:bool ean"/>
<xs:attribute name="eternal" use="required" type="xs:bool ean"/>
<xs:attribute name="nmaxEl enent sl nMenory" use="required" type="xs:integer"/>
<xs:attribute name="nenoryStoreEvictionPolicy" use="optional" type="xs:string"/>
<xs:attribute name="cl ear OnFl ush" use="optional" type="xs:bool ean"/>
<xs:attribute name="nanme" use="required" type="xs:string"/>
<xs:attribute name="overfl owToDi sk" use="required" type="xs:bool ean"/>
<xs:attribute name="ti nmeTol dl eSeconds" use="optional" type="xs:integer"/>
<xs:attribute name="ti meTolLi veSeconds" use="optional" type="xs:integer"/>
<xs:attribute name="nmaxEl ement sOnDi sk" use="optional " type="xs:integer"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nane="cacheEventLi st ener Fact ory" >
<xs:conpl exType>
<xs:attribute name="cl ass" use="required"/>
<xs:attribute name="properties" use="optional"/>
<xs:attribute name="propertySeparator" use="optional"/>
</ xs: conpl exType>
</ xs: el emrent >
<xs: el ement nane="boot strapCachelLoader Fact ory" >
<xs:conpl exType>
<xs:attribute name="cl ass" use="required"/>
<xs:attribute name="properties" use="optional"/>
<xs:attribute name="propertySeparator" use="optional"/>
</ xs: conpl exType>
</ xs: el ement >

nCccur s="0" maxCccur s="unbounded" ref="cacheEventLi stenerFactory"/>
nCccurs="0" maxQOccur s="unbounded" ref="cacheExt ensi onFactory"/>
nCccur s="0" maxCccur s="unbounded" ref="cacheLoader Factory"/>
nQccurs="0" naxQOccurs="1" ref="bootstrapCachelLoader Factory"/>
nCccurs="0" maxCccurs="1" ref="cacheExcepti onHandl er Fact ory"/ >
nCccurs="0" maxCccurs="1" ref="terracotta"/>

333333

47

<xs: el ement nane="cacheExt ensi onFactory">
<xs:conpl exType>
<xs:attribute name="cl ass" use="required"/>
<xs:attribute name="properties" use="optional"/>
<xs:attribute name="propertySeparator" use="optional"/>
</ xs: conpl exType>
</ xs: el emrent >
<xs: el ement nane="cacheExcepti onHandl er Fact ory" >
<xs: conpl exType>
<xs:attribute name="cl ass" use="required"/>
<xs:attribute name="properties" use="optional"/>
<xs:attribute name="propertySeparator" use="optional"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nane="cachelLoader Fact ory">
<xs: conpl exType>
<xs:attribute name="cl ass" use="required"/>
<xs:attribute name="properties" use="optional"/>
<xs:attribute name="propertySeparator" use="optional"/>
</ xs: conpl exType>
</ xs: el emrent >
<xs:el ement nane="terracotta">
<xs:conpl exType>
<xs:attribute name="cl ustered" use="optional" type="xs:bool ean" default="true"/>
<xs:attribute name="val ueMbde" use="optional"
type="terracottaCacheVal ueType" defaul t="serialization"/>
<xs:attribute name="coherent Reads" use="optional" type="xs:bool ean" default="true"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: si npl eType name="noni tori ngType">
<xs:restriction base="xs:string">
<xs:enuneration val ue="aut odetect" />
<xs:enureration val ue="on" />
<xs:enuneration val ue="off" />
</xs:restriction>
</ xs: si nmpl eType>
<xs:si npl eType nane="t erracottaCacheVal ueType">
<xs:restriction base="xs:string">
<xs:enumneration val ue="serialization" />
<xs:enuneration value="identity" />
</xs:restriction>
</ xs: si nmpl eType>

</ xs: schema>

7.2 ehcache-failsafe.xml

If the CacheManager default constructor or factory methodalled, Ehcache looks for a file called
ehcache.xml in the top level of the classpath. Failing thidks for ehcache-failsafe.xml in the class-
path. ehcache-failsafe.xml is packaged in the Ehcachafhslaould always be found.

ehcache-failsafe.xml provides an extremely simple défasifiguration to enable users to get started be-
fore they create their own ehcache.xml.

If it used Ehcache will emit a warning, reminding the userdbugp a proper configuration.

The meaning of the elements and attributes are explaindetigdction on ehcache.xml.

48

<ehcache>
<di skStore path="java.io.tnpdir"/>
<def aul t Cache
maxEl ement sl nMenor y="10000"
eternal ="fal se"
ti meTol dl eSeconds="120"
ti meTolLi veSeconds="120"
over f| owToDi sk="true"
maxEl ement sOnDi sk="10000000"
di skPersi stent ="f al se"
di skExpi ryThr eadl nt er val Seconds="120"
menor ySt or eEvi cti onPol i cy="LRU"
/>
</ ehcache>

7.3 ehcache.xml and other configuration files

Prior to ehcache-1.6, Ehcache only supported ASCII ehcactieonfiguration files. Since ehcache-1.6,
UTF8is supported, so that configuration can use Unicode. Fs8Js backwardly compatible with ASCII,
no conversion is necessary.

If the CacheManager default constructor or factory metteodalled, Ehcache looks for a file called
ehcache.xmlin the top level of the classpath.

The non-default creation methods allow a configuration €ilbe specified which can be called anything.

One XML configuration is required for each CacheManagerithateated. It is an error to use the same
configuration, because things like directory paths anénist ports will conflict. Ehcache will attempt
to resolve conflicts and will emit a warning reminding the ruseconfigure a separate configuration for
multiple CacheManagers with conflicting settings.

The sample ehcache.xml, which is included in the Ehcachghiison is reproduced below. The sample
contains full commentary required to configure each elentanther information can be found in specific
chapters in the Guide.

It can also be downloaded from http://ehcache.org/ehcactie
<?xm version="1.0" encodi ng="UTF-8""?>

<l--
CacheManager Configuration

An ehcache. xm corresponds to a single CacheManager.
See instructions bel ow or the ehcache schema (ehcache. xsd) on how to confi gure.

System property tokens can be specified in this file which are replaced when the
configuration is | oaded. For exanple nulticastG oupPort=${multicast G oupPort}
can be replaced with the System property either froman environnent variable or
a systemproperty specified with a command |line switch such as

-Dnul ti cast GroupPort =4446.

The attributes of <ehcache> are:

* name - an optional nane for the CacheManager. The nanme is optional and primarily used
for docunentation or to distinguish Terracotta clustered cache state. Wth Terracotta
clustered caches, a conbinati on of CacheManager nane and cache nanme uniquely identify a
particul ar cache store in the Terracotta clustered nenory.

* updat eCheck - an optional bool ean flag specifying whether this CacheManager shoul d check

49

for new versions of Ehcache over the Internet. |f not specified, updateCheck="true".
* nonitoring - an optional setting that determ nes whether the CacheManager shoul d
automatically register the Sanpl edCacheMBean with the system MBean server.

Currently, this nonitoring is only useful when using Terracotta clustering and using the
Terracotta Devel oper Console. Wth the "autodetect" value, the presence of Terracotta

clustering will be detected and nonitoring, via the Devel oper Console, will be enabl ed.
O her allowed values are "on" and "off". The default is "autodetect". This setting does
not performany function when used with JMX nmonitors.

-->

<ehcache xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : noNanespaceSchenaLocat i on="ehcache. xsd"
updat eCheck="true" nonitoring="autodetect">

<I--
Di skStore configuration

The di skStore elenent is optional. To turn off disk store path creation, coment out
t he di skStore el enent bel ow.

Configure it if you have overfl owlToDi sk or di skPersistent enabled for any cache.

If it is not configured, and a cache is created which requires a disk store, a warning
will be issued and java.io.tnpdir will automatically be used.

di skStore has only one attribute - "path". It is the path to the directory where
.data and .index files will be created.

If the path is one of the follow ng Java System Property it is replaced by its val ue
in the running VM For backward conpatibility these are not specified w thout being
encl osed in the ${token} replacenent syntax.

The followi ng properties are transl ated:

* user.hone - User’'s honme directory

* user.dir - User’s current working directory

* java.io.tnpdir - Default tenmp file path

* ehcache. di sk.store.dir - A systemproperty you would normal ly specify on the command
line e.g. java -Dehcache. di sk. store.dir=/u01/ myapp/ di skdir

Subdirectories can be specified below the property e.g. java.io.tnpdir/one

-->
<di skStore path="java.io.tnpdir"/>

<l--
CacheManager Event Li st ener

Speci fi es a CacheManager Event Li st ener Factory which is notified when Caches are added
or renoved fromthe CacheManager.

The attributes of CacheManager EventLi stenerFactory are:
* class - a fully qualified factory class nane
* properties - comma separated properties having neaning only to the factory.

Sets the fully qualified class nane to be registered as the CacheManager event |istener.

The events incl ude:

50

* addi ng a Cache
* renoving a Cache

Cal | backs to listener nethods are synchronous and unsynchronized. It is the
responsibility of the inplementer to safely handle the potential performance and
thread safety issues depending on what their listener is doing.

If no class is specified, no listener is created. There is no default.
-->

<cacheManager Event Li st ener Factory cl ass=

properties=""/>

<l--
CacheManager Peer Provi der

(For distributed operation)

Speci fies a CacheManager Peer Provi der Factory which will be used to create a
CacheManager Peer Provi der, which discovers other CacheManagers in the cluster.

One or nore providers can be configured. The first one in the ehcache.xm is the
default, which is used for replication and boot strapping.

The attributes of cacheManager Peer Provi der Factory are:
* class - a fully qualified factory class nane
* properties - comma separated properties having neaning only to the factory.

Provi ders are available for RM, JGoups and JM5 as shown foll ow ng.

RM CacheManager Peer Provi der
++++++++++H

Ehcache comes with a built-in RM-based distribution systemw th two nmeans of discovery
of CacheManager peers participating in the cluster:

* automatic, using a nulticast group. This one automatically discovers peers and detects
changes such as peers entering and | eaving the group

* manual , using manual rm URL configuration. A hardcoded |ist of peers is provided at
configuration tinme.

Configuring Automatic Discovery:
Aut omatic discovery is configured as per the follow ng exanpl e:
<cacheManager Peer Pr ovi der Fact ory
cl ass="net. sf. ehcache. di stri buti on. RM CacheManager Peer Pr ovi der Fact ory"
properties="host Name=ful | y_qual i fi ed_host nane_or _i p,
peer Di scovery=automatic, nulticastG oupAddress=230.0.0. 1,
mul ti cast G oupPort =4446, tineTolLive=32"/>

Valid properties are:

* peerDi scovery (nmandatory) - specify "automatic"

* mul ticast G oupAddress (mandatory) - specify a valid nmulticast group address

* mul ticast G oupPort (mandatory) - specify a dedicated port for the nulticast heartbeat
traffic

* timeToLive - specify a value between 0 and 255 which determ nes how far the packets
wi || propagate.

By convention, the restrictions are:
0 - the sane host

51

1 - the sane subnet

32 - the sane site

64 - the same region
128 - the sane continent
255 - unrestricted

* host Nane - the hostnanme or IP of the interface to be used for sending and receiving
mul ticast packets (relevant to nulithonmed hosts only)

Configuring Manual Discovery:

Manual discovery requires a unique configuration per host. It is contains a |ist of
rm URLs for the peers, other than itself. So, if we have serverl, server2 and server3
the configuration will be:

In server1l’ s configuration:

<cacheManager Peer Provi der Factory cl ass=
"net.sf.ehcache. di stributi on. RM CacheManager Peer Pr ovi der Fact or y"
properti es="peer Di scovery=manual
rm Url s=//server2: 40000/ sanpl eCachel|//server 3: 40000/ sanpl eCachel
| //server2:40000/ sanpl eCache2|//server 3: 40000/ sanpl eCache2"
propertySeparator="," />

In server2' s configuration:

<cacheManager Peer Provi der Factory cl ass=
"net.sf.ehcache. di stributi on. RM CacheManager Peer Pr ovi der Fact or y"
properti es="peer Di scover y=manual
rm Url s=//server1: 40000/ sanpl eCachel|//server 3: 40000/ sanpl eCachel
| //serverl:40000/ sanpl eCache2|//server 3: 40000/ sanpl eCache2"
propertySeparator="," />

In server3' s configuration:

<cacheManager Peer Provi der Factory cl ass=
"net. sf. ehcache. di stri buti on. RM CacheManager Peer Pr ovi der Fact ory"
properti es="peer Di scovery=manual
rm Url s=//server1l: 40000/ sanpl eCachel|//server2: 40000/ sanpl eCachel
| //serverl:40000/ sanpl eCache2|//server2: 40000/ sanpl eCache2"
propertySeparator="," />

Valid properties are:
* peerDi scovery (mandatory) - specify "nmanual "
* rm Uls (mandatory) - specify a pipe separated list of rmUls, in the form
/ I host nane: port
* hostnane (optional) - the hostnane is the hostnanme of the renote CacheManager peer
The port is the listening port of the RM CacheManager PeerLi stener of the renote
CacheManager peer.

JG oupsCacheManager Peer Pr ovi der
++++++++H
<cacheManager Peer Pr ovi der Fact ory
cl ass="net. sf. ehcache. di stri buti on.jgroups. JG oupsCacheManager Peer Provi der Fact ory"
properties="connect =UDP(ntast _addr=231. 12. 21. 132; ntast _port =45566;i p_tt| =32;
ncast _send_buf _si ze=150000; ntast _r ecv_buf _si ze=80000) :
PI NGt i neout =2000; num_i ni ti al _menber s=6):
MERGE2(mi n_i nt er val =5000; max_i nt er val =10000) :
FD_SOCK: VERI FY_SUSPECT(t i meout =1500) :
pbcast . NAKACK(gc_I| ag=10; retransmit_ti meout =3000) :
UNI CAST(ti meout =5000) :

52

pbcast . STABLE(desi red_avg_gossi p=20000) :
FRAG
pbcast. GMS(j oi n_ti meout =5000; j oi n_retry_ti meout =2000; shun=f al se; print_| ocal _addr =f al se) "
propertySeparator="::"

/>
The only property necessary is the connect String used by jgroups to configure itself.
Refer to the JG oups docunmentation for explanation of all the protocols. The exanpl e above
uses UDP nulticast. If the connect property is not specified the default JG oups connection
will be used.

JMsCacheManager Peer Provi der Fact ory
T L L L e
<cacheManager Peer Pr ovi der Fact ory
cl ass="net . sf. ehcache. di stri bution.jnms. JIMSCacheManager Peer Pr ovi der Fact ory"
properties="..."
propertySepar at or =", "
/>

The JMS Peer Provi der Factory uses JNDI to naintain nessage queue independence. Refer to the
manual for full configuration exanples using ActiveM) and Open Message Queue.

Valid properties are:
* initial ContextFactoryName (nandatory) - the nane of the factory used to create the
message queue initial context.
* provi derURL (mandatory) - the JNDI configuration information for the service provider
to use.
* topi cConnecti onFact or yBi ndi ngNane (nmandatory) - the JNDI binding name for the
Topi cConnect i onFact ory
* topi cBi ndi ngNane (nmandatory) - the JNDI binding nane for the topic nane
* get QueueBi ndi ngNane (nmandatory only if using jnsCacheLoader) - the JNDI binding nane for
t he queue nane
* securityPrincipal Name - the JNDI java. nami ng.security. principal
* securityCredentials - the JNDI java.nam ng.security.credentials
* url PkgPrefixes - the JNDI java.nami ng.factory.url.pkgs
* userNane - the user nanme to use when creating the Topi cConnection to the Message Queue
* password - the password to use when creating the Topi cConnection to the Message Queue
* acknow edgenment Mode - the JM5 Acknow edgenent node for both publisher and subscri ber.
The avail abl e choices are AUTO ACKNOALEDGE, DUPS OK ACKNOALEDGE and SESSI ON_TRANSACTED.
The default is AUTO ACKNONEDGE.
-->
<cacheManager Peer Provi der Fact ory
cl ass="net. sf. ehcache. di stri buti on. RM CacheManager Peer Pr ovi der Fact ory"
properties="peerDi scovery=automati c,
mul ti cast G oupAddr ess=230. 0. 0. 1,
mul ti cast G oupPort =4446, tineToLive=1"
propertySeparator=","
/>

<l--
CacheManager Peer Li st ener

(Enabl e for distributed operation)
Speci fi es a CacheManager Peer Li stener Factory which will be used to create a

CacheManager Peer Li stener, which listens for messages fromcache replicators participating
in the cluster.

53

The attributes of cacheManager PeerLi stenerFactory are:
class - a fully qualified factory cl ass nane
properties - comma separated properties having meaning only to the factory.

Ehcache comes with a built-in RM-based distribution system The |istener conponent is
RM CacheManager Peer Li st ener which is configured using
RM CacheManager Peer Li stener Factory. It is configured as per the follow ng exanple:

<cacheManager Peer Li st ener Fact ory
cl ass="net. sf.ehcache. di stri buti on. RM CacheManager Peer Li st ener Fact ory"
properties="host Name=ful | y_qual i fi ed_hostnane_or _ip,
port =40001,
r enot eObj ect Port =40002,
socket Ti meout M | | i s=120000"
propertySeparator="," />

Al'l properties are optional. They are:

* host Name - the hostName of the host the listener is running on. Specify
where the host is nultihonmed and you want to control the interface over which cluster
nmessages are received. Defaults to the host name of the default interface if not
speci fi ed.

* port - the port the RM Registry listener listens on. This defaults to a free port
if not specified.

* renoteCbj ectPort - the port nunber on which the renbte objects bound in the registry
receive calls. This defaults to a free port if not specified.

* socketTimeoutMIlis - the nunmber of nms client sockets will stay open when sending
nmessages to the listener. This should be |ong enough for the slowest nessage.
If not specified it defaults to 120000ns.

-->
<cacheManager Peer Li st ener Fact ory
cl ass="net. sf. ehcache. di stri buti on. RM CacheManager Peer Li st ener Fact ory"/ >

<l--
TerracottaConfig

(Enabl e for Terracotta clustered operation)

Not e: You need to install and run one or nore Terracotta servers to use Terracotta
clustering. See http://ww.terracotta.org/web/display/orgsite/ Dowl oad.

Specifies a TerracottaConfig which will be used to configure the Terracotta
runtine for this CacheManager.

Configuration can be specified in two main ways: by reference to a source of
configuration or by use of an enbedded Terracotta configuration file.

To specify a reference to a source (or sources) of configuration, use the url
attribute. The url attribute nust contain a conma-separated |ist of:

* path to Terracotta configuration file (usually naned tc-config.xnm)

* URL to Terracotta configuration file

* <server host>:<port> of running Terracotta Server instance

Si npl est exanple for pointing to a Terracotta server on this nachine:
<terracottaConfig url="1ocal host: 9510"/ >

Exanpl e using a path to Terracotta configuration file:

54

<terracottaConfig url="/app/config/tc-config.xm"/>

Exanpl e using a URL to a Terracotta configuration file:
<terracottaConfig url="http://internal/ehcache/app/tc-config.xm"/>

Exanpl e using multiple Terracotta server instance URLs (for fault tolerance):
<terracottaConfig url ="host 1: 9510, host 2: 9510, host 3: 9510"/ >

To enbed a Terracotta configuration file within the ehcache configuration, sinmply
place a normal Terracotta XM- config within the <terracottaConfig> el ement.

Exanpl e:
<terracottaConfi g>
<tc-config>
<servers>
<server host="serverl" nanme="sl1"/>
<server host="server2" nane="s2"/>
</ servers>
<clients>
<l ogs>app/ | ogs- % </ | ogs>
</clients>
</tc-config>
</terracottaConfig>

For nore information on the Terracotta configuration, see the Terracotta docunentation.
-->

<l--
Cache configuration

The following attributes are required.

name:
Sets the nanme of the cache. This is used to identify the cache. It nust be unique.

maxEl enent sl nMenory:
Sets the maxi mum nunber of objects that will be created in nenory

maxEl enent sOnDi sk:
Sets the maxi mum nunber of objects that will be maintained in the DiskStore
The default value is zero, nmeaning unlimted.

eternal :
Sets whether elenents are eternal. If eternal, tinmeouts are ignored and the
el ement i s never expired.

over f| owToDi sk:
Sets whet her el enments can overflow to di sk when the nmenory store
has reached the maxInMermory limt.

The following attributes and el enents are optional .

ti meTol dl eSeconds:

Sets the time to idle for an elenent before it expires.

i.e. The maxi mum anount of tinme between accesses before an el ement expires
Is only used if the elenent is not eternal.

Optional attribute. A value of O neans that an Elenent can idle for infinity.

55

The default value is 0.

ti meTolLi veSeconds:

Sets the tinme to live for an elenment before it expires.

i.e. The maxi mumtime between creation tine and when an el ement expires.

Is only used if the elenent is not eternal.

Optional attribute. A value of 0 neans that and Element can live for infinity.
The default value is O.

di skPer si stent:
Whet her the disk store persists between restarts of the Virtual Machine.
The default value is fal se.

di skExpi ryThr eadl nt er val Seconds:
The nunber of seconds between runs of the disk expiry thread. The default val ue
is 120 seconds.

di skSpool Buf f er Si zeMB:

This is the size to allocate the DiskStore for a spool buffer. Wites are nmade

to this area and then asynchronously witten to disk. The default size is 30MB.

Each spool buffer is used only by its cache. If you get QutOf Menory errors consi der
lowering this value. To inprove Di skStore perfornance consider increasing it. Trace |evel
logging in the DiskStore will show if put back ups are occurring.

cl ear OnFl ush:
whet her the MenoryStore should be cleared when flush() is called on the cache.
By default, this is true i.e. the MenoryStore is cleared.

menor ySt or eEvi cti onPol i cy:

Pol i cy woul d be enforced upon reaching the naxEl ementslinMenory limt. Default
policy is Least Recently Used (specified as LRU). Other policies available -
First In First Qut (specified as FIFO and Less Frequently Used

(specified as LFU)

Cache el ements can al so contain sub el ements which take the same format of a factory class
and properties. Defined sub-elenments are:

* cacheEventLi stenerFactory - Enables registration of listeners for cache events, such as
put, renove, update, and expire.

* boot strapCacheLoader Factory - Specifies a BootstrapCacheLoader, which is called by a
cache on initialisation to prepopul ate itself.

* cacheExt ensi onFactory - Specifies a CacheExtension, a generic nechansimto tie a class
whi ch holds a reference to a cache to the cache lifecycle.

* cacheExcepti onHandl er Factory - Specifies a CacheExceptionHandl er, which is called when
cache exceptions occur.

* cachelLoader Factory - Specifies a CacheLoader, which can be used both asynchronously and
synchronously to | oad objects into a cache. Mre than one cachelLoader Factory el enent
can be added, in which case the |oaders forma chain which are executed in order. If a
| oader returns null, the next in chain is called.

RM Cache Replication
i o o

56

Each cache that will be distributed needs to set a cache event |istener which replicates
nmessages to the other CacheManager peers. For the built-in RM inplenentation this is done
by addi ng a cacheEventLi stenerFactory el enent of type RM CacheReplicatorFactory to each

di stributed cache’s configuration as per the follow ng exanpl e:

<cacheEvent Li st ener Factory cl ass="net. sf. ehcache. di stri buti on. RM CacheRepl i cat or Fact ory"
properti es="replicateAsynchronousl y=true,
replicat ePuts=true,
repl i cat ePut sVi aCopy=f al se,
repl i cat eUpdat es=t r ue,
repl i cat eUpdat esVi aCopy=t r ue,
repl i cat eRenoval s=true
asynchronousReplicationlnterval M1 1|is=<nunber of mnilliseconds"
propertySeparator="," />

The RM CacheRepl i catorFactory recogni ses the foll ow ng properties:

* replicatePuts=true|fal se - whether new el enents placed in a cache are
replicated to others. Defaults to true.

* replicatePutsVi aCopy=true|fal se - whether the new el enents are
copied to other caches (true), or whether a renbve nmessage is sent. Defaults to true.

* replicateUpdates=true|fal se - whether new el enents which override an
el ement already existing with the same key are replicated. Defaults to true.

* replicateRenoval s=true - whether el enment renovals are replicated. Defaults to true.

* replicateAsynchronously=true | false - whether replications are
asynchronous (true) or synchronous (false). Defaults to true.

* replicateUpdat esVi aCopy=true | false - whether the new el enents are
copied to other caches (true), or whether a renpve message is sent. Defaults to true.

* asynchronousReplicationlnterval MI1lis=<nunber of mlliseconds> - The asynchronous
replicator runs at a set interval of milliseconds. The default is 1000. The mi ni nrum
is 10. This property is only applicable if replicateAsynchronously=true

JG oups Replication
++++++++++HH

For the Jgroups replication this is done wth:
<cacheEvent Li st ener Factory
cl ass="net . sf. ehcache. di stri bution.jgroups.JG oupsCacheRepl i cat or Fact ory"
properties="replicateAsynchronousl y=true, replicatePuts=true,
repli cat eUpdat es=true, replicateUpdatesVi aCopy=fal se,
repl i cat eRenmoval s=t rue, asynchronousRepl i cationlnterval M1|1is=1000"/>
This listener supports the sane properties as the RM CacheReplicationFactory.

JMB Replication
+++++++

For JMS-based replication this is done with:

<cacheEvent Li st ener Fact ory
cl ass="net . sf. ehcache. di stri bution.jnms. JMSCacheRepl i cat or Fact ory”
properties="replicateAsynchronousl y=true,

57

replicat ePut s=true,

repl i cat eUpdat es=t r ue,

repl i cat eUpdat esVi aCopy=t r ue,

repl i cat eRenmoval s=true,

asynchronousReplicationlnterval M11is=1000"
propertySeparator=","/>

This listener supports the sane properties as the RM CacheReplicationFactory.

Cl ust er Boot strappi ng
+++++++ A

Boot strapping a cluster may use a different mechanismto replication. e.g you can nix
JVB replication with bootstrap via RM - just make sure you have the
cacheManager Peer Provi der Fact ory and cacheManager Peer Li st ener Fact ory confi gured.

There are two bootstrappi ng nechani sns: RM and JG oups.

RM Boot st rap

The RM Boot strapCachelLoader bootstraps caches in clusters where RM CacheReplicators are
used. It is configured as per the followi ng exanpl e:

<boot st rapCachelLoader Fact ory
cl ass="net. sf. ehcache. di stri buti on. RM Boot st rapCachelLoader Fact ory"
properties="boot st rapAsynchronousl y=true, nmaxi numChunkSi zeByt es=5000000"
propertySeparator="," />

The RM Boot strapCachelLoader Factory recogni ses the foll owi ng optional properties:

* boot strapAsynchronousl y=true|fal se - whether the bootstrap happens in the background
after the cache has started. If false, bootstrapping nust conplete before the cache is
made avail abl e. The default value is true.

* maxi munChunkSi zeByt es=<i nt eger > - Caches can potentially be very large, larger than the
menmory limts of the VM This property allows the bootstraper to fetched el enments in
chunks. The default chunk size is 5000000 (5MB).

JG oups Bootstrap

Here is an exanpl e of bootstrap configuration using JG oups boostrap:

<boot st rapCachelLoader Fact ory

cl ass="net. sf.ehcache. di stri bution.jgroups.JG oupsBoot strapCachelLoader Fact ory"
properties="boot st rapAsynchronousl y=true"/>

The configuration properties are the sane as for RM above. Note that JG oups bootstrap

only supports asynchronous bootstrap node.

Cache Exception Handling

By default, nbst cache operations will propagate a runtinme CacheException on failure. An

interceptor, using a dynamic proxy, may be configured so that a CacheExceptionHandl er can

be configured to intercept Exceptions. Errors are not intercepted.

It is configured as per the follow ng exanpl e:

58

<cacheExcepti onHandl er Fact ory cl ass="com exanpl e. Exanpl eExcept i onHandl er Fact or y"
properti es="| ogLevel =FI NE"/ >

Caches with ExceptionHandling configured are not of type Cache, but are of type Ehcache
only, and are not avail abl e usi ng CacheManager. get Cache(), but using
CacheManager . get Ehcache() .

Cache Loader

A default CachelLoader nmamy be set which | oads objects into the cache through asynchronous
and synchronous net hods on Cache. This is different to the bootstrap cache | oader, which
is used only in distributed caching.

It is configured as per the follow ng exanple:

<cachelLoader Factory cl ass="com exanpl e. Exanpl eCacheLoader Fact or y"
properti es="type=int, start Count er=10"/>

Cache Extension

CacheExt ensi ons are a general purpose nechanismto allow generic extensions to a Cache.
CacheExtensions are tied into the Cache |ifecycle.

CacheExt ensi ons are created using the CacheExtensionFactory which has a

<code>cr eat eCacheCacheExt ensi on() </ code> net hod whi ch takes as a paraneter a

Cache and properties. It can thus call back into any public nethod on Cache, including, of
course, the | oad methods.

Ext ensi ons are added as per the follow ng exanpl e:

<cacheExt ensi onFactory cl ass="com exanpl e. Fi | eWat chi ngCacheRef r esher Ext ensi onFact ory"
properties="refreshlnterval M|1is=18000, | oader Ti neout =3000,

fl ushPeri od=what ever, soneQ her Property=soneValue ..."/>

Terracotta Cl ustering

Cache el enents can also contain informati on about whet her the cache can be clustered with
Terracotta. The <terracotta> sub-elenent has the following attributes:

* clustered=true|false - indicates whether this cache should be clustered with Terracotta.
By default, if the <terracotta> el enent is included, clustered=true.

* val ueMode=serialization|identity - indicates whether this cache should be clustered with
serialized copies of the values or using Terracotta identity node. By default, val ues
wi Il be cached in serialization node which is sinmilar to other replicated Ehcache nodes.
The identity node is only available in certain Terracotta depl oynent scenarios and will
mai ntain actual object identity of the keys and val ues across the cluster. |In this case

all users of a value retrieved fromthe cache are using the same clustered val ue and nust
provi de appropriate | ocking for any changes nade to the value (or objects referred to by

the val ue).
* coherent Reads=true|fal se - indicates whether this cache should have coherent reads wth
guar ant eed consi stency across the cluster. By default, this setting is true. |If you set

this property to false, reads are allowed to check the | ocal value wthout | ocking,
possibly seeing stale values. This is a performance optim zation with weaker concurrency
guar ant ees and shoul d generally be used with caches that contain read-only data or where
the application can tolerate reading stale data.

The sinplest exanple to indicate clustering:

59

<terracottal/>

To indicate the cache should not be clustered (or renpve the <terracotta> el ement
al toget her):

<terracotta clustered="fal se"/>
To indicate the cache should be clustered using identity node

<terracotta clustered="true" val ueMode="identity"/>
-->

<l--
Mandat ory Default Cache configuration. These settings will be applied to caches
created programmtical |y using CacheManager. add(String cacheNane).

The defaultCache has an inplicit name "default” which is a reserved cache nane.
-->
<def aul t Cache
maxEl enent sl nMenor y="10000"
eternal ="f al se"
ti neTol dl eSeconds="120"
ti meTolLi veSeconds="120"
over f | owToDi sk="t rue"
di skSpool Buf f er Si zevB="30"
maxEl enent sOnDi sk="10000000"
di skPersistent="fal se"
di skExpi ryThr eadl nt er val Seconds="120"
nmenor ySt or eEvi cti onPol i cy="LRU"
/>

<l--
Sanpl e caches. Fol |l owi ng are some exanpl e caches. Renpve these before use
-->

<l--
Sanpl e cache named sanpl eCachel
Thi s cache contains a maxi mumin nenory of 10000 el enents, and will expire

an elenent if it is idle for nore than 5 mnutes and |lives for nore than
10 mi nut es.

If there are nore than 10000 el ements it will overflowto the
di sk cache, which in this configuration will go to wherever java.io.tnp is
defined on your system On a standard Linux systemthis will be /tnp"
-->
<cache nane="sanpl eCachel”

maxEl ement sl nMenor y="10000"

maxEl enent sOnDi sk="1000"

eternal ="fal se"

over f| owToDi sk="true"

di skSpool Buf f er Si zeMB="20"

ti neTol dl eSeconds="300"

ti meTolLi veSeconds="600"

menor ySt or eEvi cti onPol i cy="LFU"

/>

60

<l--
Sanpl e cache named sanpl eCache2
Thi s cache has a nmaxi num of 1000 el enents in nenory. There is no overflow to disk, so 1000
is also the maxi num cache size. Note that when a cache is eternal, tinmeTolLive and
tineToldl e are not used and do not need to be specified.
-->
<cache nane="sanpl eCache2"
maxEl enent sl nMenor y="1000"
et ernal ="true"
over f | owToDi sk="f al se"
menor ySt or eEvi cti onPol i cy="FI FO'
/>

<l--
Sanpl e cache named sanpl eCache3. This cache overflows to disk. The disk store is
persi stent between cache and VM restarts. The disk expiry thread interval is set to 10
m nutes, overriding the default of 2 minutes.
-->
<cache nane="sanpl eCache3"

maxEl emrent sl nMenor y="500"

eternal ="fal se"

over f | owToDi sk="t rue"

ti meTol dl eSeconds="300"

ti neTolLi veSeconds="600"

di skPersistent="true"

di skExpi ryThr eadl nt er val Seconds="1"

menor ySt or eEvi cti onPol i cy="LFU"

/>

<l--
Sanpl e distributed cache named sanpl eDi stri but edCachel.
This cache replicates using defaults.
It also bootstraps fromthe cluster, using default properties.
-->
<cache nanme="sanpl eDi stri but edCachel"

maxEl enent sl nMenor y="10"

eternal ="f al se"

ti neTol dl eSeconds="100"

ti meTolLi veSeconds="100"

over f| owToDi sk="f al se" >

<cacheEvent Li st ener Factory
cl ass="net . sf. ehcache. di stri buti on. RM CacheRepl i cat or Factory"/>
<boot st rapCachelLoader Fact ory
cl ass="net. sf. ehcache. di stri buti on. RM Boot st rapCachelLoader Fact ory"/ >
</ cache>

<l--
Sanpl e distributed cache named sanpl eDi stri but edCache2
Thi s cache replicates using specific properties.
It only replicates updates and does so synchronously via copy
-->
<cache name="sanpl eDi stri but edCache2"
maxEl ement sl nMenor y="10"
eternal ="fal se"

61

ti meTol dl eSeconds="100"
ti neTolLi veSeconds="100"
over fl owToDi sk="f al se" >
<cacheEvent Li st ener Fact ory
cl ass="net. sf. ehcache. di stri buti on. RM CacheRepl i cat or Factory"
properti es="replicateAsynchronousl y=fal se, replicatePuts=fal se
repl i cat ePut sVi aCopy=f al se, replicateUpdates=true
repl i cat eUpdat esVi aCopy=t rue, replicateRenoval s=fal se"/>
</ cache>

<l--
Sanpl e distributed cache named sanpl eDi stri but edCache3
Thi s cache replicates using defaults except that the asynchronous replication
interval is set to 200ns.
This one includes / and # which were illegal in ehcache 1.5.
-->
<cache nane="sanpl e/ Di stri but edCache3"
maxEl ement sl nMenor y="10"
eternal ="fal se"
timeTol dl eSeconds="100"
ti meTolLi veSeconds="100"
over f | owToDi sk="true">
<cacheEvent Li st ener Factory
cl ass="net . sf. ehcache. di stri buti on. RM CacheRepl i cat or Fact ory"
properties="asynchronousReplicationlnterval MI1is=200"/>
</ cache>

<l--
Sanpl e Terracotta clustered cache nanmed sanpl eTerracottaCache.
This cache uses Terracotta to cluster the contents of the cache.
-->
<l--
<cache nanme="sanpl eTerracot t aCache"

maxEl enent sl nMenor y="1000"

eternal ="fal se"

ti neTol dl eSeconds="3600"

ti meTolLi veSeconds="1800"

over fl owToDi sk="f al se">

<terracottal >

</ cache>
-->

</ ehcache>

7.4 Special System Properties

7.4.1 net.sf.ehcache.disabled

Setting this System Property to ue disables caching in ehcache. If disabled no elements wildaked to
a cache. i.e. puts are silently discarded.

e.g.j ava - Dnet . sf. ehcache. di sabl ed=t r ue in the Java command line.

62

7.4.2 net.sf.ehcache.use.classic.lru

Set this System property to ue to use the older LruMemoryStore implementation when LRUeIs&ed
as the eviction policy.

This is provided for ease of migration.
e.g.j ava - Dnet . sf. ehcache. use. cl assi c. | ru=t rue in the Java command line. Storage Options
Ehcache has two stores:

e a MemoryStore and

e a DiskStore

7.5 Memory Store
TheMenor ySt or e is always enabled. It is not directly manipulated, but is mponent of every cache.

e Suitable Element Types
All Elements are suitable for placement in the MemoryStore.

It has the following characteristics:

— Safety
Thread safe for use by multiple concurrent threads.

Tested for memory leaks. See MemoryCacheTest#testMereaky[This test passes for Ehcache
but exploits a number of memory leaks in JCS. JCS will give amd@Memory error with a
default 64M in 10 seconds.

— Backed By JDK

LinkedHashMap Th&enor y St or e for JDK1.4 and JDK 5 it is backed by an extended Linked-
HashMap. This provides a combined linked list and a hash raag,is ideally suited for
caching. Using this standard Java class simplifies the im@ie¢ation of the memory cache. It
directly supports obtaining the least recently used elémen

— Fast
The memory store, being all in memory, is the fastest cachimn.

7.5.1 Memory Use, Spooling and Expiry Strategy

All caches specify their maximum in-memory size, in termsh&f number of elements, at configuration
time.

When an element is added to a cache and it goes beyond its nraximemory size, an existing element
is either deleted, if overflowToDisk is false, or evaluated $pooling to disk, if overflowToDisk is true.
In the latter case, a check for expiry is carried out. If itxpieed it is deleted; if not it is spooled. The
eviction of an item from the memory store is based on the MgSimreEvictionPolicy setting specified in
the configuration file.

memoryStoreEvictionPolicy is an optional attribute in &tive.xml introduced since 1.2. Legal values are
LRU (default), LFU and FIFO.

LRU, LFU and FIFO eviction policies are supported. LRU is dledault, consistent with all earlier releases
of ehcache.

63

e Least Recently Used (LRU) - Default

The eldest element, is the Least Recently Used (LRU). Theutae] timestamp is updated when an
element is put into the cache or an element is retrieved frentache with a get call.

e Less Frequently Used (LFU)

For each get call on the element the number of hits is updd#ten a put call is made for a new
element (and assuming that the max limit is reached for theong store) the element with least
number of hits, the Less Frequently Used element, is evicted

e First In First Out (FIFO)

Elements are evicted in the same order as they come in. Whencalpis made for a new element
(and assuming that the max limit is reached for the memomg}tbe element that was placed first
(First-In) in the store is the candidate for eviction (FiGat).

For all the eviction policies there are algot Qui et andget Qui et methods which do not update
the last used timestamp.

When there is get or aget Qui et on an element, it is checked for expiry. If expired, it is re/md
and null'is returned.

Note that at any point in time there will usually be some exgielements in the cache. Memory
sizing of an application must always take into account thg&imam size of each cache. There is a
convenience method which can provide an estimate of thersizgtes of thevenor ySt ore. See
calculatelnMemorySize(). It returns the serialized sif¢he cache. Do not use this method in
production. Itis very slow. It is only meant to provide a rbugstimate.

The alternative would have been to have an expiry thread i$la trade-off between lower memory
use and short locking periods and cpu utilisation. The deisign favour of the latter. For those
concerned with memory use, simply reduceh@El enent sl nMenory.

7.6 DiskStore

TheDi skSt or e provides a disk spooling facility.

7.6.1 Diskstores are Optional

The diskStore element in ehcache.xml is now optional (as®f 1f all caches use onlyenor ySt or es,
then there is no need to configure a diskStore. This simplifiediguration, and uses less threads. It is
also good where where multiple CacheManagers are being asddanultiple disk store paths would need
to be configured.

If one or more caches requires a DiskStore, and none is coatigjava.io.tmpdir will be used and a
warning message will be logged to encourage explicity canéition of the diskStore path.

Turning off disk stores

To turn off disk store path creation, comment out the disk&Sedement in ehcache.xml.

Theehcache-f ai | saf e. xnl configuration uses a disk store. This will remain the casesgo aot affect
existing Ehcache deployments. So, if you do not wish to usskasiore make sure you specify your own
ehcache.xml and comment out the diskStore element.

64

7.6.2 Suitable Element Types

OnlyEl ement s which areseri al i zabl e can be placed in the DiskStore. Any non serializablenent s
which attempt to overflow to théi skSt or e will be removed instead, and a WARNING level log message
emitted.

7.6.3 Storage
Files

The disk store creates a data file for each cache on starfed tedche_nameata”, and, if th®i skSt or e
is configured to be persistent, an index file calledche namendex" on flushing of th& sk St or e either
explicitly usingCache. f | ush or onCacheManager shutdown.

Storage Location

Files are created in the directory specified by the diskStordiguration element. The diskStore configu-
ration for the ehcache-failsafe.xml and bundled sampldigoration file ehcache.xml is "java.io.tmpdir",
which causes files to be created in the system’s temporazgtdiry.

diskStore Element

Thedi skSt or e element is has one attribute callpat h. --- diskStore path="java.io.tmpdir'/-- Legal
values for the path attibute are legal file system pathsfoe.gnix

/ hone/ appl i cati on/ cache
The following system properties are also legal, in whicledagy are translated:

e user.home - User's home directory
e user.dir - User’s current working directory
e java.io.tmpdir - Default temp file path

e ehcache.disk.store.di?r - A system property you would dignspecify on the command line e.g.
java -Dehcache.disk.store.dir=/u01/myapp/diskdir ...

Subdirectories can be specified below the system property e.
java.io.tnpdir/one
becomes, on a Uni x system

[t mp/ one

7.6.4 Expiry
One thread per cache is used to remove expired elements plibea attributedi skExpi r yThr eadl nt er val Seconds

sets the interval between runs of the expiry thread. Warrsatiing this to a low value is not recommended.
It can cause excessi@ skSt or e locking and high cpu utilisation. The default value is 126sels.

65

7.6.5 Eviction

If the maxEl ement sOnDi sk attribute is set, elements will be evicted from thesk St or e when it exceeds
that amount. The LFU algorithm is used for these evictiotis. not configurable to use another algorithm.

7.6.6 Serializable Objects

Only Serializable objects can be stored ibiakSt or e. A NotSerializableException will be thrown if the
object is not serializable.

7.6.7 Safety

Di skSt or es are thread safe.

7.6.8 Persistence

Di skSt or e persistence is controlled by the diskPersistent configaraglement. If false or omitted,
Di skSt or es will not persist betwee@acheManager restarts. The data file for each cache will be deleted,
if it exists, both on shutdown and startup. No data from aiprevinstanc&€acheManager is available.

If diskPersistent is true, the data file, and an index file,sarmeed. Cache Elements are available to a new
CacheManager . ThisCacheManager may be in the same VM instance, or a new one.

The data file is updated continuously during operation of Biiek Store ifover f | owToDi sk is true.
Otherwise it is not updated until eitheache. f I ush() is called or the cache is disposed.

In all cases the index file is only written when dispose isezhibn theDi skSt or e. This happens when
the CacheManager is shut down, a Cache is disposed, or thes\Biliig shut down. It is recommended
that the CacheManager shutdown() method be used. See\litaehine Shutdown Considerations for
guidance on how to safely shut the Virtual Machine down.

When abi skSt or e is persisted, the following steps take place:

e Any non-expired Elements of theenor y St or e are flushed to the DiskStore
e Elements awaiting spooling are spooled to the data file

e The free list and element list are serialized to the index file
On startup the following steps take place:

e An attempt is made to read the index file. If it does not existannot be read successfully, due to
disk corruption, upgrade of ehcache, change in JDK verdigrtteen the data file is deleted and the
Di skSt or e starts with no Elements in it.

o If the index file is read successfully, the free list and eletiist are loaded into memory. Once this
is done, the index file contents are removed. This way, ifaliea dirty shutdown, when restarted,
Ehcache will delete the dirt index and data files.

e TheDi skSt or e starts. All data is available.

e The expiry thread starts. It will delete Elements which hexgired.
These actions favour safety over persistence. Ehcachedshecnot a database. If a file gets dirty, all
data is deleted. Once started there is further checkingdiouption. When a get is done, if the Element

cannot be successfully derserialized, it is deleted, afidsmeturned. These measures prevent corrupt and
inconsistent data being returned.

66

e Fragmentation

Expiring an element frees its space on the file. This spacesitahle for reuse by new elements.
The element is also removed from the in-memory index of eteéme

e Speed

Spool requests are placed in-memory and then asynchrgnatitten to disk. There is one thread
per cache. An in-memory index of elements on disk is maietate quickly resolve whether a key
exists on disk, and if so to seek it and read it.

e Serialization

Writes to and from the disk use ObjectinputStream and the Sesialization mechanism. This is not
required for the MemoryStore. As a result the DiskStore earenbe as fast as the MemoryStore.

Serialization speed is affected by the size of the objedtsmb&erialized and their type. It has been
found in the ElementTest test that:

— The serialization time for a Java object being a large Mapton& arrays was 126ms, where
the a serialized size was 349,225 bytes.

— The serialization time for a byte[] was 7ms, where the sigdlsize was 310,232 bytes

Byte arrays are 20 times faster to serialize. Make use of éyteys to increase DiskStore perfor-
mance.

e RAMFS

One option to speed up disk stores is to use a RAM file systenso@re operating systems there are
a plethora of file systems to choose from. For example, thie D&che has been successfully used
with Linux’ RAMFS file system. This file system simply consistf memory. Linux presents it as a
file system. The Disk Cache treats it like a normal disk - iuist jway faster. With this type of file
system, object serialization becomes the limiting faadquerformance.

— Operation of a Cache where overflowToDisk is false and disdiftent is true
In this configuration case, the disk will be written binush or shut down.

The next time the cache is started, the disk store will iliéggbut will not permit overflow from
the MemoryStore. In all other respects it acts like a nornsk gtore.

In practice this means that persistent in-memory cachestatt up with all of its elements on
disk. As gets cause cache hits, they will be loaded up intotiner ySt or e. The oher thing
that may happen is that the elements will expire, in whictedheDi skSt or e expiry thread
will reap them, (or they will get removed on a get if they arpiexd).

So, the Ehcache design does not load them all into memoryaohugt, but lazily loads them
as required.

67

68

Chapter 8

Cache Eviction Algorithms

8.1 Eviction

A cache eviction algorithm is a way of deciding whigherrent to evict when the cache is full.

In Ehcache thévenor ySt or e has a fixed limited size set byaxEl enent sl nMenory. When the store
gets full,el enment s are evicted. The eviction algorithms in Ehcache determiriésh elements is evicted.
The defaultis LRU.

What happens on eviction depends on the cache configurdftiami skSt or e is configured, the evicted
element will overflow to disk, otherwise it will be removed.

TheDi skSt or e size by defaultis unbounded. But a maximum size can be g&j treémaxEl ement sOnDi sk
cache attribute. If théi skStor e is full, then adding an element will cause one to be evictetie T
Di skSt or e eviction algorithm is not configurable. It uses LFU.

8.1.1 Supportedmvenoryst ore Eviction Algorithms

The idea here is, given a limit on the number of items to calebe, to choose the thing to evict that gives
thebestresult.

In 1966 Laszlo Belady showed that the most efficient cachiggrdhm would be to always discard the
information that will not be needed for the longest time ie fature. This it a theoretical result that is
unimplementable without domain knowledge. The Least Riycélsed ("LRU") algorithm is often used
as a proxy. It works pretty well because of the locality okerehce phenonemon. As a result, LRU is the
default eviction algorithm in Ehcache, as it is in most cache

Ehcache users may sometimes have a good domain knowledgemrdirgly, Ehcache provides three
eviction algorithms to choose from for thienor y St or e.

8.1.2 Menorystore Eviction Algorithms

TheMenor ySt or e supports three eviction algorithms: LRU, LFU and FIFO.
The default is LRU.

Least Recently Used (LRU)

The eldest element, is the Least Recently Used (LRU). Thetedl timestamp is updated when an element
is put into the cache or an element is retrieved from the cadtiea get call.

69

Less Frequently Used (LFU)

For each get call on the element the number of hits is updsitaen a put call is made for a new element
(and assuming that the max limit is reached) the element lw@tht number of hits, the Less Frequently
Used element, is evicted.

If cache element use follows a pareto distribution, thi®athm may give better results than LRU.

LFU is an algorithm unique to Ehcache. It takes a random sawiithe Elements and evicts the smallest.
Using the sample size of 30 elements, empirical testing stibat an Element in the lowest quartile of use
is evicted 99.99% of the time.

First In First Out (FIFO)
Elements are evicted in the same order as they come in. Whahaalpis made for a new element (and

assuming that the max limit is reached for the memory sttieptement that was placed first (First-In) in
the store is the candidate for eviction (First-Out).

This algorithm is used if the use of an element makes it lésdylito be used in the future. An example
here would be an authentication cache.

8.1.3 Diskstore Eviction Algorithms

TheDi skSt or e uses the Less Frequently Used algorithm to evict an elemleanvt is full.

70

Chapter 9

Code Samples

This page shows some of the more common code samples to getayted. Code samples for each feature
are in the relevant chapters.

¢ Using the CacheManager

— Singleton versus Instance

— Ways of loading Cache Configuration

— Adding and Removing Caches Programmatically
— Shutdown the CacheManager

e Using Caches

— Obtaining a reference to a Cache

— Performing CRUD operations

— Disk Persistence on demand

— Obtaining Cache Sizes

— Obtaining Statistics of Cache Hits and Misses

e Programmatically Creating Caches

— Creating a new cache from defaults
— Creating a new cache with custom parameters

¢ Registering CacheStatistics in an MBeanServer
e JCache Examples

e Terracotta Clustering Examples

e Cache Server Examples

e Browse the JUnit Tests

9.1 Using the CacheManager

All usages of Ehcache start with the creation of a CacheMamag

71

9.1.1 Singleton versus Instance

As of ehcache-1.2, Ehcache CacheManagers can be creatétieassangletons (use the create factory
method) or instances (use new).

Create a singleton CacheManager using defaults, theralitss.

CacheManager.create();
String[] cacheNanmes = CacheManager. getl nstance(). get CacheNames();

Create a CacheManager instance using defaults, thendisesa

CacheManager nmanager = new CacheManager () ;
String[] cacheNames = nanager. get CacheNanes();

Create two CacheManagers, each with a different configuragind list the caches in each.

CacheManager nmnager1
CacheManager nanager 2
String[] cacheNanesFor Manager 1 = nanager 1. get CacheNanes();
String[] cacheNamesFor Manager2 = nmanager 2. get CacheNanes();

new CacheManager ("src/ confi g/ ehcachel. xm ");
new CacheManager ("src/ confi g/ ehcache2. xm ") ;

9.1.2 Ways of loading Cache Configuration

When the CacheManager is created it creates caches foumel @onfiguration.
Create a CacheManager using defaults. Ehcache will loo&Hoache.xml in the classpath.

CacheManager nmanager = new CacheManager () ;
Create a CacheManager specifying the path of a configurilion
CacheManager manager = new CacheManager ("src/ confi g/ ehcache. xm ");
Create a CacheManager from a configuration resource in dlsspth.

URL url = getd ass().get Resource("/anotherconfigurationnamnme.xm");
CacheManager manager = new CacheManager (url);

Create a CacheManager from a configuration in an InputStream

InputStreamfis = new Fil el nput Stream(new Fil e("src/config/ehcache.xm ") . get Absol utePath());

try {
CacheManager nmanager = new CacheManager (fis);

} finally {
fis.close();
}

9.1.3 Adding and Removing Caches Programmatically

You are not just stuck with the caches that were placed in dndiguration. You can create and remove
them programmatically.

Add a cache using defaults, then use it. The following exaneptates a cache callégstCachewhich
will be configured using defaultCache from the configuration

72

CacheManager singl et onManager = CacheManager.create();
si ngl et onManager . addCache("t est Cache");
Cache test = singl etonManager. get Cache("test Cache");

Create a Cache and add it to the CacheManager, then useéttiddCaches are not usable until they have
been added to a CacheManager.

CacheManager singl et onManager = CacheManager. create();

Cache nenoryOnl yCache = new Cache("test Cache", 5000, false, false, 5, 2);
manager . addCache(nenor yOnl yCache) ;

Cache test = singl etonManager. get Cache("test Cache");

See Cache#Cache(...) for the full parameters for a new Cache
Remove cache called sampleCachel

CacheManager singl et onManager = CacheManager. create();
si ngl et onManager . r enoveCache(" sanmpl eCachel");

9.1.4 Shutdown the CacheManager

Ehcache should be shutdown after use. It does have a shutdmiknbut it is best practice to shut it down
in your code.

Shutdown the singleton CacheManager

CacheManager . get I nst ance() . shut down();

Shutdown a CacheManager instance, assuming you have arreddp the CacheManager callednager
manager . shut down() ;

See the CacheManagerTest for more examples.

9.2 Using Caches

All of these examples refer tmanagey which is a reference to a CacheManager, which has a cache in i
calledsampleCachel

9.2.1 Obtaining a reference to a Cache
Obtain a Cache called "sampleCachel", which has been gdigaced in the configuration file

Cache cache = nmnager. get Cache("sanpl eCachel");

9.2.2 Performing CRUD operations

Put an element into a cache

Cache cache = nmnager. get Cache("sanpl eCachel");
El ement el ement = new El enent ("keyl", "val uel");
cache. put (el enent);

73

Update an element in a cache. Even thougbhe. put () is used, Ehcache knows there is an existing
element, and considers the put an update for the purposdifyfing cache listeners.

Cache cache = nmnager. get Cache("sanpl eCachel");

cache. put (new El enent ("keyl", "valuel"));
/1 This updates the entry for "keyl"
cache. put (new El enent ("keyl", "value2"));

Get a Serializable value from an element in a cache with a kéyeg1".

Cache cache = nmnager. get Cache("sanpl eCachel");
El enent el enent = cache. get ("keyl1l");
Serial i zabl e val ue = el enent. get Val ue();

Get a NonSerializable value from an element in a cache wittyaok"key1".

Cache cache = nmnager. get Cache("sanpl eCachel");
El enent el enent = cache. get ("keyl");
oj ect val ue = el enent. get Obj ect Val ue();

Remove an element from a cache with a key of "key1".

Cache cache = nmnager. get Cache("sanpl eCachel");
cache. remove("keyl");

9.2.3 Disk Persistence on demand

sampleCachehas a persistent diskStore. We wish to ensure that the ddtadex are written immedi-
ately.

Cache cache = nmnager. get Cache("sanpl eCachel");
cache. fl ush();

9.2.4 Obtaining Cache Sizes

Get the number of elements currently in teche.

Cache cache = nmnager. get Cache("sanpl eCachel");
int el enentslnMenory = cache. get Si ze();

Get the number of elements currently in teor y St or e.

Cache cache = nmnager. get Cache("sanpl eCachel");
I ong el ement sl nMenory = cache. get Menor ySt or eSi ze() ;

Get the number of elements currently in teskSt or e.

Cache cache = nmnager. get Cache("sanpl eCachel");
I ong el ement sl nMenory = cache. get Di skSt oreSi ze();

74

9.2.5 Obtaining Statistics of Cache Hits and Misses

These methods are useful for tuning cache configurations.
Get the number of times requested items were found in theecaeh cache hits

Cache cache = nmnager. get Cache("sanpl eCachel");
int hits = cache. getHitCount();

Get the number of times requested items were found inther y St or e of the cache.

Cache cache = nmnager. get Cache("sanpl eCachel");
int hits = cache. get MenorySt or eHit Count () ;

Get the number of times requested items were found imitls& St or e of the cache.

Cache cache = nmnager. get Cache("sanpl eCachel");
int hits = cache. get Di skStoreCount ();

Get the number of times requested items were not found inableec i.e. cache misses.

Cache cache = nmnager. get Cache("sanpl eCachel");
int hits = cache. get M ssCount Not Found() ;

Get the number of times requested items were not found inadbleecdue to expiry of the elements.

Cache cache = nmnager. get Cache("sanpl eCachel");
int hits = cache. get M ssCount Expi red();

These are just the most commonly used methods. See Cacli@Texgire examples. See Cache for the
full API.

9.3 Creating a new cache from defaults

A new cache with a given name can be created from defaultssiemly:

manager . addCache("cache nane");

9.4 Creating a new cache with custom parameters

The configuration for a Cache can be specified programmigtioghe Cache constructor:

public Cache(
String nane,
i nt maxEl enent sl nMenory,
Menor ySt or eEvi cti onPol i cy menorySt oreEvi cti onPolicy,
bool ean overfl owToDi sk,
bool ean eternal,
| ong tineTolLi veSeconds,
| ong tineTol dl eSeconds,
bool ean di skPer si st ent,
| ong di skExpi ryThreadl nt erval Seconds) {

75

Here is an example which creates a cache called test.

// Create a CacheManager using defaults
CacheManager manager = CacheManager.create();

/'l Create a Cache specifying its configuration.

Cache testCache = new Cache("test", maxEl enents,
Meror ySt or eEvi ctionPol i cy. LFU, true, false, 60, 30, false, 0);
nanager . addCache(cache) ;

Once the cache is created, add it to the list of caches marggbeé CacheManager:
manager . addCache(t est Cache);

The cache is not usable until it has been added.

9.5 Registering CacheStatistics in an MBeanServer

This example shows how to register CacheStatistics in th€lIplatform MBeanServer, which works
with the JConsole management agent.

CacheManager nmnager = new CacheManager ();
MBeanSer ver nBeanServer = Managenent Factory. get Pl at f or mvBeanSer ver () ;
Managenent Ser vi ce. r egi st er MBeans(nanager, nBeanServer, false, false, false, true);

9.6 Browse the JUnit Tests

Ehcache comes with a comprehensive JUnit test suite, whitbniy tests the code, but shows you how to
use ehcache.

A link to browsable unit test source code for the major Eheatdhsses is given per section. The unit tests
are also in the src.zip in the Ehcache tarball.

9.7 JCache Examples

See the examples in the JCache Chapter.

9.8 Terracotta Example

See the fully worked examples in the Terracotta Clusteringpter.

9.9 Cache Server Examples

See the examples in the Cache Server Chapter.

76

Chapter 10

Java Requirements and Dependencies

10.1 Java Requirements

Current Ehcache releases require Java 1.5 and 1.6 at runtime
Ehcache 1.5 requires Java 1.4.

The Ehcache DX product which provides management and nmrorgtavill work with Ehcache 1.2.3 but
only for Java 1.5 or higher.

10.2 Mandatory Dependencies

Ehcache core 1.6 through to 1.7.0 has no dependencies.

Ehcache core 1.7.1 depends on SLF4J (www.slf4j.org), ar@singly commonly used logging framework
which provides a choice of concrete logging implementation

Other modules have dependencies as specified in their maves. p

77

78

Chapter 11
Logging

11.1 Java Util Logging

As of 1.7.1, Ehcache uses the the slf4j logging facade. Plygur own logging framework.

11.2 Recommended Logging Levels

Ehcache seeks to trade off informing production supporélbgers or important messages and cluttering
the log.

ERROR ERROR messages should not occur in normal productibimdicate that action should be taken.

WARN WARN messages generally indicate a configuration chasfguld be made or an unusual event
has occurred.

DEBUG DEBUG and TRACE messages are for development use. BBUG level statements are sur-
rounded with a guard so that no performance cost is incuméxbs the logging level is set.

Setting the logging level to DEBUG should provide more infiation on the source of any problems. Many
logging systems enable a logging level change to be madeutitiestarting the application.

79

80

Chapter 12

Remote Network debugging and
monitoring for Distributed Caches

12.1 Introduction

The ehcache-1.x-remote-debugger.jar} can be used to delpligated cache operations. When started
with the same configuration as the cluster, it will join thester and then report cluster events for the cache
of interest. By providing a window into the cluster it canéd identify the cause of cluster problems.

12.2 Packaging

From version 1.5 it is packaged in its own distribution tdirbng with a maven module.
Itis provided as an executable jar.

12.3 Limitations

This version of the debugger has been tested only with theutteRMI based replication.

12.4 Usage

It is invoked as follows:

java -classpath [add your application jars here]
-jar ehcache-debugger-1.5.0.jar ehcache. xm sanpl eCachel
pat h_t o_ehcache. xml [cacheTolbnitor]

Note: Add to the classpath any libraries your project usesdiition to these above, otherwise RMI will
attempt to load them remotely which requires specific secpdlicy settings that surprise most people.

It takes one or two arguments:

81

¢ the first argument, which is mandatory, is the Ehcache cordiigun file e.g. app/config/ehcache.xml.
This file should be configured to allow Ehcache to joing thesielu Using one of the existing
ehcache.xml files from the other nodes normally is sufficient

¢ the second argument, which is optional, is the name of thkecaq. distributedCachel

If only the first argument is passed, it will print our a listazches with replication configured from
the configuration file, which are then available for monitgri

If the second argument is also provided, the debugger willitbocache operations received for the
given cache.

This is done by registering a CacheEventListener whichtpoat each operation.

12.4.1 Output

When monitoring a cache it prints a list of caches with regilan configured, prints notifications as they
happen, and periodically prints the cache name, size aabtlee¢nts received. See sample output below
which is produced when the RemoteDebuggerTest is run.

Caches with replication configured which are available for nonitoring are:
sanpl eCachel9 sanpl eCache20 sanpl eCache26 sanpl eCache42 sanpl eCache33
sanpl eCache51 sanpl eCache40 sanpl eCache32 sanpl eCachel8 sanpl eCache25
sanpl eCache9 sanpl eCachel5 sanpl eCache56 sanpl eCache31l sanpl eCache?

sanpl eCachel2 sanpl eCachel7 sanpl eCache45 sanpl eCache4l sanpl eCache30
sanpl eCachel3 sanpl eCache46 sanpl eCache4 sanpl eCache36 sanpl eCache29

sanpl eCache50 sanpl eCache37 sanpl eCache49 sanpl eCache48 sanpl eCache38
sanpl eCache6 sanpl eCache2 sanpl eCache55 sanpl eCachel6 sanpl eCache27

sanpl eCachell sanpl eCache3 sanpl eCache54 sanpl eCache28 sanpl eCachel0

sanpl eCache8 sanpl eCache47 sanpl eCache5 sanpl eCache53 sanpl eCache39

sanpl eCache23 sanpl eCache34 sanpl eCache22 sanpl eCached44 sanpl eCache52
sanpl eCache24 sanpl eCache35 sanpl eCache21 sanpl eCache43 sanpl eCachel

Moni tori ng cache: sanpl eCachel

Cache: sanpl eCachel Notifications received: 0 Elenents in cache: 0

Recei ved put notification for element [key = this is an id, value=this is
a val ue, version=1, hitCount=0, CreationTinme = 1210656023456,

Last AccessTine = 0]

Recei ved update notification for element [key = this is an id, value=this
is a val ue, version=1210656025351, hitCount=0, CreationTine =
1210656024458, LastAccessTinme = 0]

Cache: sanpl eCachel Notifications received: 2 Elenents in cache: 1

Recei ved renove notification for element this is anid

Recei ved renmoveAll notification

12.4.2 Providing more Detailed Logging
If you see nothing happening, but cache operations shoudding through, enable trace (LOG4J) or finest
(JDK) level logging orcodenet.sf.ehcache.distributitoodein the logging configuration being used by the

debugger. A large volume of log messages will appear. Thealproblem is that the CacheManager has
not joined the cluster. Look for the list of cache peers.

12.4.3 Yes, but I still have a cluster problem

Check the FAQ where a lot of commonly reported errors and #wutions are provided. Beyond that,
post to the forums or mailing list or contact Ehcache for gupp

82

Chapter 13

Garbage Collection

Applications which use Ehcache can be expected to haverlbggps. Some Ehcache applications have
heap sizes greater than 6GB.

Ehcache works well at this scale. However large heaps or hehdjobject, which is what a cache is, can
place strain on the default Garbage Collector.

Note. The following documentation relates to Sun JDK 1.5.

13.1 Detecting Garbage Collection Problems

A full garbage collection event pauses all threads in the JMithing happens during the pause. If this
pause takes more than a few seconds it will become noticeable

The clearest way to see if this is happening is tojrsmnat . The following command will produce a log of
garbage collection statistics, updated each ten seconds.

jstat -gcutil <pid> 10 1000000
The thing to watch for is the Full Garbage Collection TimeeTifference between the total time for each

reading is the time the system spends time paused. If tharpiimp more than a few seconds this will not
be acceptable in most application contexts.

13.2 Garbage Collection Tuning

The Sun core garbage collection team has offered the faligwining suggestion for virtual machiens
with large heaps using caching:

java ... -XX: +Di sabl eExplicitCGC - XX: +UseConcMar kSweepGC
- XX: NewSi ze=<1/4 of total heap size> -XX: SurvivorRati 0=16

The reasoning for each setting is as follows:

e -XX:+DisableExplicitGC - some libs call System.gc(). Tlgsusually a bad idea and could explain
some of what we saw.

e -XX:+UseConcMarkSweepGC - use the low pause collector

e -XX:NewSize=1/4 of total heap sizeXX:SurvivorRatio=16

83

13.3 Distributed Caching Garbage Collection Tuning

Some users have reported that enabling distributed cachinges a full GC each minute. This is an issue
with RMI generally, which can be worked around by increasimg interval for garbage collection. The
effect that RMI is having is similar to a user applicationlical Syst em gc() each minute. In the settings
above this is disabled, but it does not disable the full GGatéd by RMI.

The default in JDK6 was increased to 1 hour. The followingeysproperties control the interval.

-Dsun.rm .dgc.client.gclnterval =60000
-Dsun. rm . dgc. server. gcl nterval =60000

See http://bugs.sun.com/bugdatabase/view _bug.doRbutt03367 for the bug report and detailed in-
structions on workarounds.

Increase the interval as required in your application.

84

Chapter 14

JMX Management and Monitoring

14.1 Terracotta Monitoring Products

An extensive new monitoring product, available in Ehcacbig provides a monitoring server with probes
supporting Ehcache-1.2.3 and higher for standalone arstieckd Ehcache. It comes with a web console
and a RESTful API for operations integration.

See the Ehcache DX documentation for more information.

When using Ehcache 1.7 with Terracotta clustering, theaBetta Developer Console shows statistics for
ehcache.

14.2 JMX Overview

JMX, part of JDK1.5, and available as a download for 1.4, te®a standard way of instrumenting classes
and making them available to a management and monitoringstficture.

Thenet . sf. ehcache. managenent package contains MBeans andanagenent Ser vi ce for JMX
management of ehcache. Itis in a separate package so thalildtddes are only required if you wish to
use it - there is no leakage of IMX dependencies into the docadhe package.

This implementation attempts to follow Sun’s JMX best picg. See http://java.sun.com/javase/technologiesiitmrtr-
mgmt/ javamanagement/best-practices.jsp.

Usenet . sf. ehcache. managenent . Managenent Ser vi ce. r egi st er MBeans(. . .) Static method to
register a selection of MBeans to the MBeanServer providéldd method.

If you wish to monitor Ehcache but not use JMX, just use thetexg public methods ofache and
CacheStati stics.

85

net.sf.ehcache. management

CacheConfiguration MBean

CacheMBean

] I
CacheConfiguration Cache
CacheManagerMBean . CacheStatisticsMBean
7 ?
]]
1 L
CacheManager CacheStatistics

ManagementService

generated by yDoc

The Management Package

14.3 MBeans

Ehcache uses Standard MBeans. MBeans are available farlkwihg:

e CacheManager
e Cache
e CacheConfiguration

e CacheStatistics

All MBean attributes are available to a local MBeanServehe TTacheManager MBean allows
traversal to its collection of Cache MBeans. Each Cache MBiawise allows traversal to its
CacheConfiguration MBean and its CacheStatistics MBean.

14.4 JMX Remoting

The JMX Remote API allows connection from a remote JMX Agermirt MBeanServer via amBeanSer ver Connect i on.

Only Seri al i zabl e attributes are available remotely. The following EhcacHgdén attributes are avail-
able remotely:

¢ limited CacheManager attributes
¢ limited Cache attributes
e all CacheConfiguration attributes

o all CacheStatistics attributes

Most attributes use built-in types. To access all attrisuyeu need to add ehcache.jar to the remote
JMX client’s classpath e.g.consol e - J-Dj ava. cl ass. pat h=ehcache. j ar.

86

14.5 ject Name NAMING scheme

e CacheManager - "net.sf.ehcache:type=CacheManager@acbheManager
e Cache - "net.sf.ehcache:type=Cache,CacheManegeieManagerNameamexacheName
e CacheConfiguration - "net.sf.ehcache:type=CacheCoiafiigur, CacheManagetacheManagerNameame=zacheNan

e CacheStatistics - "net.sf.ehcache:type=CacheStatiSacheManagecacheManagerNameamexacheNamé

14.6 The Management Service

TheManagement Ser vi ce class is the API entry point.

netsf.ehcache.event

CacheManagerEventListener

i
i
i
i
i
i
netsf.ehcache.management 1
i
i

javax.management
ManagementService

MBeanServer -‘:—‘
| + dispose() : void

| + getStatus() : Status

|+ init) « void

| + notifyCacheAdded(String) : void
CacheManager | + notifyCacheRemoved(String) : void

| + registerMBeans(CacheManager, MBeanServer, boolean, boolean, boolean, boolean) : void
Stamis =——

net.sfehcache

generated by yDoc

ManagementService

There is only one methot#hnagenent Ser vi ce. r egi st er MBeans which is used to initiate JIMX regis-
tration of an Ehcache CacheManager’s instrumented MBeans.

The Managenent Ser vi ce is a CacheManager Event Li st ener and is therefore notified of any new
Caches added or disposed and updates the MBeanServer agigigp

Once initiated the MBeans remain registered in the MBearegsemtil the CacheManager shuts down, at
which time the MBeans are deregistered. This behaviourressiorrect behaviour in application servers
where applications are deployed and undeployed.

*

Thi s nethod causes the selected nonitoring options to be be registered

with the provi ded MBeanServer for caches in the given CacheManager.

<p/ >

Wil e registering the CacheManager enables traversal to all of the other

itens,

this requires progranmatic traversal. The other options allow entry points closer

to an itemof interest and are nore accessible from JMX nanagenent tools |ike JConsol e.
Mor eover CacheManager and Cache are not serializable, so renpte nmonitoring is not
possible » for CacheManager or Cache, while CacheStatistics and CacheConfiguration are.
Finally = CacheManager and Cache enabl e nanagenent operations to be perforned.

<p/ >

E N I I D I .

87

* Once nmonitoring is enabl ed caches will automatically added and renoved fromthe
* MBeanServer * as they are added and di sposed of fromthe CacheManager. Wen the
* CacheManager itself * shutsdown all registered MBeans will be unregistered.

* @ar am cacheManager the CacheManager to listen to
* @ar am nBeanServer the MBeanServer to regi ster MBeans to
* @ar am regi st er CacheManager Wether to regi ster the CacheManager MBean
* @aramregi sterCaches Wether to regi ster the Cache MBeans
* @aram regi ster CacheConfigurati ons Whet her to register the CacheConfigurati on MBeans
* @aramregi sterCacheStatistics Whether to register the CacheStatistics Means
*/
public static void registerMeans(
net . sf. ehcache. CacheManager cacheManager,
MBeanServer nBeanServer,
bool ean regi st er CacheManager,
bool ean regi st er Caches,
bool ean regi st er CacheConfi gurati ons,
bool ean regi sterCacheStatistics) throws CacheException {

14.7 JConsole Example

This example shows how to register CacheStatistics in th€lIplatform MBeanServer, which works
with the JConsole management agent.

CacheManager manager = new CacheManager () ;
MBeanSer ver mnBeanServer = Managenent Factory. get Pl at f or mvBeanSer ver () ;
Managenent Ser vi ce. r egi st er MBeans(manager, nBeanServer, false, false, false, true);

CacheStatistics MBeans are then registered.

o O 0

J25E 5.0 Monitoring & Management Console: 3075@localhost

Connection
Summary Memaory =~ Threads Classes MBeans VM
~MBeans
%:J Tr‘ee | Attributes Operations | S -
¥ | IMimplementation
> java.lang _ MName Value
R e AssociatedCacheName sampleCachel
B | java.util.logging CacheHits 1
¥ .7 net.sf.ehcache CacheMisses o
¥ | CacheStatistics InMemoryHits 1
¥ |7 nevsf.ehcache.CacheManager@B881cb3 Objgcltqunl 1
@ CachedlLogin OnDiskHits 0
StatisticsAccuracy 1

3 FooterPageCache

@ SimplePageCachingFilter -
@ SimplePageCachingFilterwithBlankPageProblem

@ SimplePageFragmentCachingFilter

StatisticsAccuracyDescription Best Effort

@ net.sf.ehcache.constructs.asynchronous.MessageCache

@ persistentLongExpirylntervalCache

i sampleCachel

@ sampleCache2

@ sampleCacheNoldle

@ sampleCacheNotEternalButNoldleOrExpiry) .
%@ sampleldlingExpiringCache (Refresh)

CacheStatistics MBeans in JConsole

88

14.8 JMX Tutorial

See http://weblogs.java.net/blog/maxpoon/archive’Z® extending_the n_2.htmlfor an online tutorial.

89

90

Chapter 15

Class loading and Class Loaders

Class loading within the plethora of environments Ehca@mel® running is a somewhat vexed issue.

Since ehcache-1.2 all classloading is done in a standardnaane utility class:Cl assLoader Uti | .

15.1 Plugin class loading

Ehcache allows plugins for events and distribution. Thesdaaded and created as follows:

[**
* Creates a new class instance. Logs errors along the way. C asses are | oaded using the
* Ehcache standard cl assl oader.
*
* @aramclassNane a fully qualified class nanme
* @eturn null if the instance cannot be | oaded
*/
public static Object createNew nstance(String classNane) throws CacheException {
Cl ass clazz;
hj ect newl nst ance;
try {
clazz = O ass. forNane(cl assNanme, true, getStandardd assLoader());
} catch (C assNot FoundException e) {
[1try fallback
try {
clazz = O ass. forNane(cl assNanme, true, getFallbackC assLoader());
} catch (C assNot FoundException ex) ({
t hr ow new CacheException("Unable to |oad class " + classNane +
Initial cause was " + e.getMessage(), e);

}

try {
newl nstance = cl azz. newl nstance();

} catch (111 egal AccessException e) {
t hrow new CacheException("Unable to |oad class " + classNanme +
Initial cause was " + e.getMessage(), e);
} catch (InstantiationException e) {
t hrow new CacheException("Unable to |oad class " + classNanme +
Initial cause was " + e.getMessage(), e);

}

return newi nstance;

91

}

| * %
* CGets the <code>Cl assLoader </ code> that all classes in ehcache, and extensions, should
* use for classloading. All dassLoading in Ehcache should use this one. This is the only
* thing that seens to work for all of the class |oading situations found in the wld.
* @eturn the thread context cl ass | oader.
*/
public static C assLoader get StandardC assLoader () {
return Thread. current Thread() . get Cont ext Cl assLoader ();
}

| **
* Cets a fallback <code>C assLoader</code> that all classes in ehcache, and extensions,
* shoul d use for classloading. This is used if the context class | oader does not work.
* @eturn the <code>Cl assLoaderUtil . cl ass. get assLoader(); </ code>
*/
public static C assLoader getFall backC assLoader () {
return C assLoaderUtil.cl ass. getd assLoader();

}

If this does not work for some reason a CacheException iswihreith a detailed error message.

15.2 Loading of ehcache.xml resources
If the configuration is otherwise unspecified, Ehcache Idoka configuration in the following order:

e Thread.currentThread().getContextClassLoader() egiRrce("/ehcache.xml")
e ConfigurationFactory.class.getResource("/ehcach&xml

e ConfigurationFactory.class.getResource("/ehcacteafaixml”)

Ehcache uses the first configuration found.

Note the use of "/ehcache.xml" which requires that ehcacfidoe placed at the root of the classpath, i.e.
not in any package.

92

Chapter 16

Performance Considerations

16.1 DiskStore

Ehcache comes with eenor ySt or e and abi skSt ore. TheMenor ySt or e is approximately an order
of magnitude faster than th# skSt or e. The reason is that tha skSt or e incurs the following extra
overhead:

e Serialization of the key and value
e Eviction from theMenor y St or e using an eviction algorithm

e Reading from disk

Note that writing to disk is not a synchronous performancerbgad because it is handled by a separate
thread.

A Cache should alway have itsxi nunsi ze attribute set to 1 or higher. A Cache with a maximum size
of 1 has twice the performance of a disk only cache, i.e. onerevthemaxi munsi ze is set to 0. For this
reason a warning will be issued if a Cache is created withrax® nunti ze.

16.2 Replication
The asynchronous replicator is the highest performancereTére two different effects:

e Because it is asynchronous the caller returns immediately

e The messages are placed in a queue. As the queue is processtiale messages are sent in one
RMI call, dramatically accelerating replication perfomca.

93

94

Chapter 17

Cache Decorators

Ehcache 1.2 introduced the Ehcache interface, of which €achn implementation. It is possible and
encouraged to create Ehcache decorators that are backe€aghe instance, implement Ehcache and
provide extra functionality.

The Decorator pattern is one of the the well known Gang of atierns.

17.1 Creating a Decorator

Cache decorators are created as follows:
Bl ocki ngCache newBl ocki ngCache = new Bl ocki ngCache(cache);

The class must implement Ehcache.

17.2 Accessing the decorated cache

Having created a decorator it is generally useful to put & place where multiple threads may access it.
This can be achieved in multiple ways.

17.2.1 Using CacheManager to access decorated caches

A built-in way is to replace the Cache in CacheManager withdacorated one. This is achieved as in the
following example:

cacheManager . repl aceCacheW t hDecor at edCache(cache, newBl ocki ngCache) ;

TheCacheManager r epl aceCacheW t hDecor at edCache method requires that the decorated cache be
built from the underlying cache from the same name.

Note that any overwritten Ehcache methods will take on nevabieurs without casting, as per the normal
rules of Java. Casting is only required for new methods thetiecorator introduces.

Any calls to get the cache out of the CacheManager now refigrdécorated one.

A word of caution. This method should be called in an appaiply synchronized init style method before
multiple threads attempt to use it. All threads must be safeing the same decorated cache. An example
of a suitable init method is found @achi ngFi | ter:

95

| * %

*+ The cache hol ding the web pages. Ensure that all threads for a given cache nane
* are using the same instance of this.

*/

private Bl ocki ngCache bl ocki ngCache;

| **

* |nitialises blockingCache to use

*

* @hrows CacheException The nost l|ikely cause is that a cache has not been

* configured in Ehcache’s configuration file ehcache.xm for the
* filter name
*/

public void dolnit() throws CacheException {
synchroni zed (this.getC ass()) {
i f (bl ockingCache == null) {
final String cacheName = get CacheNane();
Ehcache cache = get CacheManager (). get Encache(cacheNane);
if (!(cache instanceof Bl ocki ngCache)) {
// decorate and substitute
Bl ocki ngCache newBl ocki ngCache = new Bl ocki ngCache(cache);
get CacheManager () . repl aceCacheW t hDecor at edCache(cache, newBl ocki ngCache);

}
bl ocki ngCache = (Bl ocki ngCache) get CacheManager (). get Ehcache(get CacheNane());

Ehcache bl ocki ngCache = si ngl et onManager . get Ehcache("sanpl eCachel");

The returned cache will exhibit the decorations.

17.3 Built-in Decorators

17.3.1 BlockingCache

A blocking decorator for an Ehcache, backed by a @link Eheach

It allows concurrent read access to elements already inableec If the element is null, other reads will
block until an element with the same key is put into the cache.

This is useful for constructing read-through or self-p@pinlg caches.
BlockingCache is used b§achi ngFi l ter.

96

net.sf.ehcache. constructs. blockin

net.sf.ehcache exceptionhandler

=
net.sf.ehcache.bootstrap
——————
sf.ehcache. st

he statistics

net.sf.ehcache.config

generated by yDoc

BlockingCache

17.3.2 SelfPopulatingCache

A selfpopulating decorator for @link Ehcache that createésges on demand.

Clients of the cache simply call it without needing knowledd whether the entry exists in the cache. If
null the entry is created.

The cache is designed to be refreshed. Refreshes operdte badking cache, and do not degrade perfor-
mance of get calls.

97

SelfPopulatingCache extends BlockingCache. Multipledls attempting to access a null element will
block until the first thread completes. If refresh is beintiezhthe threads do not block - they return the
stale data.

This is very useful for engineering highly scalable systems

net.sf.ehcache.constructs. blocking

. i-BIockingCan:he |

net.sf.ehcache.constructs_blgcking |

net.sf.ehcache.constructs.blocking . net.sf.ehcache
SelfPopulatingCache
CacheEmryFach"y == # factory : CacheEntryFactary L == Ehcache
+ SelfPopulatingCachelEhcache, CacheEntryFactory) -——-——-3'! Element

+ getiObject) : Element

makeAndCheckElement(Object, Object) : Element

+ refreshi) : void

+refreshiboolean) : void

+ refreshiObject) : Element

+ refreshiObject, boolean) : Element

refreshElement(Element, Ehcache) - void

refreshElement(Element, Ehcache, boolean) : Element

generated by yDoc

SelfPopulatingCache

17.3.3 Caches with Exception Handling

These are decorated. See Cache Exception Handlers foetails

98

Chapter 18

Shutting Down Ehcache

If you are using persistent disk stores, or distributed raytcare should be taken to shutdown ehcache.
Note that Hibernate automatically shuts down its EhcazluheManager .
The recommended way to shutdown the Ehcache is:

e to callCacheManager . shut down()

e in aweb app, register the Ehcacdreut downLi st ener

Though not recommended, Ehcache also lets you register askvkdiown hook.

18.1 ServletContextListener

Ehcache proivdes a ServletContextListener that shutsdesmaineManager. Use this when you want to
shutdown Ehcache automatically when the web applicatishusdown.

To receive notification events, this class must be configumettie deployment descriptor for the web
application.

To do so, add the following to web.xml in your web application

<listener>
<l i stener-class>net. sf.ehcache. constructs. web. Shut downlLi stener</I|i stener-cl ass>
</listener>

18.2 The Shutdown Hook

Ehcache CacheManager can optionally register a shutdoak ho
To do so, set the system propenyt . sf . ehcache. enabl eShut downHook=t r ue.

This will shutdown the CacheManager when it detects theuslrMachine shutting down and it is not
already shut down.

18.2.1 When to use the shutdown hook

Use the shutdown hook where:

99

e you need guaranteed orderly shutdown, when for examplg p&rsistent disk stores, or distributed
caching.

e CacheManager is not already being shutdown by a framewarlay® using or by your application.

Having said that, shutdown hooks are inherently dangerdhe.JVM is shutting down, so some-
times things that can never be null are. Ehcache guardssigeirmany of these as it can, but the
shutdown hook should be the last option to use.

18.2.2 What the shutdown hook does

The shutdown hook is on CacheManager. It simply calls thédsiwn method.
The sequence of eventsiis:

e call dispose for each registered CacheManager eventdisten

e call dispose for each Cache.
Each Cache will:

— shutdown the MemoryStore. The MemoryStore will flush to thekStore

— shutdown the DiskStore. If the DiskStore is persistent,iit write the entries and index to
disk.

— shutdown each registered CacheEventListener
— set the Cache status to shutdown, preventing any furtheatpes on it.

e set the CacheManager status to shutdown, preventing atmgfuoperations on it

18.2.3 When a shutdown hook will run, and when it will not
The shutdown hook runs when:

e aprogram exists normally. e.g. System.exit() is calledherast non-daemon thread exits

e the Virtual Machine is terminated. e.g. CTRL-C. This copmsds toki | | -SI GTERM pi d or
kill -15 pidon Unix systems.

The shutdown hook will not run when:

o the Virtual Machine aborts

e A SIGKILL signal is sent to the Virtual Machine process on ¥gaistems. e.gki || -SI GKI LL
pidorkill -9 pid

e A Terni nat ePr ocess call is sent to the process on Windows systems.

18.3 Dirty Shutdown

If Ehcache is shutdown dirty then any persistent disk staib$e corrupted. They will be deleted, with a
log message, on the next startup.

Replications waiting to happen to other nodes in a disteibaache will also not get written.

100

Chapter 19

Web Caching

Ehcache provides a set of general purpose web caching filtdteehcache- web module.

Using these can make an amazing difference to web applicpddormance. A typical server can deliver
5000+ pages per second from the page cache. With built-ppgmrj, storage and network transmission is
highly efficient. Cache pages and fragments make excelfamdidates fobi skSt or e storage, because
the object graphs are simple and the largest part is alrebgye] | .

19.1 SimplePageCachingFilter

This is a simple caching filter suitable for caching compabsHTTP responses such as HTML, XML or
JSON.

It uses a Singleton CacheManager created with the defauttifamethod. Override to use a different
CacheManager

It is suitable for:

e complete responses i.e. not fragments.

e A content type suitable for gzipping. e.g. text or text/html

For fragments see the SimplePageFragmentCachingFilter.

19.2 Keys

Pages are cached based on their key. The key for this cadhe 4RI followed by the query string. An
example ig adm n/ SomePage. j sp?i d=1234&nane=Beag| e.

This key technique is suitable for a wide range of uses. hdependent of hosthame and port number, so
will work well in situations where there are multiple domsiwhich get the same content, or where users
access based on different port numbers.

A problem can occur with tracking software, where uniquesaidsinserted into request query strings. Be-
cause each request generates a unique key, there will reeezdrhe hit. For these situations it is better to
parse the request parameters and ovetradle ul at eKey(j avax. servl et . http. H t pSer vl et Request)
with an implementation that takes account of only the sigaift ones.

101

19.3 Configuring the cacheName

A cache entry in ehcache.xml should be configured with theenaiithe filter.

Names can be set using the init-parandecacheNamiode or by sub-classing this class and overriding
the name.

19.4 Concurent Cache Misses

A cache miss will cause the filter chain, upstream of the cagfiiter to be processed. To avoid threads
requesting the same key to do useless duplicate work, thesssds block behind the first thread.

The thead timeout can be set to fail after a certain wait jnggthe init-parantodélocking TimeoutMilligcode

By default threads wait indefinitely. In the event upstreanmcpssing never returns, eventually the web

server may get overwhelmed with connections it has not redpdto. By setting a timeout, the waiting

threads will only block for the set time, and then throw a @liet.sf.ehcache.constructs.blocking.LockTimeoutlgtoe.
Under either scenario an upstream failure will still causailare.

19.5 Gzipping

Significant network efficiencies, and page loading speedigrsbe gained by gzipping responses.
Whether a response can be gzipped depends on:

e Whether the user agent can accept GZIP encoding. This &emtyrart of HTTP1.1. If a browser
accepts GZIP encoding it will advertise this by includingt\HTTP header: All common browsers
except IE 5.2 on Macintosh are capable of accepting gzipaingo Most search engine robots do
not accept gzip encoding.

e Whether the user agent has advertised its acceptance cfrgzigling. This is on a per request basis.
If they will accept a gzip response to their request they nndtide the following in the HTTP
request header:

Accept - Encodi ng: gzip

Responses are automatically gzipped and stored that wéeinache. For requests which do not
accept gzip encoding the page is retrieved from the cachgipped and returned to the user agent.
The ungzipping is high performance.

19.6 Caching Headers

The Si npl eCachi ngHeader sPageCachi ngFi | t er extendsSi npl ePageCachi ngFi | t er to provide
the HTTP cache headers: ETag, Last-Modified and Expirespliarts conditional GET.

Because browsers and other HTTP clients have the expirynire#ftion returned in the response headers,
they do not even need to request the page again. Even onaegh®fowser copy has expired, the browser
will do a conditional GET.

So why would you ever want to use SimplePageCachingFilteiclhwvdoes not set these headers? The
answer is that in some caching scenarios you may wish to rempeage before its natural expiry. Consider
a scenario where a web page shows dynamic data. Under EhitecB$ement can be removed at any
time. However if a browser is holding expiry informationp#ie browsers will have to wait until the expiry
time before getting updated. The caching in this scenanndee about defraying server load rather than
minimising browser calls.

102

19.7 Init-Params
The following init-params are supported:

e cacheNane - the name in ehcache.xml used by the filter.

e bl ocki ngTi meout M | | i s - the time, in milliseconds, to wait for the filter chain toust with a
response on a cache miss. This is useful to fail fast in thetefean infrastructure failure.

19.8 Reentrance

Care should be taken not to define a filter chain such that time €achi ngFi | t er class is reentered.
The Cachi ngFi | t er uses theBl ocki ngCache. It blocks until the thread which did a get which results
in a null does a put. If reentry happens a second get happémglkee first put. The second get could wait
indefinitely. This situation is monitored and if it happeas,lllegalStateException will be thrown.

19.9 SimplePageFragmentCachingFilter

The SimplePageFragmentCachingFilter does everytingingplePageCachingFilter does, except it never
gzips, so the fragments can be combined. There is variahidfilter which sets browser caching headers,
because that is only applicable to the entire page.

19.10 Example web.xml configuration

<web-app xm ns="http://java. sun.com xm / ns/j avaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
Xsi : schemaLocati on="http://java. sun. conl xm /ns/j avaee
http://java. sun. conl xm / ns/j avaee/ web-app_2_5. xsd '
versi on="2.5">

<filter>
<filter-name>CachePagelCachi ngFilter</filter-name>
<filter-class>net.sf.ehcache. constructs.web.filter.Sinpl ePageCachi ngFilter
</filter-class>
<i nit-paranp
<par am name>suppr essSt ackTr aces</ par am nane>
<par am val ue>f al se</ param val ue>
</init-paranr
<i nit-paranp
<par am name>cacheNane</ par am nanme>
<par am val ue>CachePagelCachi ngFi | t er </ par am val ue>
</init-paranr
</filter>

<filter>
<filter-name>Si npl ePageFr agnent Cachi ngFilter</filter-nanme>
<filter-class>net.sf.ehcache. constructs.web.filter.Sinpl ePageFragnent Cachi ngFilter
</filter-class>
<i nit-paranp
<par am name>suppr essSt ackTr aces</ par am nane>
<par am val ue>f al se</ param val ue>
</init-param

103

<i nit-paranpr
<par am nanme>cacheNane</ par am nanme>
<par am val ue>Si npl ePageFr agnent Cachi ngFi | t er </ par am val ue>
</init-param
</filter>

<filter>
<filter-nanme>Si npl eCachi ngHeader sPageCachi ngFil ter</filter-name>
<filter-class>net.sf.ehcache. constructs.web.filter.Sinpl eCachi ngHeader sPageCachi ngFi | t er
</filter-class>
<i nit-paranp
<par am nane>suppr essSt ackTr aces</ par am nane>
<par am val ue>f al se</ param val ue>
</init-paranr
<i nit-paranpr
<par am name>cacheNane</ par am nanme>
<par am val ue>CachedPage2Cache</ par am val ue>
</init-param

</filter>
<I-- This is a filter chain. They are executed in the order bel ow
Do not change the order. -->

<filter-mppi ng>
<filter-name>CachePagelCachingFilter</filter-nanme>
<url - pattern>/ CachedPage. j sp</url -pattern>
<di spat cher >REQUEST</ di spat cher >
<di spat cher >| NCLUDE</ di spat cher >
<di spat cher >FORWARD</ di spat cher >

</filter-mapping>

<filter-mppi ng>
<filter-name>Si npl ePageFr agnent Cachi ngFilter</filter-name>
<url -pattern>/include/ Footer.jsp</url-pattern>
</filter-mappi ng>

<filter-mppi ng>
<filter-nanme>Si npl ePageFr agnent Cachi ngFilter</filter-name>
<url -pattern>/fragnent/ CachedFragnent.jsp</url-pattern>
</filter-mappi ng>

<filter-mappi ng>
<filter-nanme>Si npl eCachi ngHeader sPageCachi ngFil ter</filter-name>

<url - pattern>/ CachedPage2.j sp</url -pattern>
</filter-mapping>

An ehcache.xml configuration file, matching the above woluéhtbe:

<Ehcache xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : noNanmespaceSchemaLocation="../../main/confi g/ ehcache. xsd">

<di skStore path="java.io.tnpdir"/>
<def aul t Cache

maxEl enent sl nMenor y="10"
et ernal ="f al se"

104

ti neTol dl eSeconds="5"
ti meTolLi veSeconds="10"
over f | owToDi sk="t rue"
/>

<l -- Page and Page Fragnent Caches -->

<cache nane="CachePagelCachi ngFilter"
maxEl enent sl nMenor y="10"
eternal ="fal se"
ti meTol dl eSeconds="10000"
ti meTolLi veSeconds="10000"
over f | owToDi sk="true" >

</ cache>

<cache nane="CachedPage2Cache"
maxEl enent sl nMenor y="10"
eternal ="f al se"
ti meTolLi veSeconds="3600"
overfl owToDi sk="true">
</ cache>

<cache nane="Si npl ePageFr agnent Cachi ngFi l ter"
maxEl enent sl nMenor y="10"
eternal ="fal se"
ti meTol dl eSeconds="10000"
ti meTolLi veSeconds="10000"
over f | owToDi sk="true" >
</ cache>
<cache nane="Si npl eCachi ngHeader sTi neout PageCachi ngFi | ter"
maxEl enent sl nMenor y="10"
eternal ="fal se"
ti meTol dl eSeconds="10000"
ti meTolLi veSeconds="10000"
over fl owToDi sk="true">
</ cache>

</ ehcache>

19.11 CachingFilter Exceptions

Additional exception types have been added to the Cachitey.Fi

19.11.1 FilterNonReentrantException

Thrown when it is detected that a caching filter's doFiltetimoe is reentered by the same thread. Reentrant
calls will block indefinitely because the first request hasy®d unblocked the cache. Nasty.

105

19.11.2 AlreadyGzippedException

The web package performs gzipping operations. One causelaions on web browsers is getting content
that is double or triple gzipped. They will either get gold#ggook or a blank page. This exception is
thrown when a gzip is attempted on already gzipped content.

19.11.3 ResponseHeadersNotModifiableException

A gzip encoding header needs to be added for gzipped contérd. HttpServletResponse#setHeader()
method is used for that purpose. If the header had alreadydsgethe new value normally overwrites the
previous one. In some cases according to the servlet sgaific setHeader silently fails. Two scenarios
where this happens are:

e The response is committed.

e RequestDispatcher#include method caused the requestbDied Caching with ehcache

Ehcache provides a pluggable distributed caching mecmariikis enables for multiple CacheMan-
agers and their caches in multiple JVMs to share data with edeer.

19.12 Pluggable Mechanisms

Ehcache has a pluggable cache replication scheme whiclesribb addition of cache replication mecha-
nisms.

The following distribution mechanisms are supported indehe 1.7:

e Terracotta

e RMI

JGroups
e JMS

Cache Server

Each of the is covered in its own chapter.

19.13 The need for shared cache data

Many production applications are deployed in clusters.atfreapplication maintains its own cache, then

updates made to one cache will not appear in the others. Aaroukd for web based applications is to use

sticky sessions, so that a user, having established a Bassione server, stays on that server for the rest
of the session. A workaround for transaction processintgsys using Hibernate is to do a session.refresh
on each persistent object as part of the save. sessiosha&fxelicitly reloads the object from the database,
ignoring any cache values.

19.14 Replicated Caches

One solution is to replicate data between the caches to keepdonsistent, or coherent. Typical operations
which Applicable operations include:

106

e put
e update (put which overwrites an existing entry)

e remove

Update supports updateViaCopy or updateVialnvalidate [atier sends the a remove message out to the
cache cluster, so that other caches remove the Elementptesesrving coherency. It is typically a lower
cost option than a copy.

19.15 Using a Cache Server

Ehcache 1.5 supports the Ehcache Cache Server.
To achieve shared data, all JVMs read to and write from a C&eheer, which runs it in its own JVM.
To achieve redundancy, the Ehcache inside the Cache Sanvéecset up in its own cluster.

This technique will be expanded upon in Ehcache 1.6.

19.16 Notification Strategies

The best way of notifying of put and update depends on the@alfiithe cache.

If the Element is not available anywhere else then the El¢itssif should form the payload of the notifi-
cation. An example is a cached web page. This notificati@tesiy is called copy.

Where the cached data is available in a database, there @@htices. Copy as before, or invalidate the
data. By invalidating the data, the application tied to tlteeo cache instance will be forced to refresh its
cache from the database, preserving cache coherency. @nEi¢ment key needs to be passed over the
network.

Ehcache supports notification through copy and invalidakectable per cache.

19.17 Potential Issues with Distributed Caching

19.17.1 Potential for Inconsistent Data

Timing scenarios, race conditions, delivery, reliabildgnstraints and concurrent updates to the same
cached data can cause inconsistency (and thus a lack ofermy¢across the cache instances.

This potential exists within the Ehcache implementatioheSe issues are the same as what is seen when
two completely separate systems are sharing a databaseyaaroscenario.

Whether data inconsistency is a problem depends on the ddthav it is used. For those times when it
is important, Ehcache provides for synchronous delivergudt and updates via invalidation. These are
discussed below:

Synchronous Delivery

Delivery can be specified to be synchronous or asynchrorsgichronous delivery gives faster returns

to operations on the local cache and is usually preferredici8pnous delivery adds time to the local

operation, however delivery of an update to all peers in theter happens before the cache operation
returns.

107

Put and Update via Invalidation

The default is to update other caches by copying the new waldkem. If the replicatePutsViaCopy
property is set to false in the replication configuratiortspare made by removing the element in any other
cache peers. If the replicateUpdatesViaCopy propertytimdalse in the replication configuration, updates
are made by removing the element in any other cache peers.

This forces the applications using the cache peers to reduarcanonical source for the data.
A similar effect can be obtained by setting the element TTh tow value such as a second.

Note that these features impact cache performance anddshoube used where the main purpose of a
cache is performance boosting over coherency.

19.17.2 Use of Time To Idle

Time To Idle is inconsistent with distributed caching. Titeeidle makes some entries live longer on some
nodes than in others because of cache usage patterns. Hptheveache entry "last touched" timestamp
is not replicated across the distributed cache.

Do not use Time To Idle with distributed caching, unless yowndt care about inconsistent data across
nodes.

108

Chapter 20

RMI Distributed Caching

Gét T Get T
Application | Local -‘J Application | Local -‘J
Setver 1 | Encache Server2 | Ehcache

RMI RMI
N

Put, ReT, RemoveAlk! Bootstrap
(Sync orf |

\:L/‘{.
RMI AMI
Get :'J bt T
Application | Local Application | Loeal :
Server 4 | Ehcache Server 3 | Ehcache

Since version 1.2, Ehcache has provided distributed cgalsimg RMI.

An RMI implementation is desirable because:

e ititself is the default remoting mechanism in Java
e itis mature
e it allows tuning of TCP socket options

e Element keys and values for disk storage must already balRalle, therefore directly transmit-
table over RMI without the need for conversion to a third fatrsuch as XML.

e it can be configured to pass through firewalls

e RMI had improvements added to it with each release of Javashadan then be taken advantage of.

While RMlI is a point-to-point protocol, which can generatetof network traffic, Ehcache manages this
through batching of communications for the asynchronoploator.

To set up RMI distributed caching you need to configure then€itanager with:

e a PeerProvider

e a CacheManagerPeerListener

The for each cache that will operate distributed, you thesdrte add one of the RMI cacheEventLis-
tener types to propagate messages.

You can also optionally configure a cache to bootstrap frdmmtaches in the cluster.

109

20.1 Suitable Element Types

Only Serializable Elements are suitable for replication.

Some operations, such as remove, work off Element keysrrttha the full Element itself. In this case
the operation will be replicated provided the key is Sexadie, even if the Element is not.

20.2 Configuring the Peer Provider

20.2.1 Peer Discovery

Ehcache has the notion of a group of caches acting as a distililcache. Each of the caches is a peer to
the others. There is no master cache. How do you know abouttiee caches that are in your cluster?
This problem can be given the name Peer Discovery.

Ehcache provides two mechanisms for peer discovery, kestlicar: manual and automatic.

To use one of the built-in peer discovery mechanisms sptuifglass attribute afacheManager Peer Pr ovi der Fact ory
asnet . sf. ehcache. di stri buti on. RM CacheManager Peer Pr ovi der Fact ory in the ehcache.xml
configuration file.

20.2.2 Automatic Peer Discovery

Automatic discovery uses TCP multicast to establish anchtaii a multicast group. It features minimal
configuration and automatic addition to and deletion of merslirom the group. No a priori knowledge
of the servers in the cluster is required. This is recommeiadehe default option.

Peers send heartbeats to the group once per second. If ageaphbeen heard of for 5 seconds it is
dropped from the group. If a new peer starts sending hedstiiés admitted to the group.

Any cache within the configuration set up as replicated vélhiade available for discovery by other peers.

To set automatic peer discovery, specify the propertieibate ofcacheManager Peer Pr ovi der Fact ory
as follows:

peerDiscovery=automatic multicastGroupAddress=mastiaddress |multicast host name multicastGroup-
Port=port timeToLive=0-255 (See below in common problerafote setting this) hostName= the host-
name or IP of the interface to be used for sending and recgiticast packets (relevant to mulithomed
hosts only)

Example

Suppose you have two servers in a cluster. You wish to diggibampleCachell and sampleCachel2.
The configuration required for each server is identical:

Configuration for serverl and server2

<cacheManager Peer Provi der Fact ory
cl ass="net. sf. ehcache. di stri buti on. RM CacheManager Peer Provi der Fact ory"

properties="peerDi scovery=automatic, multicastG oupAddress=230.0.0. 1,
mul ti cast G oupPort =4446, timeTolive=32"/>

110

20.2.3 Manual Peer Discovery

Manual peer configuration requires the IP address and peadi listener to be known. Peers cannot be
added or removed at runtime. Manual peer discovery is recamdied where there are technical difficulties
using multicast, such as a router between servers in a chhwstedoes not propagate multicast datagrams.
You can also use it to set up one way replications of data, bingaerver2 know about serverl but not
vice versa.

To set manual peer discovery, specify the properties at&ibfcacheManager Peer Pr ovi der Fact ory
as follows: peerDiscovery=manual rmiUrls=//server:fmmtheName, ...

The rmiUrls is a list of the cache peers of the server beindigored. Do not include the server being
configured in the list.

Example

Suppose you have two servers in a cluster. You wish to diggibampleCachell and sampleCachel2.
Following is the configuration required for each server:

Configuration for serverl

<cacheManager Peer Pr ovi der Fact ory
cl ass="net. sf.ehcache. di stri buti on. RM CacheManager Peer Pr ovi der Fact ory"

properti es="peer Di scovery=manual
rm Ul s=//server2: 40001/ sanpl eCachell|//server2: 40001/ sanpl eCachel2"/ >

Configuration for server2

<cacheManager Peer Provi der Fact ory
cl ass="net.sf.ehcache. di stri buti on. RM CacheManager Peer Provi der Fact ory"

properti es="peer D scovery=nmanual ,
rm Url s=//server1l: 40001/ sanpl eCachell|//server1l: 40001/ sanpl eCachel2"/ >

20.3 Configuring the CacheManagerPeerListener

A CacheManagerPeerListener listens for messages from fmetire current CacheManager.

You configure the CacheManagerPeerListener by specifiyidga@neManagerPeerListenerFactory which
is used to create the CacheManagerPeerListener usingupie phechanism.

The attributes of cacheManagerPeerListenerFactory are:

¢ class - a fully qualified factory class name * properties - otarseparated properties having meaning
only to the factory.

Ehcache comes with a built-in RMI-based distribution systeThe listener component is RMI-
CacheManagerPeerListener which is configured using RMi€danagerPeerListenerFactory. It is
configured as per the following example:

<cacheManager Peer Li st ener Fact ory
cl ass="net . sf. ehcache. di stri buti on. RM CacheManager Peer Li st ener Fact ory"

properti es="host Nane=| ocal host, port=40001,
socket Ti mreout M I i s=2000"/ >

111

Valid properties are:

¢ hostName (optional) - the hostName of the host the listenerrining on. Specify where the host is
multihomed and you want to control the interface over whicisier messages are received.

The hostname is checked for reachability during CacheMamiagialisation.

If the hostName is unreachable, the CacheManager will egiustart and an CacheException will
be thrown indicating connection was refused.

If unspecified, the hostname will useet Addr ess. get Local Host () . get Host Addr ess() ,which
corresponds to the default host network interface.

Warning: Explicitly setting this to localhost refers to tleeal loopback of 127.0.0.1, which is not
network visible and will cause no replications to be recgifrem remote hosts. You should only use
this setting when multiple CacheManagers are on the sambingac

e port (mandatory) - the port the listener listens on.

e socketTimeoutMillis (optional) - the number of secondstisockets will wait when sending mes-
sages to this listener until they give up. By default thisG9@ms.

20.4 Configuring Cache Replicators

Each cache that will be distributed needs to set a cache kstemier which then replicates messages to the
other CacheManager peers. This is done by adding a cachekstenerFactory element to each cache’s
configuration.

<!-- Sanpl e cache nanmed sanpl eCache2. -->
<cache nane="sanpl eCache2"
maxEl ement sl nMenor y="10"
eternal ="fal se"
ti neTol dl eSeconds="100"
ti meTolLi veSeconds="100"
over f | owToDi sk="fal se">
<cacheEvent Li st ener Fact ory
cl ass="net . sf. ehcache. di stri buti on. RM CacheRepl i cat or Fact ory"
properties="replicateAsynchronousl y=true, replicatePuts=true, replicateUpdates=true,
repl i cat eUpdat esVi aCopy=f al se, replicateRenoval s=true "/>
</ cache>

class - use net.sf.ehcache.distribution.RMICacheRatpliEactory
The factory recognises the following properties:

o replicatePuts=true |false - whether new elements placaatathe are replicated to others. Defaults
to true.

¢ replicateUpdates=true |false - whether new elements vavielride an element already existing with
the same key are replicated. Defaults to true.

e replicateRemovals=true - whether element removals ateatpd. Defaults to true.

e replicateAsynchronously=true |false - whether replaraiare asyncrhonous (true) or synchronous
(false). Defaults to true.

¢ replicateUpdatesViaCopy=true |false - whether the neweids are copied to other caches (true),
or whether a remove message is sent. Defaults to true.

112

To reduce typing if you want default behaviour, which is regle everything in asynchronous mode, you
can leave off th&M CacheRepl i cat or Fact or y properties as per the following example:

<I-- Sanmpl e cache named sanpl eCache4. Al m ssing RM CacheReplicatorFactory properties
default to true -->

<cache nane="sanpl eCache4"

maxEl enent sl nMenor y="10"

eternal ="true"

over f | owToDi sk="f al se"

menor ySt or eEvi cti onPol i cy="LFU"'>

<cacheEvent Li st ener Factory
cl ass="net. sf. ehcache. di stri buti on. RM CacheRepl i cator Factory"/>

</ cache>

20.5 Configuring Bootstrap from a Cache Peer

When a peer comes up, it will be incoherent with other cackiéisen the bootstrap completes it will be
partially coherent. Bootstrap gets the list of keys from lad@n peer, and then loads those in batches
from random peers. If bootstrap fails then the Cache willstatt (not like this right now). However if a
distributed cache operation occurs which is then overgnilly bootstrap there is a chance that the cache
could be inconsistent.

Here are some scenarios:

Delete overwritten by boostrap put--- Cache A keys with values: 1, 2, 3,4, 5

Cache B starts bootstrap

Cache A removes key 2

Cache B removes key 2 and then bootstrap puts it back

Put overwritten by boostrap put --- Cache A keys with values: 1, 2, 3,4, 5

Cache B starts bootstrap

Cache A updates the value of key 2

Cache B updates the value of key 2 and then bootstrap ovesifitith the old value

The solution is for bootstrap to get a list of keys and writenthall before committing transactions.

This could cause synchronous transaction replicates th lgac To solve this problem, commits will be
accepted, but not written to the cache until after bootst@gherency is maintained because the cache is
not available until bootstrap has completed and the trdiosechave been completed.

20.6 Full Example

Ehcache’s own integration tests provide complete exangflB#/1-based replication. The best example is
the integration test for cache replication. You can seeliherere: http://ehcache.org/xref-test/net/sf/ehe&dilstribution/RM

The test uses 5 ehcache.xml’s representing 5 CacheMarssjens to distribute using RMI.

113

20.7 Common Problems

20.7.1 Tomcat on Windows

There is a bug in Tomcat and/or the JDK where any RMI listerikéfail to start on Tomcat if the installa-
tion path has spaces in it. See http://archives.java.earagi-bin/wa?A2=ind0205&L=rmi-users&P=797
and http://www.ontotext.com/kim/doc/sys-doc/fag-hoveugs/known-bugs.html.

As the default on Windows is to install Tomcat in "Progranekil this issue will occur by default.

20.7.2 Multicast Blocking

The automatic peer discovery process relies on multicasttiddst can be blocked by routers. Virtualisa-
tion technologies like Xen and VMWare may be blocking malsit If so enable it. You may also need to
turn it on in the configuration for your network interfacedar

An easy way to tell if your multicast is getting through is teeuthe Ehcache remote debugger and watch
for the heartbeat packets to arrive.

20.7.3 Multicast Not Propagating Far Enough or PropagatingToo Far

You can control how far the multicast packets propagate tilngehe badly misnamed time to live. Using
the multicast IP protocol, the timeToLive value indicatee scope or range in which a packet may be
forwarded. By convention:

O is restricted to the sane host

1lis restricted to the sane subnet

32 is restricted to the sane site

64 is restricted to the same region
128 is restricted to the sane conti nent
255 is unrestricted

The default value in Java is 1, which propagates to the salmeesuChange the timeToLive property to
restrict or expand propagation.

114

Chapter 21

Distributed Caching using JGroups

As of version 1.5, JGroups can be used as the underlying mithdor the distributed operations in
ehcache. JGroups offers a very flexible protocol staclabdiunicast and multicast message transmission.
On the down side JGroups can be complex to configure and samecpl stacks have dependencies on
others.

To set up distributed caching using JGroups you need to amefigg PeerProviderFactory of type JGroup-
sCacheManagerPeerProviderFactory which is done glofmally CacheManager For each cache that will
operate distributed, you then need to add a cacheEventkistactory of type JGroupsCacheReplicator-
Factory to propagate messages.

21.1 Suitable Element Types

Only Serializable Elements are suitable for replication.

Some operations, such as remove, work off Element keysrrttha the full Element itself. In this case
the operation will be replicated provided the key is Sexadtie, even if the Element is not.

21.2 Peer Discovery

If you use the UDP multicast stack there is no additional cpmfition. If you use a TCP stack you will
need to specify the initial hosts in the cluster.

21.3 Configuration

There are two things to configure:

e The JGroupsCacheManagerPeerProviderFactory which is doce per CacheManager and there-
fore once per ehcache.xml file.
e The JGroupsCacheReplicatorFactory which is added to esttets configuration.

The main configuration happens in the JGroupsCacheManegd?RoviderFactory connect sub-
property. A connect property is passed directly to the J@sahannel and therefore all the protocol
stacks and options available in JGroups can be set.

115

21.4 Example configuration using UDP Multicast

Suppose you have two servers in a cluster. You wish to diggifampleCachell and sampleCachel2 and
you wish to use UDP multicast as the underlying mechanism.

The configuration for serverl and server?2 are identical aitidook like this:

<cacheManager Peer Pr ovi der Fact ory
cl ass="net . sf. ehcache. di stri bution.jgroups. JG oupsCacheManager Peer Pr ovi der Fact ory"
properti es="connect =UDP(ntast _addr=231. 12. 21. 132; ntast _port =45566;) : PI NG
MERGE2: FD_SOCK: VERI FY_SUSPECT: pbcast . NAKACK: UNI CAST: pbcast . STABLE: FRAG pbcast . GV&"
propertySeparator="::"
/>

21.5 Example configuration using TCP Unicast

The TCP protocol requires the IP address of all servers tonogvk. They are configured through the
TCPPI NG protocol of Jgroups.

Suppose you have 2 servers hostl and host2, then the cotifigusa

<cacheManager Peer Pr ovi der Fact ory

cl ass="net. sf.ehcache. di stribution.jgroups.JG oupsCacheManager Peer Provi der Fact ory"

properties="connect =TCP(start_port=7800):
TCPPI NE i ni tial _host s=host 1[7800] , host 2[7800] ; port _r ange=10; t i meout =3000;
num.initial _nmenbers=3; up_t hread=t rue; down_t hread=true):
VERI FY_SUSPECT(t i meout =1500; down_t hr ead=f al se; up_t hr ead=f al se):
pbcast . NAKACK(down_t hr ead=t rue; up_t hread=true; gc_l ag=100; ret ransmni t _ti neout =3000) :
pbcast. GVB(j oi n_ti meout =5000; j oi n_retry_ti neout =2000; shun=f al se;
print_| ocal _addr =f al se; down_t hr ead=t r ue; up_t hr ead=true) "

propertySeparator="::" />

21.6 Protocol considerations.

You should read the JGroups documentation to configure thtequls correctly.
See http://www.jgroups.org/javagroupsnew/docs/mahtral_single/index.html.

If using UDP you should at least configure PING, FD_SOCK (kaildetection), VERIFY_SUSPECT,
pbcast. NAKACK (Message reliability), pbcast. STABLE (reage garbage collection).

21.7 Configuring CacheReplicators

Each cache that will be distributed needs to set a cache kstemier which then replicates messages to the
other CacheManager peers. This is done by adding a cachekstenerFactory element to each cache’s
configuration. The properties are identical to the one use&MI replication.

The listener factorfMUST be of typeJG oupsCacheRepl i cat or Fact ory.

<!-- Sanpl e cache nanmed sanpl eCache2. -->
<cache nane="sanpl eCache2"

maxEl enent sl nMenor y="10"

eternal ="fal se"

ti meTol dl eSeconds="100"

116

ti meTolLi veSeconds="100"

over f | owToDi sk="f al se">

<cacheEvent Li st ener Fact ory

cl ass="net. sf. ehcache. di stri bution.jgroups. JG&G oupsCacheRepl i cat or Fact ory"
properti es="replicateAsynchronousl y=true, replicatePuts=true,

repl i cat eUpdat es=true, replicateUpdatesVi aCopy=fal se, replicateRenoval s=true" />

</ cache>

The configuration options are explained below:
class - use net.sf.ehcache.distribution.jgroups.JG@apheReplicatorFactory
The factory recognises the following properties:

¢ replicatePuts=true |false - whether new elements placaatathe are replicated to others. Defaults

to true.

¢ replicateUpdates=true |false - whether new elements vavielride an element already existing with
the same key are replicated. Defaults to true.

¢ replicateRemovals=true - whether element removals ateated. Defaults to true.

e replicateAsynchronously=true |false - whether replaraiare asyncrhonous (true) or synchronous

(false). Defaults to true.

¢ replicateUpdatesViaCopy=true |false - whether the newetds are copied to other caches (true),
or whether a remove message is sent. Defaults to true.

¢ asynchronousReplicationintervalMillis default 1000nim@& between updates when replication is
asynchroneous

21.8 Complete Sample configuration

A typical complete configuration for one replicated cachefigured for UDP will look like:

<Ehcache xm ns: xsi="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : noNamespaceSchemaLocation="../../../main/confi g/ ehcache. xsd">

<di skStore path="j ava.io.tnpdir/one"/>

<cacheManager Peer Provi der Factory cl ass="net. sf. ehcache. di stri bution.jgroups

. J&G oupsCacheManager Peer Pr ovi der Fact ory"

properti es="connect =UDP(ntast _addr=231. 12. 21. 132; ntast _port =45566;i p_ttl =32;
ntast _send_buf _si ze=150000; ntast _r ecv_buf _si ze=80000) :

Pl NG ti neout =2000; num_i ni ti al _menber s=6):

MERGE2(m n_i nt er val =5000; max_i nt er val =10000) :

FD_SOCK: VERI FY_SUSPECT(t i meout =1500) :

pbcast . NAKACK(gc_Il ag=10;retransm t _ti meout =3000) :

UNI CAST(ti meout =5000) :

pbcast . STABLE(desi red_avg_gossi p=20000) :

FRAG

pbcast . GVB(j oi n_ti nmeout =5000; j oi n_retry_ti neout =2000;

shun=f al se; print_| ocal _addr=true)"

propertySeparator="::"
/>

<cache nanme="sanpl eCacheAsync"

117

maxEl ement sl nMenor y="1000"

eternal ="fal se"

ti meTol dl eSeconds="1000"

ti meTolLi veSeconds="1000"

over f | owToDi sk="f al se">

<cacheEvent Li st ener Fact ory

cl ass="net. sf. ehcache. di stri bution.jgroups.JG oupsCacheRepl i cat or Fact ory"

properties="replicateAsynchronousl y=true, replicatePuts=true,
replicat eUpdat es=true, replicateUpdatesVi aCopy=fal se
replicat eRemoval s=true" />
</ cache>

</ ehcache>

21.9 Common Problems

If replication using JGroups doesnt’t work the way you hawonfigured try this configuration which has
been extensively tested:

<cacheManager Peer Pr ovi der Fact ory
cl ass="net. sf. ehcache. di stribution.jgroups. J&G oupsCacheManager Peer Pr ovi der Fact ory"/ >

<cache nanme="sanpl eCacheAsync"
maxEl enent sl nMenor y="1000"
eternal ="fal se"
ti meTol dl eSeconds="1000"
ti neTolLi veSeconds="1000"
over f| owToDi sk="f al se" >
<cacheEvent Li st ener Fact ory
cl ass="net . sf.ehcache. di stribution.jgroups.JG oupsCacheRepli cat or Fact ory"
properties="replicateAsynchronousl y=true, replicatePuts=true
repli cat eUpdat es=true, replicateUpdatesVi aCopy=fal se,
replicat eRenoval s=true" />
</ cache>

If this fails to replicate, try to get the example progranirJGroups to run:
http://www.jgroups.org/javagroupsnew/docs/manuailfth02.html#d0e451

and
http://www.jgroups.org/javagroupsnew/docs/manuellfth02. html#ltDoesntWork

Once you have figured out the connection string that work®ir ynetwork for JGroups, you can directly
paste it in the connect property & oupsCacheManager Peer Pr ovi der Fact ory.

118

Chapter 22

Distributed Caching using JMS

As of version 1.6, JMS can be used as the underlying mechdoistime distributed operations in Ehcache
with the jmsreplication module.

JMS, ("Java Message Service") is an industry standard méshdor interacting with message queues.
Message queues themselves are a very mature piece of inftaseé used in many enterprise software
contexts. Because they are a required part of the Java EEisgtan, the large enterprise vendors all
provide their own implementations. There are also sevgrahource choices including Open MQ and
Active MQ. Ehcache is integration tested against both afe¢he

The Ehcache jmsreplication module lets organisations withessage queue investment leverage it for
caching.

It provides:

e replication between cache nodes using a replication tapiaccordance with ehcache’s standard
replication mechanism

e pushing of data directly to cache nodes from external topigliphers, in any language. This is
done by sending the data to the replication topic, where tibraatically picked up by the cache
subscribers.

e a JMSCacheloader, which sends cache load requests to a diitez an Ehcache cluster node, or
an external queue receiver can respond.

22.1 Ehcache Replication and External Publishers

Ehcache replicates using JMS as follows:

e Each cache node subscribes to a predefined topic, configatieetapicBindingNamé ehcache.xml.

e Each replicated cache publishes caehenent s to that topic. Replication is configured per cache.

To set up distributed caching using JMS you need to configutd@CacheManagerPeerProvider-
Factory which is done globally for a CacheManager.

For each cache that wishing to replicate, you add a JGrogb&ReplicatorFactory element to the
cache element.

119

User Application
Mode 1

ahcache

Object
Text
I cachei

XML
pubiisher

Message
Queue

N iy

Non eache
publishar Onject
(Java) [Text
XML~
Object /r

Test
|~ hL

ement

Elamant
Object
Text
XML

Non cache
publignes
(non Java)

User Application

Element Ry

A
g

22.1.1 Configuration
Message Queue Configuration

Each cluster needs to use a fixed topic name for replicatiehu®a topic using the tools in your message
gueue. Out of the box, both ActiveMQ and Open MQ support atgaton of destinations, so this step
may be optional.

Ehcache Configuration

Configuration is done in the ehcache.xml.
There are two things to configure:

e The JMSCacheManagerPeerProviderFactory which is done paicCacheManager and therefore
once per ehcache.xml file.

e The JMSCacheReplicatorFactory which is added to each saatrdfiguration if you want that cache
replicated.

The main configuration happens in the JGroupsCacheManegd?RoviderFactory connect sub-
property. A connect property is passed directly to the J@sahannel and therefore all the protocol
stacks and options available in JGroups can be set.

Configuring the IMSCacheManagerPeerProviderFactory Following is the configuration instructions
as it appears in the sample ehcache.xml shipped with ehcache

{Configuring JMS replication}.

<cacheManager Peer Pr ovi der Fact ory
cl ass="net. sf. ehcache. di stri bution.jnms. JIMSCacheManager Peer Pr ovi der Fact ory"
properties="..."
propertySeparator=","
/>

The JMS Peer Provi der Factory uses JNDI to naintain nessage queue independence.

Refer to the manual for full configuration exanples using ActiveM) and Open Message Queue.

120

Valid properties are:
* initial ContextFactoryName (nandatory) - the nane of the factory used to create the
message queue initial context.
* provi derURL (mandatory) - the JNDI configuration information for the service provider to
use.
* topi cConnecti onFact or yBi ndi ngNane (mandatory) - the JNDI binding name for the
Topi cConnect i onFact ory
t opi cBi ndi ngNanme (mandatory) - the JNDI binding name for the topic nane
securityPrincipal Nane - the JNDI java.nami ng.security. principal
securityCredentials - the JND java.nam ng.security.credentials
url PkgPrefixes - the JNDI java.nam ng.factory.url.pkgs
user Nane - the user nane to use when creating the TopicConnection to the Message Queue
password - the password to use when creating the Topi cConnection to the Message Queue
acknow edgement Mode - the JMS Acknow edgenent node for both publisher and subscri ber.
The avail abl e choices are
AUTO_ACKNOWLEDGE, DUPS_OK_ACKNOW.EDGE and SESSI ON_TRANSACTED.
The default is AUTO ACKNOW.EDGE.
* |istenToTopic - true or false. If false, this cache will send to the JVMS topic but wll
not |isten for updates.
* Default is true.

* 0% X X X X F

Example Configurations Usage is best illustrated with concrete examples for Adit¢@and Open MQ.

Configuring the JMSCacheManagerPeerProviderFactory for Active MQ This configuration works
with Active MQ out of the box.

<cacheManager Peer Pr ovi der Fact ory

cl ass="net. sf.ehcache. di stribution.jnms. JMSCacheManager Peer Provi der Fact ory"

properties="initial Context Fact or yNane=Exanpl eActi veMJ ni ti al Cont ext Factory,
provi der URL=t cp: / /| ocal host: 61616,
t opi cConnecti onFact or yBi ndi ngNane=t opi cConnecti onFactory,
t opi cBi ndi ngName=ehcache"

propertySeparator=","

/>

You need to provide your own ActiveMQInitialContextFagtdor the initialContextFactoryName.
An example which should work for most purposes is:

public class Exanpl eActiveMJ nitial ContextFactory extends ActiveMl nitial ContextFactory {

[**
* {@nheritDoc}
*/
@verride
@uppr essWar ni ngs("unchecked")
public Context getlnitial Context(Hashtable environment) throws Nam ngException {

Map<String, Object> data = new Concurrent HashMap<String, Object>();

String factoryBi ndi ngNane = (String)environnent. get (JMSCacheManager Peer Provi der Factory
. TOPI C_CONNECTI ON_FACTCRY_BI NDI NG_NANE) ;

try {
dat a. put (f act or yBi ndi ngNane, creat eConnecti onFactory(environment));

121

} catch (URI Synt axException e) {
t hrow new Nam ngException("Error initialisating ConnectionFactory with nessage "
+ e. get Message());

}

String topicBindi ngName = (String)environment. get (JMSCacheManager Peer Provi der Fact ory
. TOPI C_BI NDI NG_NAME) ;

dat a. put (t opi cBi ndi ngNane, createTopi c(topicBi ndi ngNane));

return createContext(environnent, data);

Configuring the JIMSCacheManagerPeerProviderFactory for @pen MQ This configuration works
with an out of the box Open MQ.

<cacheManager Peer Provi der Fact ory

cl ass="net.sf.ehcache. di stribution.jnms. JMSCacheManager Peer Provi der Fact ory"

properties="initial ContextFact oryNane=com sun. j ndi . f scont ext . Ref FSCont ext Fact ory,
provi der URL=file:///tnp,
t opi cConnecti onFact or yBi ndi ngNane=MyConnect i onFact ory,
t opi cBi ndi ngNanme=ehcache"

propertySeparator=","

/>

To set up the Open MQ file system initial context to work witlstexample use the followinigngobj ngr
commands to create the requires objects in the context.

i mgobj ngr add -t tf -1 ' MyConnectionFactory’ -j java.nam ng.provider.url \
=file:///tnp -j java.nam ng.factory.initial=comsun.jndi.fscontext.Ref FSContextFactory -f
i mgobj ngr add -t t -1 'ehcache’ -o 'ingDestinati onNane=EhcacheTopi cDest’

-j java.nam ng. provider.url\
=file:///tnp -j java.nam ng.factory.initial=comsun.jndi.fscontext.Ref FSContextFactory -f

Configuring the JIMSCacheReplicatorFactory This is the same as configuring any of the cache repli-
cators. The class should bet . sf. ehcache. di stri buti on.jns. JMSCacheRepl i cat or Fact ory.

See the following example:

<cache name="sanpl eCacheAsync"
maxEl enent sl nMenor y="1000"
eternal ="f al se"
ti neTol dl eSeconds="1000"
ti meTolLi veSeconds="1000"
over f | owToDi sk="f al se">
<cacheEvent Li st ener Factory
cl ass="net . sf. ehcache. di stribution.jnms. IJMSCacheRepl i cat or Fact ory
properti es="replicateAsynchronousl y=true,
replicat ePuts=true,
repl i cat eUpdat es=tr ue,
repl i cat eUpdat esVi aCopy=tr ue,
repli cat eRenoval s=true,
asynchronousRepl i cationlnterval M11is=1000"

122

propertySeparator=","/>
</ cache>

22.1.2 External JMS Publishers

Anything that can publish to a message queue can also ade esmthies to ehcache. These are called
non-cache publishers.

Required Message Properties

Publishers need to set up to four String properties on eadsage: cacheName, action, mimeType and
key.

cacheNane Property A JMS message property which contains the name of the cadpeetate on.

If no cacheName is set the message wilidgneored A warning log message will indicate that the message
has been ignored.

acti on Property A JMS message property which contains the action to perforthe cache.
Available actions are strings labeledT, REMOVE andREMOVE_ALL.
If not set no action is performed. A warning log message wilicate that the message has been ignored.

m meType Property A JMS message property which contains the mimeType of theages Applies to
the PUT action. If not set the message is interpreted as follows:

ObjectMessage - if it is an net.sf.ehcache.Element, thisrtriéated as such and stored in the cache.

For other objects, a new Element is created using the olsjebei ObjectMessage as the value and the key
property as a key. Because objects are already typed, theType is ignored.

TextMessage - Stored in the cache as value of MimeTypeBydgAThe mimeType should be specified.
If not specified it is stored as typext / pl ai n.

BytesMessage - Stored in the cache as value of MimeTypeBsagAThe mimeType should be specified.
If not specified it is stored as typgpl i cati on/ oct et - stream

Other message types are not supported.

To send XML use a TextMessage or BytesMessage and set thelgpm®appl i cat i on/ xm .1t will be
stored in the cache as a value of MimeTypeByteArray.

The REMOVE andREMOVE_ALL actions do not require@ meType property.

key Property The key in the cache on which to operate on. The key is of typadst
TheREMOVE_ALL action does not require a key property.

If an ObjectMessage of type net.sf.ehcache.Element is senkey is contained in the element. Any key
set as a property is ignored.

If the key is required but not provided, a warning log messagkindicate that the message has been
ignored.

123

Code Samples

These samples use Open MQ as the message queue and use ittwitthe box defaults. They are heavily
based on Ehcache’s own JMS integration tests. See the tesedor more details.

Messages should be sent to the topic that Ehcache is ligtenirin these samples iticacheTopi cDest .
All samples get a Topic Connection using the following metho

private Topi cConnecti on get MXConnection() throws JMSException {
com sun. messagi ng. Connecti onFactory factory = new com sun. messagi ng. Connecti onFactory();
factory. set Property(Connecti onConfi guration.ingAddressList, "l ocal host: 7676");
factory. set Property(Connecti onConfi guration.ingReconnect Enabl ed, "true");
Topi cConnecti on nyConnection = factory. creat eTopi cConnection();
return nyConnecti on;

PUT a Java Object into an Ehcache JMS Cluster

String payload = "this is an object";
Topi cConnecti on connection = get MXonnecti on();
connection.start();

Topi cSessi on publisher Session =
connecti on. creat eTopi cSessi on(fal se, Session. AUTO ACKNOALEDGE) ;

Ooj ect Message nessage = publi sher Sessi on. creat eObj ect Message(payl oad) ;
nmessage. set Stri ngProperty(ACTI ON_PROPERTY, "PUT");

nmessage. set Stri ngProperty(CACHE_NAME_PROPERTY, "sanpl eCacheAsync");
//don’t set. Should work.

// message. set Stri ngProperty(M ME_TYPE_PROPERTY, null);

//shoul d work. Key shoul d be ignored when sending an el enent.

nmessage. set Stri ngProperty(KEY_PROPERTY, "1234");

Topi ¢ topic = publisherSession. createTopi c("EhcacheTopi cDest");
Topi cPubl i sher publisher = publisherSession. createPublisher(topic);
publ i sher. send(nmessage) ;

connecti on. stop();

Ehcache will create an Element in cache "sampleCacheAsyitie"key "1234" and a Java class String
value of "this is an object".

PUT XML into an Ehcache JMS Cluster

Topi cConnecti on connection = get MXonnecti on();
connection.start();

Topi cSessi on publ i sher Sessi on = connection. creat eTopi cSessi on(fal se,
Sessi on. AUTO_ACKNOWLEDCGE) ;

String value = "<?xm version=\"1.0\"?>\n" +
" <ol dj oke>\n" +
"<bur ns>Say <quot e>goodni ght </ quote>,\n" +
"Gracie.</burns>\n" +
"<al | en><quot e>CGoodni ght, \n" +

124

"Gracie.</quote></allen>\n" +
"<appl ause/ >\ n" +
"</ ol dj oke>";

Text Message nmessage = publi sher Sessi on. cr eat eText Message(val ue);
nessage. set Stri ngProperty(ACTI ON_PROPERTY, "PUT");

nmessage. set St ri ngProperty(CACHE_NAME_PROPERTY, "sanpl eCacheAsync");
nmessage. set Stri ngProperty(M ME_TYPE_PROPERTY, "application/xm");
nmessage. set Stri ngProperty(KEY_PROPERTY, "1234");

Topi c topic = publisherSession. createTopi c("EhcacheTopi cDest");
Topi cPubl i sher publisher = publisherSession. createPublisher(topic);
publ i sher. send(nmessage) ;

connecti on. stop();

Ehcache will create an Element in cache "sampleCacheAsyititkey "1234" and a value of type Mime-
TypeByteArray.

On a get from the cache the MimeTypeByteArray will be retdrné is an Ehcache value object from
which a mimeType and byte[] can be retrieved. The mimeTypiebsi"application/xml". The byte[] will
contain the XML String encoded in bytes, using the platfardefault charset.

PUT arbitrary bytes into an Ehcache JMS Cluster

byte[] bytes = new byte[]{0x34, (byte) O0xe3, (byte) 0x88};
Topi cConnection connection = get MXonnection();
connection.start();

Topi cSessi on publ i sher Sessi on = connecti on. creat eTopi cSessi on(fal se,
Sessi on. AUTO_ACKNOWLEDCGE) ;

Byt esMessage nmessage = publ i sher Sessi on. cr eat eByt esMessage() ;
nessage. wi t eByt es(bytes);

nmessage. set Stri ngProperty(ACTI ON_PROPERTY, "PUT");

nessage. set St ri ngPropert y(CACHE_NAME_PROPERTY, "sanpl eCacheAsync");
nessage. set Stri ngProperty(M ME_TYPE_PROPERTY, "application/octet-streant);
nmessage. set Stri ngProperty(KEY_PROPERTY, "1234");

Topi ¢ topic = publisherSession. createTopi c("EhcacheTopi cDest");
Topi cPubl i sher publisher = publisherSession. createPublisher(topic);
publ i sher. send(message) ;

Ehcache will create an Element in cache "sampleCacheAsyith"key "1234" in and a value of type
MimeTypeByteArray.

On a get from the cache the MimeTypeByteArray will be retdrné is an Ehcache value object from
which a mimeType and byte[] can be retrieved. The mimeTygdebei "application/octet-stream”. The
byte[] will contain the original bytes.

REMOVE

Topi cConnecti on connecti on = get MXonnecti on();
connection.start();

125

Topi cSessi on publ i sher Sessi on = connecti on. creat eTopi cSessi on(fal se, Sessi on. AUTO_ACKNOALEDGE)

hj ect Message nessage = publ i sher Sessi on. creat eObj ect Message() ;
nmessage. set Stri ngProperty(ACTI ON_PROPERTY, "REMOVE");

nmessage. set Stri ngProperty(CACHE_NAME_PROPERTY, "sanpl eCacheAsync");
nmessage. set Stri ngProperty(KEY_PROPERTY, "1234");

Topi ¢ topic = publisherSession. createTopi c("EhcacheTopi cDest");
Topi cPubl i sher publisher = publisherSession. createPublisher(topic);
publ i sher. send(nmessage) ;

Ehcache will remove the Element with key "1234" from caclaripleCacheAsync" from the cluster.

REMOVE_ALL

Topi cConnection connection = get MXonnection();
connection.start();

Topi cSessi on publisher Sessi on = connection. creat eTopi cSessi on(fal se,
Sessi on. AUTO_ACKNOWLEDCGE) ;

hj ect Message nessage = publ i sher Sessi on. creat eObj ect Message() ;
nmessage. set Stri ngProperty(ACTI ON_PROPERTY, "REMOVE_ALL");
nmessage. set Stri ngProperty(CACHE_NAME_PROPERTY, "sanpl eCacheAsync");

Topi ¢ topic = publisherSession. createTopi c("EhcacheTopi cDest");
Topi cPubl i sher publisher = publisherSession. createPublisher(topic);
publ i sher. send(message) ;

connection. stop();

Ehcache will remove all Elements from cache "sampleCacye®sn the cluster.

22.2 Using the IMSCachelLoader

The JMSCachelLoader is a CachelLoader which loads objectthiatcache by sending requests to a JMS
Queue.

The loader places an ObjectMessage of type JMSEventMessathe getQueue with an Action of type
GET.

It is configured with the following String propertidspader Ar gurrent .

The defaultLoaderArgument, or the loaderArgument if sfieetion the load request. To work with the
JMSCacheManagerPeerProvider this should be the nameadthe to load from. For custom responders,
it can be anything which has meaning to the responder.

A queue responder will respond to the request. You can eitleaite your own or use the one built-into the
JMSCacheManagerPeerProviderFactory, which attemptgtbthe queue from its cache.

The JMSCacheLoader uses JNDI to maintain message queyeeimttence. Refer to the manual for full
configuration examples using ActiveMQ and Open Message Queu

Itis configured as per the following example:

<cachelLoader Factory cl ass="net.sf. ehcache. di stribution.jnms. JMSCacheLoader Fact ory"
properties="initial Context Fact or yNane=com sun. j ndi . f scont ext. Ref FSCont ext Fact ory,

126

provider URL=file:///tnp,

replicationTopi cConnecti onFact or yBi ndi ngNane=MyConnect i onFactory,
replicationTopi cBi ndi ngName=ehcache,

get QueueConnect i onFact or yBi ndi ngNane=queueConnecti onFact ory,

get QueueBi ndi ngNane=ehcacheGet Queue,

ti meoutMI1is=20000

def aul t Loader Ar gunent =/ >

Valid properties are:

e initialContextFactoryName (mandatory) - the name of tletdiey used to create the message queue
initial context.

e providerURL (mandatory) - the JNDI configuration infornaatifor the service provider to use.

e getQueueConnectionFactoryBindingName (mandatory)Ji2l binding name for the QueueCon-
nectionFactory

e getQueueBindingName (mandatory) - the JNDI binding naméhi® queue name used to do make
requests.

¢ defaultLoaderArgument- (optional) - an application sfieeirgument. If not supplied as a cache.load()
parameter this default value will be used. The argumentssqrhin the JMS request as a String-
Property called loaderArgument.

o timeoutMillis - time in milliseconds to wait for a reply.

e securityPrincipalName - the JNDI java.naming.securitggipal

e securityCredentials - the JNDI java.naming.securitylergials

o urlPkgPrefixes - the JNDI java.naming.factory.url.pkgs

e userName - the user name to use when creating the TopicCiiomerthe Message Queue
e password - the password to use when creating the TopicCtonég the Message Queue

e acknowledgementMode - the JMS Acknowledgement mode fdr poblisher and subscriber. The
available choices are AUTO_ACKNOWLEDGE, DUPS_OK_ACKNO®BMDGE and SESSION_TRANSACTED.
The defaultis AUTO_ACKNOWLEDGE.

22.2.1 Example Configuration Using Active MQ

<cache nane="sanpl eCacheNor ep"
maxEl enent sl nMenor y="1000"
eternal ="f al se"
ti neTol dl eSeconds="1000"
ti meTolLi veSeconds="1000"
over f| owToDi sk="f al se" >
<cacheEvent Li st ener Factory
cl ass="net.sf.ehcache. distribution.jns.JMSCacheRepli catorFactory"
properties="replicateAsynchronousl y=fal se, replicatePuts=fal se
repli cat eUpdat es=f al se, replicateUpdatesVi aCopy=fal se,
repli cat eRenoval s=fal se, | oader Ar gunent =sanpl eCacheNor ep"
propertySeparator=","/>
<cachelLoader Factory cl ass="net. sf. ehcache. di stribution.jnms.JMsSCacheLoader Fact ory"
properties="initial ContextFactoryNane=net.sf.ehcache. distribution.jns.
Test Acti veMQ ni ti al Cont ext Factory,

127

provi der URL=t cp: / /| ocal host: 61616,
replicationTopi cConnecti onFact or yBi ndi ngNane=t opi cConnecti onFactory,
get QueueConnect i onFact or yBi ndi ngNane=queueConnecti onFact ory,
replicationTopi cBi ndi ngName=ehcache,
get QueueBi ndi ngNane=ehcacheGet Queue,
ti meoutMI1is=10000"/>

</ cache>

22.2.2 Example Configuration Using Open MQ

<cache nanme="sanpl eCacheNor ep"

maxEl enment sl nMenor y="1000"

eternal ="fal se"

ti meTol dl eSeconds="100000"

ti meTolLi veSeconds="100000"

over f | owToDi sk="f al se">

<cacheEvent Li st ener Fact ory

cl ass="net . sf.ehcache. di stribution.jns. JMSCacheRepl i cator Factory"

properti es="replicateAsynchronousl y=fal se, replicatePuts=fal se
repl i cat eUpdat es=fal se, replicateUpdat esVi aCopy=fal se
repl i cat eRenoval s=f al se"
propertySeparator=","/>

<cacheLoader Factory cl ass="net. sf. ehcache. di stri bution.jms. JMSCacheLoader Fact ory"
properties="initial ContextFactoryNane=com sun. j ndi . f scont ext. Ref FSCont ext Fact ory,
provi der URL=file:///tnp,
replicati onTopi cConnecti onFact or yBi ndi ngNane=MyConnect i onFact ory,
replicationTopi cBi ndi ngName=ehcache,
get QueueConnecti onFact or yBi ndi ngNane=queueConnecti onFact ory,
get QueueBi ndi ngNanme=ehcacheGet Queue,
timeoutM I 1is=10000,
user Nane=t est ,
passwor d=t est"/ >

</ cache>

22.3 Configuring Clients for Message Queue Reliability

Ehcache replication and cache loading is designed to grilcdégrade if the message queue infrastructure
stops. Replicates and loads will fail. But when the messageig comes back, these operations will start
up again.
For this to work, the ConnectionFactory used with the specifessage queue needs to be configured
correctly.

For example, with Open MQ, reconnection is configured asst
e imgReconnect="true’ - without this reconnect will not haop

e imgPingInterval="5" - Consumers will not reconnect untiely notice the connection is down. The
ping interval

e does this. The defaultis 30. Set it lower if you want the Eheacluster to reform more quickly.

e Finally, unlimited retry attempts are recommended. Thiass the default.

For greater reliability consider using a message queuéxldgdost message queues support cluster-
ing. The cluster configuration is once again placed in then@otionFactory configuration.

128

22.4 Tested Message Queues

22.4.1 Sun Open MQ

This open source message queue is tested in integratisn itesbrks perfectly.

22.4.2 Active MQ

This open source message queue is tested in integratienitasbrks perfectly other than having a problem
with temporary reply queues which prevents the use of IMB€lamader. JMSCacheLoader is not used
during replication.

22.4.3 Oracle AQ

Versions up to an including 0.4 do not work, due to Oracle oppsrting the unified API (send) for topics.

22.4.4 JBoss Queue

Works as reported by a user.

22.5 Known JMS Issues

22.5.1 Active MQ Temporary Destinatons

ActiveMQ seems to have a bug in at least ActiveMQ 5.1 wheredischot cleanup temporary queues, even
though they have been deleted. That bug appears to be lomjregebut was though to have been fixed.
See:

¢ http://www.nabble.com/Memory-Leak-Using-TemporaryeQes-td11218217.html#a11218217

e http://issues.apache.org/activemqg/browse/AMQ-1255

The JMSCacheLoader uses temporary reply queues when ¢patlire Active MQ issue is readily
reproduced in Ehcache integration testing. Accordinglg, of the IMSCachelLoader with ActiveMQ
is not recommended. Open MQ tests fine.

Active MQ works fine for replication.
22.5.2 WebSphere 5and 6
Websphere Application Server prevents MessageListewaish are not MDBs, from being created in the

container. While this is a general Java EE limitation, mdlsepapp servers either are permissive or can be
configured to be permissive. WebSphere 4 worked, but 5 andb8aerthe restriction.

Accordingly the JMS replicator cannot be used with WebSpBeand 6.

129

130

Chapter 23

Distributed Caching Using Terracotta

Terracotta has been integrated with Ehcache since Ehcathe 1

From version 1.7 Ehcache has been seamlessly integratedevitacotta 3.1.1 and takes just a few lines
of config in ehcache.xml to get up and running.

23.1 Worked Example

As this example shows, running Ehcache with Terracottaeding is no different from normal program-
matic use.

i mport net.sf.ehcache. Cache;
i mport net.sf.ehcache. CacheManager;
i mport net.sf.ehcache. El enent;

public class TerracottaExanple {
CacheManager cacheManager = new CacheManager ();

public TerracottaExanpl e() {
Cache cache = cacheManager. get Cache("sanpl eTerracottaCache");
i nt cacheSi ze = cache. get Keys(). si ze();
cache. put (new El enent ("" + cacheSi ze, cacheSize));
for (Object key : cache.getKeys()) {
Systemout. println("Key:" + key);

}
}

public static void main(String[] args) throws Exception {
new TerracottaExanpl e();

}

The above example looks for sampleTerracottaCache.
In ehcache.xml, we need to uncomment or add the followirey lin

<terracottaConfig url="1ocal host: 9510"/>

which tells Ehcache to load the Terracotta server config fimralhost port 9510. Note: You must have a
Terracotta 3.1.1 or higher server running locally for thiample.

131

Next we want to enable Terracotta clustering for the caclmeenisanpl eTer r acot t aCache. Uncom-
ment or add the following in ehcache.xml.

<cache nane="sanpl eTerracottaCache"
maxEl ement sl nMenor y="1000"
eternal ="fal se"
ti meTol dl eSeconds="3600"
ti meTolLi veSeconds="1800"
over fl owToDi sk="f al se">

<terracotta/>
</ cache>

That'’s it!

23.2 Terracotta Configuration
Terracotta configuration in ehcache.xml is in three parts:

e CacheManager Configuration
e Terracotta Server Configuration

e Enabling Terracotta clustering per cache

23.2.1 CacheManager Configuration

The attributes oéhcachare:

e Name

an optional name for the CacheManager. The name is optiodad@marily used for documentation
or to distinguish Terracotta clustered cache state. Witina€etta clustered caches, a combination
of CacheManager name and cache name uniquely identify mylartcache store in the Terracotta
clustered memory.

The name will show up in the Developer Console.s

e updateCheck

an optional boolean flag specifying whether this CacheManalgould check for new versions of
Ehcache over the Internet. If not specified, updateCheoke™t

e monitoring

an optional setting that determines whether the CacheMarsigpuld automatically register the
SampledCacheMBean with the system MBean server. Currémtymonitoring is only useful when
using Terracotta and thus the "autodetect" value will ddtee presence of Terracotta and register
the MBean. Other allowed values are "on" and "off". The ditfauautodetect”.

<Ehcache xm ns: xsi="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : noNanmespaceSchenmalLocat i on="ehcache. xsd"
updat eCheck="true" nonitoring="autodetect">

132

23.2.2 Terracotta Server Configuration

Note: You need to install and run one or more Terracotta sgteeuse Terracotta clustering.
See http://www.terracotta.org/web/display/orgsitesbtoad.
With a server/servers up and running you need to specifyoitegibn of the servers.

Configuration can be specified in two main ways: by referea@esource of configuration or by use of an
embedded Terracotta configuration file.

Specification of a source of configuration

To specify a reference to a source (or sources) of configuratise the url attribute. The url attribute must
contain a comma-separated list of:

e path to the Terracotta configuration file (usually namedoafig.xml)
Example using a path to Terracotta configuration file:

<terracottaConfig url="/app/config/tc-config.xm"/>

e URL to the Terracotta configuration file
Example using a URL to a Terracotta configuration file:

<terracottaConfig url="http://internal/ehcache/app/tc-config.xm"/>

e server hosport of a running Terracotta Server instance

Example pointing to a Terracotta server installed on loasth

<terracottaConfig url="1ocal host: 9510"/>

Example using multiple Terracotta server instance URLsffolt tolerance):

<terracottaConfig url ="host1: 9510, host 2: 9510, host 3: 9510"/ >

Specification using embedded tc-config

To embed a Terracotta configuration file within the Ehcacimdigaration, simply place the usual Terracotta
XML config within theterracottaConfigelement.

In this example we have two Terracotta servers runningesiver 1 andser ver 2.

<terracottaConfig>
<tc-config>
<servers>
<server host="serverl" name="sl1"/>
<server host="server2" name="s2"/>
</ servers>
<clients>
<l ogs>app/ | ogs- % </ | ogs>
</clients>
</tc-config>
</terracottaConfig>

133

23.2.3 Enabling Terracotta clustering per cache

Cache elements can also contain information about whdikarache can be clustered with Terracotta.
Theterracottasub-element has the following attributes:

e clustered=true|fal se
Indicates whether this cache should be clustered with @etta By default, if theerracottaelement
is included, clustered=true.

e val ueMode=serialization|identity

Indicates whether this cache should be clustered withlezihcopies of the values or using Terra-
cotta identity mode. By default, values will be cached inaeration mode which is similar to other
replicated Ehcache modes. The identity mode is only aVailalzertain Terracotta deployment sce-
narios and will maintain actual object identity of the keyslaalues across the cluster. In this case,
all users of a value retrieved from the cache are using the sdmnstered value and must provide
appropriate locking for any changes made to the value (@otdjeferred to by the value).

e coherent Reads=true| fal se

Indicates whether this cache should have coherent reatisgudranteed consistency across the
cluster. By default, this setting is true. If you set this meaty to false, reads are allowed to check
the local value without locking, possibly seeing stale ealu

This is a performance optimization with weaker concurregegrantees and should generally be
used with caches that contain read-only data or where thecappn can tolerate reading stale data.

The simplest way to enable clustering is to add:
<terracottal>

To indicate the cache should not be clustered (or removetrecottaelement altogether):
<terracotta clustered="fal se"/>

To indicate the cache should be clustered using identityanod
<terracotta clustered="true" val ueMode="identity"/>

Following is an example Terracotta clustered cache nanmagisderracottaCache.

<cache nane="sanpl eTerracottaCache"
maxEl enent sl nMenor y="1000"
eternal ="f al se"
ti meTol dl eSeconds="3600"
ti meTolLi veSeconds="1800"
over fl owToDi sk="f al se">

<terracotta/>
</ cache>

23.3 Behaviour differences withcachetvent Li st ener S When using Terra-
cotta Clustering

Terracotta clustering works by clustering titenor y St or e, unlike the replication mechanisms which use
theCacheEvent Li st ener infrastructure.

This results in a simpler programming contract than withregication mechanisms.

Things to note:

134

23.3.1 Cache listeners

Cache listeners listen for changes, including replicaledter changes, made through the Cache API.
Because Terracotta cluster changes happen transpar@etijhydto theMenor ySt or e a listener will not

be invoked when an event occurs out on the cluster. If it aclagally, then it must have occurred through
the Cache API, so a local event will be detected by a locaist.

A common use of listeners is to trigger a reload of a just i\&dEl emrent . In Terracotta clustering this
is avoided as a change in one node is always coherent to teeraities.

23.3.2 Overflow to Disk
Overflow to Disk is not supported when using Terracotta @hisy. However it is also not needed, because

the Terracotta server has its own overflow to disk. OncentioeEl enent sI nMenor y limit is reached
El enment s will be evicted to the cluster.

23.4 More Information

Please see Terracotta Documentation for much more infavmat

23.5 FAQ

23.5.1 Is Expiry the same in Terracotta?

timeToldle and timeToLive work as usual. Ehcache 1.7 intgedl a less fine grained age recording in
Element which rounds up to the nearest second. Some APIs ensgrisitive to this change.

In Ehcache Elements can have overridden TTl and TTLs. Tettasupports this functionality.

23.5.2 What Eviction strategies are supported?

Ehcache supports LRU, LFU and FIFO eviction strategies.
Terracotta supports LRU and LFU eviction from the local nddet FIFO and not custom evictors.

23.5.3 What Stores are available and how are they configured?

The Terracotta server provides an additional store, gineeferred to as the Level 2 or L2 store.
The MemoryStore in JVM in the local node is referred to as théStore.
maxElementsinMemory - the maximum number of elements indtal L1 store.
maxElementsOnDisk - is overridden when using Terracotfadwide the L2 size.

overflowToDisk normally controls whether to overflow to thisk5tore. This is ignored when using Terra-
cotta - the DiskStore is never used. When the store get®falhents will always overflow to the Terracotta
L2 Store running on the server. The L2 can be further confayuiéh the tcconfig.

23.5.4 When do Elements overflow?

Two things to cause elements to be flushed from L1 to L2.

135

¢ the L1 store exceeding maxElementsinMemory

e When the local JMV exceeds 70% of Old Generation. This camtreet off in the TC Config. By
defaultitis on (in 1.7).

23.5.5 How does Element equality work in Serialization mode

An Element in Ehcache is guaranteed tgjual s() another as it moves between stores.

In the Express install or Serialization mode of Terracotthich is the default, Terracotta is the same.
Elements will not== each other as they move between stores.

23.5.6 How does Element equality work in Identity mode?

An Element in Ehcache is guaranteed tgjual s() another as it moves between stores.

However in Identity mode, Terracotta makes a further guaean that they will== each other. This is
achieved using extensions to the Java Memory Model.

23.5.7 What is the recommended way to write to a database?

Terracotta’ non Ehcache API offers an async writethroughéadatabase which is guaranteed. It uses the
TIM Async module and works by putting the database updatedlustered queue. It guarantees that a
node, even if the local node fails, will take it out and praciés

That option is not available with Ehcache although it mayagkted.

23.5.8 If updates to a database bypass the Terracotta clusezl application, then
how is that coherent?

Itisn’t. This is a problem with using a database as an integrgoint. Integration via a message queue,

with a Terracotta clustered application acting as a mesgagee listener and updating the database avoids
this. As would The application receiving a REST or SOAP cadl avriting to the database.

AQ can have DB trigger put in a poll. Or AQ can push it up.

23.5.9 Do CacheEventListeners work?

A local CacheEventListener will work locally, but other remdin a Terracotta cluster are not notified. With
the Ehcache replication non Terracotta mechanisms theteemooles are updated.

136

Chapter 24

BlockingCache and
SelfPopulatingCache

Thenet . sf. ehcache. const ruct s package contains some applied caching classes which userthe
classes to solve everyday caching problems.

24.1 Blocking Cache

Imagine you have a very busy web site with thousands of coaentiusers. Rather than being evenly
distributed in what they do, they tend to gravitate to poppkges. These pages are not static, they have
dynamic data which goes stale in a few minutes. Or imagindwe collections of data which go stale in

a few minutes. In each case the data is extremely expensoaddolate.

Let's say each request thread asks for the same thing. Thdbtof work. Now, add a cache. Get each
thread to check the cache; if the data is not there, go and getliput it in the cache. Now, imagine that
there are so many users contending for the same data that tinté it takes the first user to request the
data and put it in the cache, 10 other users have done the bargeThe upstream system, whether a JSP
or velocity page, or interactions with a service layer oatlase are doing 10 times more work than they
need to.

Enter the BlockingCache.

137

net.sf.ehcache. constructs. blockin

net.sf.ehcache exceptionhandler

=
net.sf.ehcache.bootstrap
——————
sf.ehcache. st

he statistics

net.sf.ehcache.config

generated by yDoc

Blocking Cache

It is blocking because all threads requesting the same kéyfovahe first thread to complete. Once the
first thread has completed the other threads simply obtaisdlche entry and return.

The BlockingCache can scale up to very busy systems. Eaghdlwan either wait indefinitely, or you can
specify a timeout using thie meout M | | i s constructor argument.

138

24.2 SelfPopulatingCache

You want to use the BlockingCache, but the requirement tagdwelease the lock creates gnarly code.
You also want to think about what you are doing without thimtkabout the caching.

Enter the SelfPopulatingCache. The name SelfPopulaticly€s synonymous with Pull-through cache,
which is a common caching term. SelfPopulatingCache thalgays is in addition to a BlockingCache.

SelfPopulatingCache use€acheEnt r yFact or y, that given a key, knows how to populate the entry.

Note: JCache inspired getWithLoader and getAllWithLoadieectly in Ehcache which work with a
CachelLoader may be used as an alternative to SelfPopulatingCache. Getager Event Listeners

CacheManager event listeners allow implementers to exgisilback methods that will be executed when
aCacheManager event occurs. Cache listeners implement the CacheManegeitEstener interface.

The events include:

e adding aCache

e removing aCache

Callbacks to these methods are synchronous and unsynzbdotiiis the responsibility of the implementer
to safely handle the potential performance and threadysiafeies depending on what their listener is doing.

24.3 Configuration

One CacheManagerEventListenerFactory and hence one KlanhgerEventListener can be specified per
CacheManager instance.

The factory is configured as below:
<cacheManager Event Li st ener Factory cl ass="" properties=""/>

The entry specifies a CacheManagerEventListenerFactachwiill be used to create a CacheManager-
PeerProvider, which is notified when Caches are added orvetifoom the CacheManager.

The attributes of CacheManagerEventListenerFactory are:

e cl ass - a fully qualified factory class name

e properties - comma separated properties having meaning only to therfact

Callbacks to listener methods are synchronous and unsymizded. It is the responsibility of the
implementer to safely handle the potential performancetrehd safety issues depending on what
their listener is doing.

If no class is specified, or there is no cacheManagerEvestigsFactory element, no listener is
created. There is no default.

24.4 Implementing a CacheManagerEventListenerFactory att Cache-
ManagerEventListener

CacheManagerEventListenerFactory is an abstract faéborgreating cache manager listeners. Imple-
menters should provide their own concrete factory extamttiis abstract factory. It can then be configured
in ehcache.xml.

139

The factory class needs to be a concrete subclass of thaettfsictory CacheManagerEventListenerFac-
tory, which is reproduced below:

[**
* An abstract factory for creating {@ink CacheManager Event Li stener}s. |nplenenters should

* provide their own concrete factory extending this factory. It can then be configured in
ehcache. xm

@ut hor Greg Luck

@ersion $ld: cachenanager _event _|isteners. apt 735 2008-08-10 23:51:48Z gregluck $
* @ee "http://ehcache. org/ docunent ati on/ cachemanager _event _|isteners. htm"
*/

public abstract class CacheManager Event Li st ener Factory {

* F X *

| *x

* Create a <code>CacheEventLi st ener </ code>

*

* @aram properties inplenmentation specific properties. These are configured as coma

* separated nane val ue pairs in ehcache.xm . Properties may be null
* @eturn a constructed CacheManager Event Li st ener
*/

publ i ¢ abstract CacheManager Event Li st ener
cr eat eCacheManager Event Li st ener (Properties properties);

The factory creates a concrete implementation of CachelyEaentListener, which is reproduced below:
| **

* Allows inplementers to register callback methods that will be executed when a
* <code>CacheManager </ code> event occurs.

The events include:

<l i >addi ng a <code>Cache</code>
renoving a <code>Cache</ code>
</ ol >

<p/ >

Cal | backs to these methods are synchronous and unsynchronized. It is the responsibility of
the inplenenter to safely handl e the potential performance and thread safety issues
dependi ng on what their |istener is doing.

@ut hor Greg Luck

@ersion $ld: cachenanager _event _|isteners. apt 735 2008-08-10 23:51:48Z gregluck $

@ince 1.2

@ee CacheEvent Li st ener

E I I S I

*

*/
public interface CacheManager Event Li stener {

[**
* Called imediately after a cache has been added and acti vat ed.
* <p/>
*+ Note that the CacheManager calls this nethod froma synchronized nethod. Any attenpt to
* call a synchronized method on CacheManager fromthis nethod will cause a deadl ock.
* <p/>
* Note that activation will also cause a CacheEventLi stener status change notification
* from{@ink net.sf.ehcache. Stat us#STATUS_UNI NI TI ALI SED} to
* {@ink net.sf.ehcache. St at us#STATUS_ALI VE}. Care shoul d be taken on processing that
* notification because:
*

140

L A R I I

*

*

/

the cache will not yet be accessible fromthe CacheManager.

<l i >the addCaches nethods whi h cause this notification are synchroni zed on the
CacheManager. An attenpt to call {@ink net.sf.ehcache. CacheManager #get Cache(String)}
wi Il cause a deadl ock.

The calling method will block until this method returns.

<p/ >

@ar am cacheNane the name of the <code>Cache</code> the operation relates to

@ee CacheEvent Li st ener

voi d notifyCacheAdded(String cacheNane);

/

L I S I I

*

*

*

/

Called inmmedi ately after a cache has been di sposed and renoved. The calling nethod will
bl ock until this nmethod returns.

<p/ >

Not e that the CacheManager calls this nethod froma synchroni zed nethod. Any attenpt to
call a synchroni zed nmet hod on CacheManager fromthis nethod will cause a deadl ock.

<p/ >

Note that a {@ink CacheEventListener} status changed will also be triggered. Any
attenpt fromthat notification to access CacheManager will also result in a deadl ock.

@ar am cacheNane the name of the <code>Cache</code> the operation relates to

voi d notifyCacheRenoved(String cacheNane);

}

The implementations need to be placed in the classpathsiblzeto ehcache. Ehcache uses the Class-
Loader returned byhr ead. cur r ent Thr ead() . get Cont ext Cl assLoader () to load classes.

141

142

Chapter 25

Cache Loaders

A CachelLoader is an interface which specifi¢®ad andl oadAl I methods with a variety of parameters.

CachelLoaders come from JCache, but are a frequently regliestture, so they have been incorporated
into the core Ehcache classes and can be configured in ehaathe

CachelLoaders are invoked in the following Cache methods:

e getWithLoader (synchronous)
e getAllWithLoader (synchronous)
e load (asynchronous)

e loadAll (asynchronous)

They are also invoked in similar (though slightly differigrmamed) JCache methods.

The methods will invoke a CachelLoader if there is no entrytierkey or keys requested. By implementing
CachelLoader, an application form of loading can take pldtes get... methods follow the pull-through
cache pattern. The load... methods are useful as cache vgarme

CacheLoaders are similar to the CacheEntryFactory usedliR&ulatingCache. However SelfPopulat-
ingCache is a decorator to ehcache. The CachelLoader foalitiois available right in a Cache, Ehcache
or JCache and follows a more industry standard convention.

CacheLoaders may be set either declaratively in the ehcanheonfiguration file or programmatically.
This becomes the default CachelLoader. Some of the methealdiig loaders enable an override Cache-
Loader to be passed in as a parameter.

More than one cachelLoader can be registered, in which cadedbers form a chain which are executed
in order. If a loader returns null, the next in chain is called

25.1 Declarative Configuration

cachelLoaderFactory - Specifies a CachelLoader, which casgodhoth asynchronously and synchronously
to load objects into a cache. More than one cachelLoadenyadgment can be added, in which case the
loaders form a chain which are executed in order. If a loagkeirns null, the nextin chain is called.

<cache ...>
<cachelLoader Factory cl ass="com exanpl e. Exanpl eCacheLoader Fact ory"

143

properti es="type=int, start Counter=10"/>
</ cache>

25.2 Implementing a CachelLoaderFactory and CachelLoader

CachelLoaderFactory is an abstract factory for creatindh€@azaders. Implementers should provide their
own concrete factory, extending this abstract factoryatt then be configured in ehcache.xml

The factory class needs to be a concrete subclass of thaetfsictory class CachelLoaderFactory, which
is reproduced below:

| **

* An abstract factory for creating cache | oaders. |nplenenters should provide their own
* concrete factory extending this factory.

<p/ >

There is one factory nethod for JSR1L07 Cache Loaders and one for Ehcache ones. The Ehcache
| oader is a sub interface of the JSR107 Cache Loader.

<p/ >

Note that both the JCache and Ehcache APIs al so all ow the CachelLoader to be set
progranmmatical ly.

@ut hor Greg Luck

* @ersion $ld: cache_|l oaders. apt 860 2008-12-08 07:58:27Z gregluck $

*/

public abstract class CachelLoaderFactory {

L I .

| **
* Creates a CachelLoader using the JSR107 creational nechanism
* This method is called from{@ink net.sf.ehcache.jcache. JCacheFactory}
*
* @aram environment the sane environnent passed into
* {@ink net.sf.ehcache.jcache. JCacheFactory}.
* This factory can extract any properties it needs fromthe environnent.
* @eturn a constructed CachelLoader
*/
public abstract net.sf.jsrl07cache. CacheLoader createCacheLoader(Map environnent);

| **
*+ Creates a CachelLoader using the Ehcache configuration nechanismat the tine
* the associ ated cache is created.

@aram properties inplenmentati on specific properties. These are configured as conma
separated nane val ue pairs in ehcache. xnl

* @eturn a constructed CachelLoader

*/

public abstract net.sf.ehcache.| oader. CacheLoader createCachelLoader(Properties properties);

* X *

[**

* @aram cache the cache this extension should hold a reference to,

* and to whose lifecycle it should be bound.

* @aram properties inplementation specific properties configured as delimter

* separated nanme value pairs in ehcache. xnl

* @eturn a constructed CachelLoader

*/

public abstract CachelLoader createCachelLoader (Ehcache cache, Properties properties);

144

}

The factory creates a concrete implementation of the Camdwdr interface, which is reproduced below.

A CacheLoader is bound to the lifecycle of a cache, soithat () is called during cache initialization,
anddi spose() is called on disposal of a cache.

| * %
*
*

*

*/

Ext ends JCache CachelLoader with | oad nmet hods that take an argunent
@ut hor Greg Luck

@ersion $l1d: cache_l oaders. apt 860 2008-12-08 07:58:27Z gregluck $

public interface CacheLoader extends net.sf.jsrl07cache. CacheLoader {

*

/

L I I S T

~

oj

/

I I R I
*

*

«/

Load using both a key and an argunent.

<p/ >

JCache will call through to the | oad(key) method, rather than this
where the argunment is null.

@ar am key the key to | oad the object for

@ar am argunment can be anything that makes sense to the | oader
@eturn the Object |oaded

@ hrows CacheException

ect | oad(Object key, Cbject argument) throws CacheException;

Load using both a key and an argunent.
<p/ >
JCache will use the | oadAll (key) nethod where the argument is null.

@ar am keys the keys to | oad objects for

@ar am argunment can be anything that makes sense to the | oader
@eturn a map of Objects keyed by the collection of keys passed in.
@ hrows CacheException

Map | oadAl | (Col | ection keys, Onject argument) throws CacheException;

[**
*
*
*
*/

Str

*

/

L I S I I

*

*/

Cets the nane of a CachelLoader
@eturn the nane of this CachelLoader

i ng get Nanme();

Creates a clone of this extension. This nethod will only be called
cache is initialized.

<p/ >

I mpl enent ati ons shoul d t hrow Cl oneNot SupportedException if they do
but that will stop themfrom being used with defaultCache.

@eturn a clone
@ hrows C oneNot SupportedException if the extension could not be cl

in addition to a key

met hod,

by Ehcache before a

not support clone

oned.

publ i c CacheLoader cl one(Ehcache cache) throws C oneNot SupportedExcepti on;

145

| * %

* Notifies providers to initialise thenselves.

* <p/>

* This method is called during the Cache’s initialise method after it has changed it's
* status to alive. Cache operations are legal in this nethod.
*

* @hrows net.sf.ehcache. CacheException

*/

void init();

[**

* Providers may be doing all sorts of exotic things and need to be able to clean up on
* di spose.

* <p/>

* Cache operations are illegal when this nethod is called. The cache itself is partly
* di sposed when this nethod is called.

*
* @hrows net.sf.ehcache. CacheException
*/
voi d di spose() throws net.sf.ehcache. CacheExcepti on;

[**
* @eturn the status of the extension
*/

public Status getStatus();

}

The implementations need to be placed in the classpathsibleet® ehcache.
See the chapter on Classloading for details on how cladsigadithese classes will be done.

25.3 Programmatic Configuration

The following methods o@ache allow runtime interrogation, registration and unregistraof loaders:

[**
* Register a {@ink CacheLoader} with the cache. It will then be tied into the cache
* lifecycle.
* <p/>
* | f the CachelLoader is not initialised, initialise it.
*

* (@ar am cacheLoader A Cache Loader to register

*

public void registerCacheLoader (CacheLoader cachelLoader) {
regi st eredCachelLoader s. add(cachelLoader);

}

[**
* Unregister a {@ink CacheLoader} with the cache. It will then be detached fromthe cache
+ |ifecycle.
*
* (@aram cacheLoader A Cache Loader to unregister
*/
public void unregisterCacheLoader (CacheLoader cachelLoader) {
regi st eredCacheLoader s. renove(cachelLoader);

146

| **
* @eturn the cache | oaders as a live |ist
*/
publ i c List<CacheLoader > get Regi st eredCacheLoaders() {
return registeredCachelLoaders;

}

147

148

Chapter 26

Cache Event Listeners

Cache listeners allow implementers to register callbacthods that will be executed when a cache event
occurs. Cache listeners implement the CacheEventListeteface.

The events include:
e an Element has been put

e an Element has been updated. Updated means that an Eleristairethe Cache with the same key
as the Element being put.

e an Element has been removed

e an Element expires, either because timeToLive or time&didve been reached.

Callbacks to these methods are synchronous and unsynzadotiiis the responsibility of the implementer
to safely handle the potential performance and threadysiafeies depending on what their listener is doing.

Listeners are guaranteed to be notified of events in the andehich they occurred.

Elements can be put or removed from a Cache without notifiistgners by using the putQuiet and re-
moveQuiet methods.

26.1 Configuration

Cache event listeners are configured per cache. Each cathawamultiple listeners.
Each listener is configured by adding a cacheManagerEvaptieérFactory element as follows:

<cache ...>
<cacheEvent Li stener Factory cl ass="" properties=""/>
</ cache>

The entry specifies a CacheManagerEventListenerFactoighwi$ used to create a CachePeerProvider,
which then receives notifications.

The attributes of CacheManagerEventListenerFactory are:

149

e class - a fully qualified factory class name * properties - gtiamal comma separated properties
having meaning only to the factory.

Callbacks to listener methods are synchronous and unsymicied. It is the responsibility of the
implementer to safely handle the potential performancetarehd safety issues depending on what
their listener is doing.

26.2 Implementing a CacheEventListenerFactory and CachegentLis-
tener

CacheEventListenerFactory is an abstract factory forttrg@ache event listeners. Implementers should
provide their own concrete factory, extending this absfiextory. It can then be configured in ehcache.xml

The factory class needs to be a concrete subclass of thaetifsirtory class CacheEventListenerFactory,
which is reproduced below:

| * %

* An abstract factory for creating listeners. Inplenenters should provide their own
* concrete factory extending this factory. It can then be configured in ehcache. xm
*

* @ut hor Greg Luck

* @ersion $ld: cache_event _|isteners.apt 735 2008-08-10 23:51:48Z gregluck $

*/

public abstract class CacheEventLi stenerFactory {

| * %

* Create a <code>CacheEventLi st ener </ code>

*

* @aram properties inplenmentation specific properties. These are configured as coma

* separated nanme val ue pairs in ehcache. xnl
* @eturn a constructed CacheEventLi st ener
*/

public abstract CacheEventListener createCacheEventLi stener(Properties properties);
}

The factory creates a concrete implementation of the CaadrgEistener interface, which is reproduced
below:

[**

* Allows inplementers to register callback nethods that will be executed when a cache event
* occurs.

The events include:

put El erment

<l i >updat e El enent

renove El enent

an El ement expires, either because tineToLive or tinmeToldl e has been reached.

<p/ >

Cal | backs to these nmethods are synchronous and unsynchronized. It is the responsibility of
the inplenenter to safely handl e the potential performance and thread safety issues
dependi ng on what their |istener is doing.

<p/ >

Events are guaranteed to be notified in the order in which they occurred.

<p/ >

E I I D D S T N . N

150

* X X X *

*

*

/

Cache al so has put Quiet and renmpoveQui et methods which do not notify |isteners.
@ut hor Greg Luck

@ersion $ld: cache_event _|isteners.apt 735 2008-08-10 23:51:48Z gregluck $
@ee CacheManager Event Li st ener

@ince 1.2

public interface CacheEventLi stener extends Cl oneable {

/

L I D S T

*

*

*

/

Called inmedi ately after an el ement has been renoved. The renove nethod will bl ock until
this nethod returns.

<p/ >

Ehcache does not chech for

<p/ >

As the {@ink net.sf.ehcache. El ement} has been renoved, only what was the key of the

el ement is known.

<p/ >

@aram cache the cache emitting the notification
@ar am el emrent just del eted

voi d notifyEl ement Renoved(final Ehcache cache, final Element elenent) throws CacheException;

/

L R S I R .

*

*

*

/

Called i nmedi ately after an el enent has been put into the cache. The

{@ink net.sf.ehcache. Cache#put (net. sf.ehcache. El enent)} net hod

will block until this method returns.

<p/ >

I mpl ementers may wi sh to have access to the Elenent’s fields, including value, so the
el ement is provided. Inplenenters should be careful not to nodify the el enent. The
effect of any nodifications is undefined.

@ar am cache the cache emtting the notification
@ar am el enent the el enent which was just put into the cache.

voi d notifyEl ement Put (final Ehcache cache, final Elenment elenent) throws CacheException;

/

E I I S I

*

*

*/
voi d notifyEl ement Updat ed(fi nal Ehcache cache, final Elenment elenment) throws CacheException;

| * %
* Called imediately after an element is <i>found</i> to be expired. The
* {@ink net.sf.ehcache. Cache#renpve(bject)} nethod will block until this method returns.

Called inmmedi ately after an el enent has been put into the cache and the el enment al ready
existed in the cache. This is thus an update.

<p/ >

The {@i nk net. sf.ehcache. Cache#put (net. sf. ehcache. El ement)} net hod

will block until this nmethod returns.

<p/ >

I mpl emrenters may wi sh to have access to the Elenent’s fields, including value, so the
el ement is provided. Inplenenters should be careful not to nodify the elenent. The
effect of any nodifications is undefined.

@ar am cache the cache emtting the notification
@ar am el ement the el enent which was just put into the cache.

151

<p/ >

As the {@ink Elenment} has been expired, only what was the key of the elenent is known.
<p/ >

El enents are checked for expiry in Ehcache at the follow ng tines:

<l i >When a get request is nade

When an elenment is spooled to the diskStore in accordance with a MenoryStore
eviction policy

In the DiskStore when the expiry thread runs, which by default is

{@ink net.sf.ehcache. Cache#DEFAULT_EXPI RY_THREAD | NTERVAL_SECONDS}

If an element is found to be expired, it is deleted and this nethod is notified.

@ar am cache the cache emtting the notification

@ar am el enent the el enent that has just expired
<p/ >
Deadl ock Warning: expiry will often cone fromthe <code>Di skStore</code>
expiry thread. It holds a lock to the DiskStorea the time the
notification is sent. If the inplenentation of this nethod calls into a
synchroni zed <code>Cache</code> nmet hod and that subsequently calls into
Di skStore a deadlock will result. Accordingly inplenenters of this method
shoul d not call back into Cache.

E I T I S I N I N N N R R B

*

*/
voi d notifyEl ement Expi red(fi nal Ehcache cache, final Element elenent);

| **

* Gve the replicator a chance to cleanup and free resources when no | onger needed
*/

voi d di spose();

| * %

* Creates a clone of this listener. This method will only be called by Ehcache before a

* cache is initialized.

<p/ >

This may not be possible for listeners after they have been initialized. |nplenmentations
shoul d t hrow C oneNot Support edException if they do not support clone.

@eturn a clone

* @hrows Cl oneNot SupportedException if the listener could not be cloned.

*/

public Object clone() throws C oneNot SupportedExcepti on;

I T

}

The implementations need to be placed in the classpathsablzet Ehcache.
See the chapter on Classloading for details on how cladsigadithese classes will be done.

152

Chapter 27

Cache Exception Handlers

By default, most cache operations will propagate a runtirmeh@Exception on failure. An interceptor,
using a dynamic proxy, may be configured so that a CacheEro¢fsindler can be configured to intercept
Exceptions. Errors are not intercepted.

Caches with ExceptionHandling configured are of type Ehea®h get the exception handling behaviour
they must be referenced usi@gcheManager . get Encache() ,notCacheManager . get Cache() ,which
returns the underlying undecorated cache.

CacheExceptionHandlers may be set either declarativeheiehcache.xml configuration file or program-
matically.

27.1 Declarative Configuration

Cache event listeners are configured per cache. Each cathawaat most one exception handler.

An exception handler is configured by adding a cacheExcedandlerFactory element as shown in the
following example:

<cache ...>
<cacheExcepti onHandl er Fact ory
cl ass="net. sf. ehcache. excepti onhandl er. Count i ngExcept i onHandl er Fact or y"
properties="1 ogLevel =FI NE"/ >
</ cache>

27.2 Implementing a CacheExceptionHandlerFactory and CaweEx-
ceptionHandler

CacheExceptionHandlerFactory is an abstract factoryriating cache exception handlers. Implementers
should provide their own concrete factory, extending thisteact factory. It can then be configured in
ehcache.xml

The factory class needs to be a concrete subclass of thaeifsictory class CacheExceptionHandlerFac-
tory, which is reproduced below:

[**
* An abstract factory for creating <code>CacheExcepti onHandl er</code>s at configuration

153

time, in ehcache.xmnl.
<p/ >
Extend to create a concrete factory

*F X X *

@ut hor Greg Luck
* @ersion $ld: cache_exception_handl ers.apt 735 2008-08-10 23:51:48Z gregluck $
*/

public abstract class CacheExceptionHandl er Factory {

| * %

* Create an <code>CacheExcepti onHandl er </ code>

*

* @aram properties inplenmentation specific properties. These are configured as coma

* separated nanme val ue pairs in ehcache. xnl
* @eturn a constructed CacheExcepti onHandl er
x/

publ i c abstract CacheExcepti onHandl er creat eExcepti onHandl er (Properties properties);

The factory creates a concrete implementation of the CaategifionHandler interface, which is repro-
duced below:

[**

* A handl er which may be registered with an Ehcache, to handl e excepti on on Cache operati ons.
* <p/>

Handl ers may be registered at configuration tine in ehcache.xnm, using a

CacheExcepti onHandl er Factory, or * set at runtine (a strategy).

<p/ >

If an exception handler is registered, the default behaviour of throwing the exception

wi Il not occur. The handl er * method <code>onException</code> will be called. O course, if

the handl er decides to throw the exception, it will * propagate up through the call stack.
If the handl er does not, it won't.
<p/ >

Sone common Exceptions thrown, and which therefore should be considered when inplenmenting
this class are |isted bel ow

{@ink Illegal StateException} if the cache is not
{@ink net.sf.ehcache. St at us#STATUS_ALI VE}
{@ink Illegal Argunent Exception} if an attenpt is made to put a null
el enment into a cache
{@ink net.sf.ehcache. distribution. RenoteCacheException} if an issue occurs
in renote synchronous replication

E I I I S S R . N S R S . . N N S

@ut hor Greg Luck
@ersion $ld: cache_exception_handl ers. apt 735 2008-08-10 23:51:48Z gregl uck $

*

*/
public interface CacheExcepti onHandl er {

| * %
* Called if an Exception occurs in a Cache nmethod. This nethod is not called

= i f an <code>Error</code> occurs.
*

154

@ar am Ehcache the cache in which the Exception occurred

*
* @ar am key the key used in the operation, or null if the operation does not use a
* key or the key was nul
* (@ar am exception the exception caught
*/
voi d onExcepti on(Ehcache ehcache, bject key, Exception exception);

}

The implementations need to be placed in the classpathsibee® Ehcache.
See the chapter on Classloading for details on how classigadithese classes will be done.

27.3 Programmatic Configuration

The following example shows how to add exception handling tache then adding the cache back into
cache manager so that all clients obtain the cache handdicgydtion.

CacheManager cacheManager = ...

Ehcache cache = cacheManger. get Cache(" exanpl eCache");

Excepti onHandl er handl er = new Exanpl eExceptionHandl er(...);

cache. set CacheLoader (handl er);

Ehcache proxi edCache = Excepti onHandl i ngDynami cCacheProxy. cr eat ePr oxy(cache);
cacheManager . repl aceCacheWt hDecor at edCache(cache, proxi edCache);

155

156

Chapter 28

Cache Extensions

CacheExtensions are a general purpose mechanism to ali@vigextensions to a Cache.
CacheExtensions are tied into the Cache lifecycle. Forrtregon this interface has the lifecycle methods.

CacheExtensions are created using the CacheExtensionfFatiich has @odecreateCacheCacheExtensidogde
method which takes as a parameter a Cache and propertias.thus call back into any public method on
Cache, including, of course, the load methods.

CacheExtensions are suitable for timing services, whewenant to create a timer to perform cache oper-
ations. The other way of adding Cache behaviour is to deearatche.

See @link net.sf.ehcache.constructs.blocking.BlodRawhe for an example of how to do this.

Because a CacheExtension holds a reference to a Cache, ¢heE¢ension can do things such as reg-
istering a CacheEventListener or even a CacheManagerEstter, all from within a CacheExtension,
creating more opportunities for customisation.

28.1 Declarative Configuration

Cache extension are configured per cache. Each cache candnava more.

A CacheExtension is configured by adding a cacheExceptindlde-actory element as shown in the fol-
lowing example:

<cache ...>
<cacheExt ensi onFact ory cl ass="com exanpl e. Fi | eWat chi ngCacheRef r esher Ext ensi onFact ory"
properties="refreshinterval M1I1is=18000, | oaderTi neout=3000,
fl ushPeri od=what ever, soneQ her Property=soneValue ..."/>

</ cache>

28.2 Implementing a CacheExtensionFactory and CacheExtsion

CacheExtensionFactory is an abstract factory for creatiroipe extension. Implementers should provide
their own concrete factory, extending this abstract factibican then be configured in ehcache.xml

The factory class needs to be a concrete subclass of theaabftctory class CacheExtensionFactory,
which is reproduced below:

157

| * %

* An abstract factory for creating <code>CacheExt ensi on</code>s. | npl enenters should

* provide their own *» concrete factory extending this factory. It can then be configured
in ehcache. xn .

*

*

@ut hor Greg Luck

* @ersion $ld: cache_extensions.apt 735 2008-08-10 23:51:48Z gregluck $
*/

public abstract class CacheExtensionFactory {

[**

* (@aram cache the cache this extension should hold a reference to, and to whose
lifecycle it should be bound.

@ar am properties inplenentation specific properties configured as delimter separated
* name val ue pairs in ehcache. xm

*/
public abstract CacheExtensi on createCacheExtensi on(Ehcache cache, Properties properties);

*

*

}

The factory creates a concrete implementation of the CadkeEion interface, which is reproduced below:

* This is a general purpose nechanismto allow generic extensions to a Cache.
* <p/>

* CacheExtensions are tied into the Cache lifecycle. For that reason this interface has the

* |ifecycl e nethods.

* <p/>

* CacheExt ensi ons are created using the CacheExtensionFactory which has a

* <code>cr eat eCacheCacheExt ensi on() </ code> net hod which takes as a paraneter a Cache and
* properties. It can thus call back into any public nethod on Cache, including, of course
* the | oad nethods

* <p/>

* CacheExtensions are suitable for timng services, where you want to create a tinmer to

* performcache operations. The other way of addi ng Cache behaviour is to decorate a cache
* See {@ink net.sf.ehcache.constructs. bl ocki ng. Bl ocki ngCache} for an exanple of how to do
* this.

* <p/>

* Because a CacheExtension holds a reference to a Cache, the CacheExtension can do things
* such as registering a CacheEventListener or even a CacheManager EventLi stener, all from
* wWithin a CacheExtension, creating nore opportunities for customn sation

* @uthor G eg Luck

* @ersion $ld: cache_extensions.apt 735 2008-08-10 23:51:48Z gregl uck $
*/

public interface CacheExtension {

| **
* Notifies providers to initialise thenselves
* <p/>
* This method is called during the Cache’s initialise method after it has changed it's
* status to alive. Cache operations are legal in this nethod.

* @hrows CacheException

*/
void init();

158

Provi ders may be doing all sorts of exotic things and need to be able to clean up on
di spose.

<p/ >

Cache operations are illegal when this nmethod is called. The cache itself is partly
di sposed when this method is called.

L I I T

* @hrows CacheException
*/
voi d di spose() throws CacheException;

| * %

* Creates a clone of this extension. This nmethod will only be called by Ehcache before a
* cache is initialized.

* <p/>

* | nmpl ement ati ons shoul d t hrow Cl oneNot SupportedException if they do not support clone

* but that will stop themfrom being used with defaultCache.

*

* @eturn a clone

* @hrows C oneNot SupportedException if the extension could not be cloned.

*/

publ i c CacheExtensi on cl one(Ehcache cache) throws C oneNot SupportedExcepti on;

[**
* @eturn the status of the extension
*/

public Status getStatus();

}

The implementations need to be placed in the classpathsibleet ehcache.
See the chapter on Classloading for details on how clasiigad these classes will be done.

28.3 Programmatic Configuration
Cache Extensions may also be programmatically added to laeGecshown.

Test CacheExt ensi on t est CacheExt ensi on = new Test CacheExt ensi on(cache, ...);
test CacheExtension.init();
cache. r egi st er CacheExt ensi on(t est CacheExt ensi on) ;

159

160

Chapter 29

Cache Server

29.1 Introduction

Ehcache now comes with a Cache Server, available as a WARdsrweb containers, or as a standalone
server. The Cache Server has two APIs: RESTful resourcetedeand SOAP. Both support clients in any
programming language.

(A Note on terminology: Leonard Richardson and Sam Ruby lree a great job of clarifying the
different Web Services architectures and distinguishivegnt from each other. We use their taxonomy in
describing web services. See http://www.oreilly.condtad/9780596529260/.)

29.2 RESTful Web Services

Roy Fielding coined the acronym REST, denoting RepresentdtState Transfer, in his PhD thesis.
The Ehcache implementation strictly follows the RESTfislnerce-oriented architecture style.
Specifically:

e The HTTP methods GET, HEAD, PUT/POST and DELETE are usedéci§pthe method of the
operation. The URI does not contain method information.

e The scoping information, used to identify the resource téquen the method on, is contained in the
URI path.

e The RESTful Web Service is described by and exposes a WADLb(Afeplication Description
Language) file. It contains the URIs you can call, and whaa datpass and get back. Use the
OPTIONS method to return the WADL.

Roy is on the JSR311 expert group. JSR311 and Jersey, threrregeimplementation, are used to
deliver RESTful web services in Ehcache server.

29.2.1 RESTFul Web Services API

The Ehcache RESTFul Web Services API exposes the singletoheBlanager, which typically has been
configured in ehcache.xml or an 1oC container. Multiple Gadhnagers are not supported.

Resources are identified using a URI template. The valuerenplaeses should be substituted with a literal
to specify a resource.

Response codes and response headers strictly follow HTWentions.

161

29.2.2 CacheManager Resource Operations
OPTIONS /Acache}}

Retrieves the WADL for describing the available CacheManagerations.

GET/

Lists the Caches in the CacheManager.

29.2.3 Cache Resource Operations
OPTIONS /Acache}}

Retrieves the WADL describing the available Cache opematio

HEAD /{cache}}

Retrieves the same metadata a GET would receive returne@ BB hleaders. There is no body returned.

GET Hcache}

Gets a cache representation. This includes useful metadeltaas the configuration and cache statistics.

PUT /{cache}

Creates a Cache using the defaultCache configuration.

DELETE /{cache}

Deletes the Cache.

29.2.4 Element Resource Operations
OPTIONS /cache}}

Retrieves the WADL describing the available Element openat

HEAD /{cache}/{element}

Retrieves the same metadata a GET would receive returne@ BB headers. There is no body returned.

GET /cache}/{element}

Gets the element value.

HEAD /{cache}/{element}

Gets the element’s metadata.

162

PUT /{cache}/{element}

Puts an element into the Cache.

The time to live of new Elements defaults to that for the cachkis may be overridden by setting the
HTTP request headethcacheTi meToLi veSeconds. Values of 0 to 2147483647 are accepted. A value
of 0 means eternal.

DELETE / {cache}/{element}

Deletes the element from the cache.
The resource representation for all elements BELETE/ { cache}/* wi |l call <<<cache.renoveAll ().

29.2.5 Resource Representations

We deal with resource representations rather than resotiremselves.

Element Resource Representations

When Elements are PUT into the cache, a MIME Type should bangee request header. The MIME
Type is preserved for later use.

The newM neTypeByt eArray is used to store theyte[] and theM meType in the value field of
El enent .

Some common MIME Types which are expected to be used by slast

text/plain Plain text

text/xml Extensible Markup Language. Defined in RFC 3023
application/json JavaScript Object Notation JSON. DefiimeRFC 4627
application/x-java-serialized-object A serialized Jatgect

Because Ehcache is a distributed Java cache, in some catiiigisrthe Cache server may contain Java
objects that arrived at the Cache server via distributeticagion. In this case no MIME Type will be set
and the Element will be examined to determine its MIME Type.

Because anything that can be PUT into the cache server m&srisdizable, it can also be distributed in a
cache cluster i.e. it will be Serializable.

29.2.6 RESTful Code Samples

These are RESTful code samples in multiple languages.

Curl Code Samples

These samples use the popular curl command line utility.

OPTIONS This example shows how calling OPTIONS causes Ehcachersemespond with the WADL
for that resource

curl --request OPTIONS http://1ocal host: 8080/ ehcache/ rest/ sanpl eCache2/ 2
The server responds with:

163

<?xm version="1.0" encodi ng="UTF-8" standal one="yes"?>
<application xm ns="http://research. sun. com wadl / 2006/ 10" >
<resources base="http://| ocal host: 8080/ ehcache/rest/">
<resource pat h="sanpl eCache2/2">

<met hod nane="HEAD' ><r esponse><r epresent ati on nedi aType="

</ resource>
</ resources>
</ application>

HEAD
curl --head http://1ocal host: 8080/ ehcache/rest/sanpl eCache2/ 2
The server responds with:

HTTP/ 1.1 200 K

X- Power ed-By: Servlet/2.5

Server: assFish/v3

Last-Modi fied: Sun, 27 Jul 2008 08:08:49 GMI
ETag: "1217146129490"

Cont ent - Type: text/plain; charset=iso-8859-1
Content - Lengt h: 157

Date: Sun, 27 Jul 2008 08:17:09 GMI

PUT

echo "Hello World" | «curl -S-T - http://1ocal host: 8080/ ehcache/rest/sanpl eCache2/ 3

The server will putel | o Wor | d into sanpl eCache2 using keys.

GET
curl http://1ocal host: 8080/ ehcache/rest/sanpl eCache2/ 2
The server responds with:

<?xm version="1.0"7?>

<ol dj oke>

<bur ns>Say <quot e>goodni ght </ quot e>,
G aci e. </ bur ns>

<al | en><quot e>Goodni ght,

Graci e. </ quot e></ al | en>

<appl ause/ >

Ruby Code Samples
GET
require 'rubygens’

require 'open-uri’
require 'rexm /docunent’

response = open(’ http://local host: 8080/ ehcache/rest/sanpl eCache2/2")
xm = response. read
puts xm

164

The server responds with:

<?xm version="1.0"?>

<ol dj oke>

<bur ns>Say <quot e>goodni ght </ quot e>,
G aci e. </ burns>

<al | en><quot e>Goodni ght,

G aci e. </ quote></al | en>

<appl ause/ >

</ ol dj oke>

Python Code Samples

GET

import urllib2

f = urllib2.urlopen(’ http://1ocal host: 8080/ ehcache/rest/sanpl eCache2/2")
print f.read()

The server responds with:

<?xm version="1.0"?>

<ol dj oke>

<bur ns>Say <quot e>goodni ght </ quot e>,
Graci e. </ burns>

<al | en><quot e>Goodni ght,

Graci e. </ quot e></ al | en>

<appl ause/ >

</ ol dj oke>

Java Code Samples

Create and Get a Cache and Entry
package sanpl es;

import java.io.lnputStream

i mport java.io.QutputStream

i mport java.net. Htt pURLConnecti on;
i mport java.net. URL;

[**
* A sinmple exanple Java client which uses the built-in java.net.URLConnecti on.
*
* @ut hor BryantR
* @ut hor Greg Luck
*/
public class Exanpl eJavadient {
private static String TABLE_COLUVWN_BASE =
"http://1ocal host: 8080/ ehcache/rest/tabl eCol um";
private static String TABLE _COLUVN_ELEMENT =
"http://1ocal host: 8080/ ehcache/rest/tabl eCol um/1";

| *x

165

* Creates a new i nstance of EHCacheREST
*/

publ i ¢ Exanpl eJavaCient() {

}

public static void main(String[] args) {

URL url;

Ht t pURLConnecti on connection = null

Input Streamis = null

CQut put Stream os = nul | ;

int result = 0;

try {
/'l create cache
URL u = new URL(TABLE_COLUWN_BASE) ;
Ht t pURLConnecti on url Connecti on = (Htt pURLConnecti on) u.openConnection();
ur | Connecti on. set Request Met hod(" PUT") ;

int status = url Connecti on. get ResponseCode();
Systemout.println("Status: " + status);
ur | Connecti on. di sconnect ();

/1 get cache

url = new URL(TABLE_COLUWN BASE);

connection = (HttpURLConnection) url.openConnection();
connecti on. set Request Met hod(" GET") ;
connecti on. connect ();

is = connection. getlnputStreamn();

byte[] responsel = new byte[4096];

result = is.read(responsel);

while (result !'=-1) {
Systemout.wite(responsel, 0, result);
result = is.read(responsel);

}

if (is!=null) try {
is.close();

} catch (Exception ignore) {

}

Systemout. println("readi ng cache: " + connecti on. get ResponseCode()

+ " " + connection. get ResponseMessage());
if (connection !'= null) connection. disconnect();

/lcreate entry

url = new URL(TABLE_COLUWN_ELENENT) ;

connection = (HttpURLConnection) url.openConnection();

connect i on. set Request Property(" Content-Type", "text/plain");

connecti on. set DoQut put (true);

connecti on. set Request Met hod(" PUT") ;

connecti on. connect () ;

String sanpl eData = "Ehcache is way cool !'!'l'"

byte[] sanpl eBytes = sanpl eDat a. get Byt es() ;

0S = connection. get Qut put Streamn() ;

os.wite(sanpl eBytes, 0, sanpl eBytes.|ength);

os. flush();

Systemout.println("result=" + result);

Systemout.println("creating entry: " + connection. get ResponseCode()
+ " " + connection. get ResponseMessage());

if (connection != null) connection. disconnect();

166

/1 get entry

url = new URL(TABLE_COLUWN_ELENENT) ;

connection = (HttpURLConnection) url.openConnection();
connect i on. set Request Met hod(" GET") ;
connecti on. connect ();

is = connection. getlnputStreamn();

byte[] response2 = new byte[4096];

result = is.read(response2);
while (result !'=-1) {
System out.wite(response2, 0, result);
result = is.read(response2);
}
if (is!=null) try {
is.close();
} catch (Exception ignore) {
}
Systemout.println("reading entry: " + connection. get ResponseCode()
+ " " + connection. get ResponseMessage());
if (connection !'= null) connection. disconnect();

} catch (Exception e) {
e.printStackTrace();
} finally {
if (os !'=null) try {
os. cl ose();
} catch (Exception ignore) {
}
if (is!=null) try {
is.close();
} catch (Exception ignore) {
}

if (connection !'= null) connection. disconnect();

Scala Code Samples

GET

i mport java.net. URL
i mport scal a.io. Source. from nput Stream

obj ect Exanpl eScal aGet extends Application {
val url = new URL("http://I|ocal host: 8080/ ehcache/ rest/sanpl eCache2/2")
from nput Strean(url.openStrean). getLines. foreach(print)

}

Run it with:
scal a -e Exanpl eScal aGet
The program outputs:

<?xm version="1.0"7?>

<ol dj oke>

<bur ns>Say <quot e>goodni ght </ quot e>
G aci e. </ bur ns>

167

<al | en><quot e>Goodni ght,
Graci e. </ quot e></ al | en>
<appl ause/ >
PHP Code Samples
GET
<?php
$ch = curl _init();

curl _setopt ($ch, CURLOPT_URL, "http://l ocal host: 8080/ ehcache/rest/sanpl eCache2/3");
curl _setopt ($ch, CURLOPT_HEADER, 0);

curl _exec ($ch);

curl _close ($ch);
?>

The server responds with:

Hel l o I ngo
PUT
<?php
$url = "http://1ocal host: 8080/ ehcache/ rest/sanpl eCache2/ 3"
$localfile = "localfile.txt";
$fp = fopen ($localfile, "r");

$ch = curl _init();

curl _setopt ($ch, CURLOPT_VERBCSE, 1);

curl _setopt($ch, CURLOPT_URL, $url);

curl _setopt ($ch, CURLOPT_PUT, 1);

curl _setopt ($ch, CURLOPT_RETURNTRANSFER, 1);

curl _setopt($ch, CURLOPT_I NFILE, $fp);

curl _setopt ($ch, CURLOPT_INFILESIZE, filesize($localfile));

$http_result = curl _exec($ch);
$error = curl _error($ch);
$http_code = curl _getinfo($ch , CURLI NFO_HTTP_CODE)

curl _cl ose($ch);
fcl ose($fp);

print $http_code;
print "

$http_result";

if ($error) {
print "

%error";
}

?>
The server responds with:

168

About to connect() to |ocal host port 8080 (#0)
Trying ::1... * connected

Connected to | ocal host (::1) port 8080 (#0)

PUT / ehcache/ rest/sanpl eCache2/3 HITP/ 1.1

Host: | ocal host: 8080

Accept: /=

Content -Length: 11

Expect: 100-continue

AVAREE R

HTTP/ 1.1 100 Conti nue

HTTP/ 1.1 201 Created

Location: http://1ocal host: 8080/ ehcache/rest/sanpl eCache2/ 3
Content-Length: O

Server: Jetty(6.1.10)

Connection #0 to host | ocal host |eft intact
Cl osi ng connection #0

** ANNANNNNANA

29.3 Creating Massive Caches with Load Balancers and Part@ning

The RESTful Ehcache Server is designed to achieve massiliegeising data partitioning - all from a
RESTful interface. The largest Ehcache single instanaesiraround 20GB in memory. The largest disk
stores run at 100Gb each. Add nodes together, with cach@ddttioned across them, to get larger sizes.
50 nodes at 20GB gets you to 1 Terabyte.

Two deployment choices need to be made:

e where is partitoning performed, and

e isredundancy required?

These choices can be mixed and matched with a number ofetiffdeployment topologies.

29.3.1 Non-redundant, Scalable with client hash-based raing

Man-redundant Scalable Cache Server Topology
with client hash-based URI routing

Cluster 1

Ehcache Server 1

HTTF

Hashing

RESTHI
Gache
Cllent

HTTR

\ Cluster n
™ Encache Server 2

This topology is the simplest. It does not use a load balaritaeh node is accessed directly by the cache
client using REST. No redundancy is provided.

The client can be implemented in any language because imjgwia HTTP client.
It must work out a partitioning scheme. Simple key hashisgjsed by memcached, is sufficient.

169

Here is a Java code sample:

String[] cacheservers = new String[]{"cacheserver0. conmpany. coni', "cacheserver1l. conmpany. cont,
"cacheserver 2. conpany. comt', "cacheserver 3. conpany. conl', "cacheserver4. conpany. coni,
"cacheserver5. conpany. con'};

oj ect key = "123231";

int hash = Mat h. abs(key. hashCode());

int cacheserverlndex = hash % cacheservers. | ength;

String cacheserver = cacheservers[cacheserverl ndex];

29.3.2 Redundant, Scalable with client hash-based routing

Redundant Scalable Cache Server Topaiogy
with client hash-based URI routing

Clustar 1

Loag
Balancer

Ehcache Senver 1 —

AMIJMS/AIGroups
FReplication

Enhcache Serverz ——

Hashing
festo
Cache
Client
{Java, PHP,

Clustar n

HTTR

{—=| Ehcache Server 1 —
RMUJMS G UpS
Replication

| Encache Serverz —!

Redundancy is added as shown in the above diagram by: Regleach node with a cluster of two nodes.

One of the existing distributed caching options in Ehcashesied to form the cluster. Options in Ehcache
1.5 are RMI and JGroups-based clusters. Ehcache-1.6 will&th as a further option. Put each Ehcache
cluster behind VIPs on a load balancer.

29.3.3 Redundant, Scalable with load balancer hash-baseduting

Redundant Scalable Cache Server Topology
with Load Balancer hash-based URI routing

Cluster 1

| 9| Ehcache Sarver 1 —
BMUJMSAGroups

Raplication
& Ehcache Server2 !

Load
Balancar

il

Hasfing
IRt

RESTIU
Cache <
Client
- P
(Java, PHP. HTTP — Vlj
Auby, %
Python, G ...

Hasning Cluster n

1Rute

Ehcache Server 1 —
RAMIIMSAGroups

Feplication

S

Ehcacha Sarver 2

il

Many content-switching load balancers support URI routisgpng some form of regular expressions.
So, you could optionally skip the client-side hashing toieed partitioning in the load balancer itself.

For example:

170

/ ehcache/rest/sanmpl eCachel/[a-h]+* => clusterl
/ ehcache/rest/sanpl eCachel/[i-z]* => cluster2

Things get much more sophisticated with F5 load balancenghwet you create iRules in the TCL lan-
guage. So rather than regular expression URI routing, yalddmplement key hashing-based URI rout-
ing. Remember in Ehcache’s RESTful server, the key formdakiepart of the URI. e.g. In the URI
http://cacheserver.company.com/ehcache/rest/saraphe®/3432 , 3432 is the key.

You hash using the last part of the URI.

See http://devcentral.f5.com/Default.aspx?tabid=688#D=153&ArticleID=135&article Type=ArticleView
for how to implment a URI hashing iRule on F5 load balancers.

29.4 W3C (SOAP) Web Services

The W3C (http://www.w3.0rg/ is a standards body that defieb Services as

The Wrld Wde Web is nore and nore used for application to application comunication.
The programmatic interfaces made available are referred to as Wb servi ces.
They provide a set of recommendations for achieving this. [8gp://www.w3.0rg/2002/ws/.

An interoperability organisation, WS-1 http://www.w®ig/, seeks to achieve interoperabilty between
W3C Web Services. The W3C specifications for SOAP and WSDLregeaired to meet the WS-| def-
inition.

Ehcache is using Glassfish’s libraries to provide it's W3wervices. The project known as Metro
follows the WS-I definition.

Finally, OASIS (http://oasis-open.org), defines a Web Bers Security specification for SOAP: WS-
Security. The current version is 1.1. It provides three ns&icurity mechanisms: ability to send security
tokens as part of a message, message integrity, and messdigkentiality.

Ehcache’s W3C Web Services support the stricter WS-I definénd use the SOAP and WSDL specfica-
tions.

Specifically:
e The method of operation is in the entity-body of the SOAP @peand a HTTP header. POST is
always used as the HTTP method.

e The scoping information, used to identify the resource tdgue the method on, is contained in
the SOAP entity-body. The URI path is always the same for argi/eb Service - it is the service
"endpoint”.

e The Web Service is described by and exposes a WSDL (Web &sriescription Language) file. It
contains the methods, their arguments and what data typesad.

e The WS-Security SOAP extensions are supported

29.4.1 W3C Web Services API

The Ehcache RESTFul Web Services API exposes the singletoheBanager, which typically has been
configured in ehcache.xml or an 1oC container. Multiple Gadhnagers are not supported.

The API definition is as follows:

e WSDL - EhcacheWebServiceEndpointService.wsdl

e Types - EhcacheWebServiceEndpointService_schemal.xsd

171

29.4.2 Security

By default no security is configured. Because it is simply evie€2.5 web application, it can be secured
in all the usual ways by configuration in the web.xml.

In addition the cache server supports the use of XWSS 3.@toa¢he Web Service. See https://xwss.dev.java.net/.
All required libraries are packaged in the war for XWSS 3.0.

A sample, commented out server_security_config.xml isigexl/in the WEB-INF directory. XWSS au-
tomatically looks for this configuration file.

A simple example, based on an XWSS examég,. sf . ehcache. server. soap. Securi t yEnvi r onment Handl er,
which looks for a password in a System property for a givemnasae is included. This is notrecommended
for production use but is handy when you are getting starigd XWSS.

To use XWSS:

Add configuration in accordance with XWSS to the server_sgciconfig.xml file. Create a class which
implements th€al | backHandl er interface and provide its fully qualified path in tBecur i t yEnvi r onnent Handl er
element.

The integration testhcacheWebSer vi ceEndpoi nt test shows how to use the XWSS client side. On the
client side, configuration must be provided in a file cakkéd ent _security_confi g. xm must be in
the root of the classpath.

To add client credentials into the SOAP request do:

cacheServi ce = new EhcacheWebSer vi ceEndpoi nt Servi ce() . get EhcacheWebSer vi ceEndpoi nt Port () ;

//add security credentials

((Bi ndi ngProvi der)cacheService) . get Request Cont ext (). put (Bi ndi ngPr ovi der . USERNAVE_PROPERTY,
"Ron");

((Bi ndi ngProvi der)cacheServi ce) . get Request Cont ext (). put (Bi ndi ngPr ovi der. PASSWORD_PROPERTY,
"noR");

String result = cacheService. ping();

29.5 Requirements

29.5.1 Java

Java5or6

29.5.2 Web Container (WAR packaged version only)

The standalone server comes with its own embedded Glasdisltontainer.
The web container must support the Servlet 2.5 specification
The following web container configuration have been tested:

e Glassfish V2/V3
e Tomcat 6

o Jetty 6

29.6 Downloading

The server is available as follows:

172

29.6.1 Sourceforge

Download here.
There are two tarball archives in tar.gz format:

e ehcache-server - this contains the WAR file which must beayepl in your own web container.

e ehcache-standalone-server - this contains a completeadtare directory structure with an embed-
ded Glassfish V3 web container together with shell scriptstarting and stopping.

29.6.2 Maven

The Ehcache Server is in the central Maven repository pakag typevar. Use the following Maven
pom snippet:

<dependency>
<gr oupl d>net . sf. ehcache</ gr oupl d>
<artifactld>ehcache-server</artifactld>
<versi on>ent er _versi on_her e</ versi on>
<t ype>war </t ype>

</ dependency>

It is also available as a jaronly version, which makes itexasi embed. This version excludes all META-
INF and WEB-INF configuration files, and also excludes theaehe.xml. You need to provide these in
your maven project.

<dependency>
<gr oupl d>net . sf. ehcache</ gr oupl d>
<artifactld>ehcache-server</artifactld>
<versi on>ent er _versi on_her e</versi on>
<type>j ar</type>
<cl assifier>jaronly</classifier>

</ dependency>

29.7 Installation

29.7.1 Installing the WAR

Use your Web Container’s instructions to install the WARralude the WAR in your project with Maven’s
war plugin.

Web Container specific configuration is provided in the WARddsws:

e sun-web.xml - Glassfish V2/V3 configuration

e jetty-web.xml - Jetty V5/V6 configuration
Tomcat V6 passes all integration tests. It does not requspeaific configuration.
29.7.2 Configuring the Web Application

Expand the WAR.
Edit the web.xml.

173

Disabling the RESTful Web Service

Comment out the RESTful web service section.

Disabling the SOAP Web Service

Comment out the RESTful web service section.

Configuring Caches

The ehcache.xml configuration file is located in WEB-INF#skes/ehcache.xml.
Follow the instructions in this config file, or the core Ehcadafstructions to configure.

SOAP Web Service Security

29.8 Installing the Standalone Server

The WAR also comes packaged with a standalone server, baggthssfish V3 Embedded.
The quick start is:

e Untar the download

e bin/start.sh to start. By default it will listen on port 8Q&@ith JMX listening on port 8081, will have
both RESTful and SOAP web services enabled, and will use plsahcache configuration from
the WAR module.

e bin/stop.sh to stop

29.8.1 Configuring the Standalone Server

Configuration is by editing the war/web.xml file as per therinstions for the WAR packaging.

29.8.2 Starting and Stopping the Standalone Server
Using Commons Daemon jsvc

jsvc creates a daemon which returns once the service igdtagvc works on all common Unix-based
operating systems including Linux, Solaris and Mac OS X.

It creates a pid file in the pid directory.
This is a Unix shell script that starts the server as a daemon.

To use jsvc you must install the native binary jsvc from thegipe Commons Daemon project. The source
for this is distributed in the bin directory as jsvc.tar.gintar it and follow the instructions for building it
or download a binary from the Commons Daemon project.

Convenience shell scripts are provided as follows:

start -daenon_start. sh

stop -daenon_st op. sh

jsvc is designed to integrate with Unix System 5 initialiaatscripts. (/etc/rc.d)

You can also send Unix signals to it. Meaningful ones for thedthe Standalone Server are:

174

No Meaning

1 HUP
2 INT
9 KILL
15 TERM

Executable jar

The server is also packaged as an executable jar for developesnience which will work on all operating
systems.

A convenience shell script is provided as follows:
start - startup.sh
From the bin directory you can also invoke the following coamd directly:

uni x - java -jar ../lib/ehcache-standal one-server-0.7.jar 8080 ../ war
wi ndows - java -jar ..\lib\ehcache-standal one-server-0.7.jar 8080 ..\war

29.9 Monitoring

The CacheServer registers Ehcache MBeans with the plaftBeanServer.

Remote monitoring of the MBeanServer is the responsibilitthe Web Container or Application Server
vendor.

For example, some instructions for Tomcat are here: hitgiki/internet2.edu/confluence/display/CPD/Monitar#Tomcat+w
See your Web Container documentation for how to do this foryeeb container.

29.9.1 Remotely Monitoring the Standalone Server with IMX

The standalone server automatically exposes the MBeaaSama port 1 higher than the HTTP listening
port.

To connect withl Consol e simply fire up JConsole, enter the host in the Remote field andijthe above
example that is

192.168. 1. 108: 8686

Then clickConnect .
To see the Ehcache MBeans, click on iheans tab and expand theet . sf . ehcache tree node.

You will see something like the following.

175

886 J25E 5.0 Monitoring & Management Console: 3075@I|ocalhost

Connection
" Summary = Memory = Threads Classes MBeans VM |
FE‘J Tree ! Attributes Operations — b
P | IMimplementation
b |7 javalang ; _ Mame __ Value
kg AssociatedCacheName sampleCachel
¥ | java.util.logging CacheHits 1
¥ | netsf.ehcache CacheMisses 0
¥ |7 CacheStatistics InMemoryHits 1
¥ |0 netsf.ehcache.CacheManager@881ch3 Dbje_ClefUﬂl 1
@ CachedLogin OnbliskHjts o
StatisticsAccuracy 1

@ FooterPageCache

@ SimplePageCachingFilter -
@ SimplePageCachingFilterwithBlankPageProblem

@@ SimplePageFragmentCachingFilter

@ netsf.ehcache.constructs.asynchronous.MessageCache
@@ persistentLongExpiryintervalCache

@ sampleCachel

@@ sampleCache2

@@ sampleCacheNoldle

@ sampleCacheNotEternalButNold leOrExpiry

& sampleldiingExpiringCache

StatisticsAccuracyDescription Best Effort

CacheStatistics MBeans in JConsole

Of course, from there you can hook the Cache Server up to younitaring tool of choice. See the chapter
on JMX Management and Monitoring for more information.

176

Chapter 30

Hibernate Caching

Note these instructions are for Hibernate 3.1. Go to Guid&éosion 1.1 for older instructions on how to
use Hibernate 2.1.

Ehcache easily integrates with the Hibernate Object/Relat persistence and query service. Gavin King,
the maintainer of Hibernate, is also a committer to the Ehegroject. This ensures Ehcache will remain
a first class cache for Hibernate.

Since Hibernate 2.1, Ehcache has been the default cachdipfemate.

The net.sf.ehcache.hibernate package provides clagegsdting Ehcache with Hibernate. Hibernate is an
application of ehcache. Ehcache is also widely used a geperpose Java cache.

To use Ehcache with Hibernate do the following:

e Ensure Ehcache is enabled in the Hibernate configuration.

Add the cache element to the Hibernate mapping file, eithaualdy, or via hibernatedoclet for each
Domain Object you wish to cache.

Add the cache element to the Hibernate mapping file, eithaualdy, or via hibernatedoclet for each
Domain Object collection you wish to cache.

Add the cache element to the Hibernate mapping file, eithaualdy, or via hibernatedoclet for each
Hibernate query you wish to cache.

Create a cache element in ehcache.xml

Each of these steps is illustrated using a fictional CountrgnBin Object.

For more about cache configuration in Hibernate see the Ritberdocumentation. Parts of this chapter
are drawn from Hibernate documentation and source code enmtsm

They are reproduced here for convenience in using ehcache.

30.1 Setting Ehcache as the cache provider

30.1.1 Using one of the two Ehcache providers from the Ehcaelproject

To ensure Ehcache is enabled, verify that the hibernateecaivider_class property is set to one of the
following in the Hibernate configuration file, either hibata.cfg.xml or hibernate.properties. The format
given is for hibernate.cfg.xml.

177

net . sf. ehcache. hi ber nat e. EnCachePr ovi der
for instance creation, or
net . sf. ehcache. hi ber nat e. Si ngl et onEhCachePr ovi der

to force Hibernate to use a singleton of Ehcache CacheManage

30.1.2 Using multiple Hibernate instances

Each instance of Hibernate will need it's own instance ofaehe’s CacheManager.

To do this use the following configuration, which a uniguaf i gur at i onResour ceNane per Hibernate
instance.

hi ber nat e. cache. provi der _cl ass=net . sf. ehcache. hi ber nat e. EnCachePr ovi der
net. sf. ehcache. confi gurati onResour ceNane=/ nane_of _ehcache. xni

The meaning of the properties is as follows:
hibernate.cache.provider_class - The fully qualifiedslz@me of the cache provider
net.sf.ehcache.configurationResourceName - The nameaoifigaration resource to use.

The resource is searched for in the root of the classpatbk.niééded to support multiple CacheManagers
in the same VM. It tells Hibernate which configuration to uaa.example might be "ehcache-2.xml".

30.1.3 Using the Hibernate Ehcache provider

To use the one from the Hibernate project:

hi ber nat e. cache. provi der _cl ass=or g. hi ber nat e. cache. EnCachePr ovi der
hi ber nat e. cache. provi der_confi guration_fil e_resource_pat h=/ name_of _confi gurati on_resource

30.1.4 Programmatic setting of the Hibernate Cache Provide

The provider can also be set programmatically in Hibernsitegu.Configuration.setProperty("hibernate.cache.pi@viclass",
"net.sf.ehcache.hibernate.EhCacheProvider").

30.2 Hibernate Mapping Files

In Hibernate, each domain object requires a mapping file.

For example to enable cache entries for the domain objecismonecompany.someproject.domain.Country
there would be a mapping file something like the following:

<hi ber nat e- nappi ng>

<cl ass

178

nanme="com someconpany. sonepr oj ect . domai n. Country"
tabl e="ut _Countri es"
dynamni c- updat e="f al se"
dynami c-i nsert="fal se"
>

</ hi ber nat e- mappi ng>
To enable caching, add the following element.

<cache usage="read-wite|nonstrict-read-wite|read-only" />

e.g.

<cache usage="read-wite" />

30.2.1 read-write

Caches data that is sometimes updated while maintainingehgntics of "read committed" isolation
level. If the database is set to "repeatable read", thisunwency strategy almost maintains the semantics.
Repeatable read isolation is compromised in the case oLicmrt writes.

This is an "asynchronous" concurrency strategy.

30.2.2 nonstrict-read-write

Caches data that is sometimes updated without ever lockingdche. If concurrent access to an item is
possible, this concurrency strategy makes no guarante¢hthéem returned from the cache is the latest
version available in the database. Configure your cacheotitreccordingly! This is an "asynchronous”
concurrency strategy.

This policy is the fastest. It does not use synchronized atthvhereas read-write and read-only both do.

30.2.3 read-only

Caches data that is never updated.

30.3 Hibernate Doclet

Hibernate Doclet, part of the XDoclet project, can be usagktterate Hibernate mapping files from markup
in JavaDoc comments.

Following is an example of a Class level JavaDoc which condigwa read-write cache for the Country
Domain Obiject:

[**

* A Country Domai n Object

*

179

x @i bernate. cl ass tabl e=" COUNTRY"

* @i ber nat e. cache usage="read-wite"

* [

public class Country inplenents Serializable

{
}

The @hibernate.cache usage tag should be set to one of rdagdnenstrict-read-write and read-only.

30.4 Configuration with ehcache.xml

Because ehcache.xml has a defaultCache, caches will abeayreated when required by Hibernate. How-
ever more control can be exerted by specifying a configuratér cache, based on its name.

In particular, because Hibernate caches are populated dadabases, there is potential for them to get
very large. This can be controlled by capping their maxEletsiaMemory and specifying whether to
overflowToDisk beyond that.

Hibernate uses a specific convention for the naming of camfi@emain Objects, Collections, and Queries.

30.4.1 Domain Objects

Hibernate creates caches named after the fully qualifiecerarbomain Objects.

So, for example to create a cache for com.somecompany.sojeepdomain.Country create a cache con-
figuration entry similar to the following in ehcache.xml.

<cache
nanme="com someconpany. sonepr oj ect . domai n. Country"
maxEl enent sl nMenor y="10000"
eternal ="fal se"
ti meTol dl eSeconds="300"
ti meTolLi veSeconds="600"
over f | owToDi sk="true"
/>

30.4.2 Hibernate

CacheConcurrencyStrategy read-write, nonstrict-redtkwand read-only policies apply to Domain Ob-
jects.

30.4.3 Collections

Hibernate creates collection caches named after the fullyified name of the Domain Object followed by

." followed by the collection field name.

For example, a Country domain object has a set of advanced&eilities. The Hibernate doclet for the
accessor looks like:

| *x
* Returns the advanced search facilities that should appear for this country.
* @i bernate.set cascade="all" inverse="true"

* (@i bernate. coll ection-key col um="COUNTRY_I D"

180

* (@i bernate. coll ection-one-to-many class="com woti f.]jaguar. domai n. AdvancedSear chFacility"
* @i bernate.cache usage="read-wite"
*/
public Set get AdvancedSearchFacilities() {
return advancedSear chFacilities;

}
You need an additional cache configured for the set. The @lcanl configuration looks like:

<cache name="com someconpany. sonepr oj ect . domai n. Country"
maxEl enent sl nMenor y="50"
eternal ="f al se"
ti meTolLi veSeconds="600"
over f | owToDi sk="t rue"

/>
<cache
nane="com sonmeconpany. sonepr oj ect. Count ry. advancedSear chFaci lities"
maxEl emrent sl nMenor y="450"
eternal ="fal se"
ti meTolLi veSeconds="600"
over fl owToDi sk="true"
/>

30.4.4 Hibernate CacheConcurrencyStrategy

read-write, nonstrict-read-write and read-only poli@egly to Domain Object collections.

30.4.5 Queries

Hibernate allows the caching of query results using two each

"net.sf.hibernate.cache.StandardQueryCache" andfigbernate.cache.UpdateTimestampsCache"in ver-
sions 2.1to 3.1 and "org.hibernate.cache.StandardQaehgCand "org.hibernate.cache.Update TimestampsCache"
in version 3.2. are always used.

30.4.6 StandardQueryCache

This cache is used if you use a query cache without settingreend typical ehcache.xml configuration
is:

<cache
nanme="or g. hi ber nat e. cache. St andar dQuer yCache"
maxEl enent sl nMenor y="5"
eternal ="f al se"
ti meTolLi veSeconds="120"
overfl owToDi sk="true"/>

30.4.7 UpdateTimestampsCache

Tracks the timestamps of the most recent updates to pati@bles. It is important that the cache timeout
of the underlying cache implementation be set to a higharevéthan the timeouts of any of the query
caches. In fact, it is recommend that the the underlyingeadt be configured for expiry at all.

A typical ehcache.xml configuration is:

181

<cache
nane="or g. hi ber nat e. cache. Updat eTi nest anpsCache"
maxEl enent sl nMenor y="5000"
eternal ="true"
overfl owToDi sk="true"/>

30.4.8 Named Query Caches

In addition, a QueryCache can be given a specific name in Hitberusing Query.setCacheRegion(String
name). The name of the cache in ehcache.xml is then the name igi that method. The name can be
whatever you want, but by convention you should use "quéoyidwed by a descriptive name.

E.g.

<cache nanme="query. Adm ni strati veAreasPer Country"
maxEl enent sl nMenor y="5"
eternal ="fal se"
ti meTolLi veSeconds="86400"
overfl owToDi sk="true"/>

30.4.9 Using Query Caches

For example, let's say we have a common query running agdi@sountry Domain.
Code to use a query cache follows:

public List getStreetTypes(final Country country) throws Hi bernateException {
final Session session = createSession();

try {
final Query query = session.createQuery(

"select st.id, st.nane"

+ " from Street Type st

+ " where st.country.id = :countryld "

+ " order by st.sortOrder desc, st.nane");

query. setLong("countryld", country.getld().!|ongValue());
query. set Cacheabl e(true);

query. set CacheRegi on("query. Street Types");

return query.list();

} finally {
session. cl ose();
}

Thequery. set Cacheabl e(t rue) line caches the query.
Thequery. set CacheRegi on("query. Street Types") line sets the name of the Query Cache.

30.4.10 Hibernate CacheConcurrencyStrategy

None of read-write, nonstrict-read-write and read-onliigies apply to Domain Objects. Cache policies
are not configurable for query cache. They act like a nonHarkead only cache.

182

30.5 Hibernate Caching Performance Tips

To get the most out of Ehcache with Hibernate, Hibernatessafst's in-process cache is important to
understand.

30.5.1 In-Process Cache

From Hibernate’s point of view, Ehcache is an in-procestieacCached objects are accessible across
different sessions. They are common to the Java process.

30.5.2 ObjectId

Hibernate identifies cached objects via an object id. Thi®isnally the primary key of a database row.

30.5.3 Session.load

Session.load will always try to use the cache.

30.5.4 Session.find and Query.find

Session.find does not use the cache for the primary objedierhtate will try to use the cache for any
associated objects. Session.find does however cause teetoaee populated.

Query.find works in exactly the same way.
Use these where the chance of getting a cache hit is low.

30.5.5 Session.iterate and Query.iterate

Session.iterate always uses the cache for the primarytaojecany associated objects.
Query.iterate works in exactly the same way.
Use these where the chance of getting a cache hit is high.

30.6 Hibernate FAQ

30.6.1 TBC OpenJPA Caching Provider

Ehcache easily integrates with the OpenJPA persistencefvark.

30.7 Installing
To use it, add a Maven dependency for ehcache-openjpa.

<gr oupl d>net . sf. ehcache</ gr oupl d>
<artifactld>ehcache-openj pa</artifactld>
<versi on>0. 1</ versi on>

or download from downloads.

183

30.8 Configuration

Set OpenJPA'spenj pa. Quer yCache to ehcache and openj pa. Dat aCacheManager to ehcache.
That's it!

See http://openjpa.apache.org/builds/1.0.2/apackejpa-1.0.2/docs/manual/ref_guide_caching.html for
more on caching in OpenJPA.

184

Chapter 31

JSR107 (JCACHE) Support

31.1 JSR107 Implementation

Ehcache provides a preview implementation of JSR107 viag¢hesf . cache. j cache package.

WARNING: JSR107 is still being drafted with the Ehcache ntaiimer as Co Spec Lead. This package will
continue to change until JSR107 is finalised. No attemptlvdlmade to maintain backward compatiblity
between versions of the package. It is therefore recomnuttiodese Ehcache’s proprietary API directly.

31.2 Using JCACHE

31.2.1 Creating JCaches
JCaches can be created in two ways:
e as an Ehcache decorator

e from JCache’s CacheManager

Creating a JCache using an Ehcache decorator

manager in the following sample is an net.sf.ehcache.CacheManager

net.sf.jsrl07cache. Cache cache = new JCache(nmanager. get Cache("sanpl eCacheNoldl e"), null);

Creating a JCache from an existing Cache in Ehcache’s Cachedhager

This is the recommended way of using JCache. Caches can figured in ehcache.xml and wrapped as
JCaches with the getJCache method of CacheManager.

manager in the following sample is an net.sf.ehcache.CacheManager

net.sf.jsrl07cache. Cache cache = nmanager. get JCache("sanpl eCacheNol dl e");

Adding a JCache to Ehcache’s CacheManager

manager in the following sample is an net.sf.ehcache.CacheManager

185

Ehcache Ehcache = new net. sf. ehcache. Cache(...);
net.sf.jsrl07cache. Cache cache = new JCache(ehcache);
manager . addJCache(cache) ;

Creating a JCache using the JCache CacheManager

Warning: The JCache CacheManager is unworkable and wifllilezly be dropped in the final JCache as
a Class. It will likely be replaced with a CacheManager ifstee.

The JCache CacheManager only works as a singleton. Younabtgith get | nst ance

The CacheManager uses a CacheFactory to create CachesadleFactory is specified using the Service
Provider Interface mechanism introduced in JDK1.3.

The factory is specified in theETA- | NF/ ser vi ces/ net . sf. j sr107cache. CacheFact ory resource
file. This would normally be packaged in a jar. The defaulueafor the Ehcache implementation is
net . sf. ehcache. j cache. JCacheFact ory

The configuration for a cache is assembled as a map of prepeNalid properties can be found in the
JavaDoc for the JCacheFactory.createCache() method.

See the following full example.

CacheManager singl et onManager = CacheManager. getl nstance();
CacheFactory cacheFactory = singl etonManager. get CacheFactory();
assert Not Nul | (cacheFactory);

Map config = new HashMap();

config. put ("nanme", "test");

config. put ("nmaxEl enent sl nMenory", "10");
config. put ("nenoryStoreEvictionPolicy", "LFU");
config. put ("overfl owToDi sk", "true");
config.put("eternal”, "false");

config. put("timeTolLi veSeconds", "5");
config.put("timeTol dl eSeconds", "5")
config. put ("di skPersistent”, "fal se");

config. put ("di skExpi ryThr eadl nt erval Seconds", "120");

Cache cache = cacheFactory. createCache(config);
si ngl et onManager . r egi st er Cache("test", cache);

31.2.2 Getting a JCache

Once a cache is registered in CacheManager, you get it frera.th
The following example shows how to get a Cache.

manager = CacheManager. getl nstance();

Ehcache Ehcache = new net. sf.ehcache. Cache("UseCache", 10,
Menor ySt or eEvi cti onPol i cy. LFU,

false, null, false, 10, 10, false, 60, null);

manager . regi st er Cache("test", new JCache(ehcache, null));
Cache cache = nmnager. get Cache("test");

31.2.3 Using a JCache

The JavaDaoc is the best place to learn how to use a JCache.

186

The main point to remember is that JCache implements Mapheatdstthe best way to think about it.

JCache also has some interesting asynchronous methodassusd andl oadAl | which can be used to
preload the JCache.

31.3 Problems and Limitations in the early draft of JSR107

If you are used to the richer API that Ehcache provides, yadrte be aware of some problems and
limitations in the draft specification.

You can generally work around these by gettingiEheache backing cache. You can then access the extra
features available in ehcache.

Of course the biggest limitation is that JSR107 (as of Au@t7) is a long way from final.
[**
* Gets the backi ng Ehcache
*/
publ i ¢ Ehcache get Backi ngCache() {
return cache;
}

The following is both a critique of JCache and notes on theaEhe implementation. As a member of the
JSR107 Expert Group these notes are also intended to beasegrbve the specification.

31.3.1 net.sf.jsrl07cache.CacheManager
CacheManager does not have the following features:

e shutdown the CacheManager - there is no way to free resoorgesrsist. Implementations may
utilise a shutdown hook, but that does not work for applaaserver redeployments, where a shut-
down listener must be used.

e List caches in the CacheManager. There is no way to iterag owget a list of caches.

e remove caches from the CacheManager - once its there itrie thil JVM shutdown. This does
not work well for dynamic creation, destruction and redmabf caches.

e CacheManager does not provide a standard way to configuhegad Map can be populated with
properties and passed to the factory, but there is no way figooation file can be configured. This
should be standardised so that declarative cache configuraather than programmatic, can be
achieved.

31.3.2 net.sf.jsrl07cache.CacheFactory

A property is specified in the resource services/net.&bhjscache.CacheFactory for a CacheFactory.
The factory then resolves the CacheManager which must beyketin.

A singleton CacheManager works in simple scenarios. Buetage many where you want multiple Cache-
Managers in an application. Ehcache supports both singtetation semantics and instances and defines
the way both can coexist.

The singleton CacheManager is a limitation of the specificat
(Alternatives: Some form of annotation and injection schgm

Pending a final JSR107 implementation, the Ehcache configanaechanism is used to create JCaches
from ehcache.xml config.

187

31.3.3 net.sf.jsrl07cache.Cache

The spec is silent on whether a Cache can be used in the absem€acheManager. Requiring a
CacheManager makes a central place where concerns affeditcaches can be managed, not just a
way of looking them up. For example, configuration for paesise and distribution.

Cache does not have a lifecycle. There is no startup and ridshin. There is no way, other than a
shutdown hook, to free resources or perform persistenceatipes. Once again this will not work
for redeployment of applications in an app server.

There is no mechanism for creating a new cache from a defanfiguration such as publ i c
voi d regi sterCache(String cacheNane) on CacheManager. This feature is considered in-
dispensable by frameworks such as Hibernate.

Cache does not haveget Nanme() method. A cache has a name; that is how it is retrieved from the
CacheManager. But it does not know its own name. This ford@isusers to keep track of the name
themselves for reporting exceptions and log messages.

Cache does not support setting a TTL override on a putpaig. Obj ect key, Cbject val ue,
I ong tineToLive). Thisis a useful feature.

The spec is silent on whether the cache accepts null keyslamepts. Ehcache allows all imple-
mentations. i.e.

cache. put(null, null);
assertNul | (cache. get(null));
cache. put(null, "value");

assert Equal s("val ue", cache.get(null));
cache. put ("key", null);
assert Equal s(null, cache. get("key"));

nul | is effectively a valid key. However becausel | id not an instance oferi al i zabl e null-
keyed entries will be limited to in-process memory.

Thel oad(Obj ect key),l oadAl | (Col | ecti on keys) andget Al | (Col | ection col |l ection)
methods specify in the javadoc that they should be asynduriNow, most load methods work off
a database or some other relatively slow resource (othethvise would be no need to have a cache
in the first place).

To avoid running out of threads, these load requests need tpubued and use a finite number of
threads. The Ehcache implementation does that. Howevetodine lack of lifecycle management,
there is no immediate way to free resources such as thredsl poo

Thel oad method ignores a request if the element is already loadeat ithét key.

get andget Al | are inconsistentget Al I throws CacheException, bget does not. They both
should.

*

Returns a collection view of the values contained in this map. The
collection is backed by the map, so changes to the map are reflected in
the collection, and vice-versa. |If the map is nodified while an
iteration over the collection is in progress (except through the
iterator’s own <tt>renove</tt> operation), the results of the
iteration are undefined. The collection supports el enent renoval,

whi ch renoves the correspondi ng nappi ng fromthe nmap, via the
<tt>lterator.renove</tt>, <tt>Collection.renmove</tt>,
<tt>renpveAl |l </tt> <tt>retainAll</tt> and <tt>clear</tt> operations.

E R B I S S R

188

* |t does not support the add or <tt>addAll</tt> operations.

* <p/>

*

* @eturn a collection view of the values contained in this nmap.
* [

public Collection values() {

It is not practical or desirable to support this contract.céthe has multiple maps for storage of
elements so there is no single backing map. Allowing chatgg@sopagate from a change in the
collection maps would break the public interface of the eaghd introduce subtle threading issues.

The Ehcache implementation returns a new collection wtiaioi connected to internal structures
in ehcache.

31.3.4 net.sf.jsrl07cache.CacheEntry

e getHits() returns int. It should return long because préidnccache systems have entries hit more
than Integer. MAX_VALUE times.

Once you get to Integer.MAX_VALUE the counter rolls overeSbke following test:

@est public void testintOverflow() {
I ong val ue = I nteger. MAX_VALUE;
val ue += I nteger. MVAX_VALUE;
val ue += 5;

LOG | og(Level .INFO, "" + val ue);
int valueAslint = (int) val ue;
LOG | og(Level .INFQ, "" + val ueAslint);

assert Equal s(3, val ueAslint);

e get Cost () requirs the CacheEntry to know where itis. Ifitis in a Disk®tthen its cost of retrieval
could be higher than if it is in heap memaory. Ehcache elendmtsot have this concept, and it is not
implemented. i.e. getCost always returns 0. Also, if it itha DiskStore, when you retrieve it is in
then in the MemoryStore and its retrieval cost is a lot lowelo not see the point of this method.

e get Last Updat eTi me() is the time the last "update was made". JCACHE does not stuppdates,
only puts

31.3.5 net.sf.jsrl07cache.CacheStatistics
e getObjectCount() is a strange name. How about getSize@Zdfche entry is an object graph each

entry will have more than one "object" in it. But the cacheeszwhat is really meant, so why not
call it that?

e Once agairmget CacheHi t s andget CacheM sses should be longs.

public interface CacheStatistics {
public static final int STATISTI CS_ACCURACY_NONE = O0;
public static final int STATISTI CS_ACCURACY_BEST_EFFORT = 1;
public static final int STATI STI CS_ACCURACY_GUARANTEED = 2;

public int getStatisticsAccuracy();

189

public int getObjectCount();
public int getCacheH ts();
public int getCacheM sses();

public void clearStatistics();

e There is aget Stati sticsAccuracy() method but not a corresponding setStatisticsAccuracy
method on Cache, so that you can alter the accuracy of thistifateturned.

Ehcache supports this behaviour.

e There is no method to estimate memory use of a cache. Ehcaihkzes each Element to a byte[]
one at a time and adds the serialized sizes up. Not perfebeligrr than nothing and works on older
JDKs.

e CacheStatistics is obtained usiogche. get CacheSt ati sti cs() It then has getters for values.
In this way it feels like a value object. The Ehcache impletaton is Serializable so that it can act
as a DTO. However it also has a clearStatistics() methods Mieithod clear counters on the Cache.
Clearly CacheStatistics must hold a reference to Cachedtolethis to happen.

But what if you are really using it as a value object and haviakeed it? The Ehcache implementa-
tion marks the Cache referencetaansi ent . If clearStatistics() is called when the cache reference
is no longer there, an lllegalStateException is thrown.

A much better solution would be to move clearStatisticsGatche.

31.3.6 net.sf.jsrl07cache.CacheListener

| **
* | nterface describing various events that can happen as elenents are added to
* or renoved froma cache
*/
public interface CachelListener {
[+* Triggered when a cache mapping is created due to the cache | oader being consulted */
public void onLoad(Object key);

[+* Triggered when a cache mapping is created due to calling Cache.put() =*/
public void onPut(Object key);

[+* Triggered when a cache mapping is renpved due to eviction */
public void onEvict(hject key);

/=% Triggered when a cache mapping is renpved due to calling Cache.renove() =*/
public void onRenpbve(Cbhj ect key);

public void onC ear();

e Listeners often need not just the key, but the cache Enwif.it3his listener interface is extremely
limiting.
e There is no onUpdate notification method. These are mapp#dAGHE's onPut notification.

e There is no onExpired notification method. These are mappd@ACHE'’s onEvict notification.

190

31.3.7 net.sf.jsrl07cache.CachelLoader

e JCache can store null values against a key. In this case, acthd@et or get Al | should an im-
plementation attempt to load these values again? They may& been null in the system the Cach-
eLoader loads from, but now aren’'t. The Ehcache implemiematill still return nulls, which is
probably the correct behaviour. This point should be cldifi

31.4 Other Areas

31.4.1 JMX

JSR107 is silent on IMX which has been included in the JDKesinb.

191

192

Chapter 32

Glassfish HowTo & FAQ

The maintainer uses Ehcache in production with Glassfists dftapter provides a Glassfish HOWTO.

32.1 \ersions

Ehcache is used in production with Glassfish V1 and V2.

32.2 HowTo

32.2.1 HowTo Get A Sample Application using Ehcache packadeand Deployed
to Glassfish

Ehcache comes with a sample web application which is usegsktdhte page caching. The page caching
is the only area that is sensitive to the Application Ser¥r Hibernate and general caching, it is only
dependent on your Java version.

From a checkout of Ehcache run the following from thwe e directory:
You need:

e a Glassfish installation.
e aGLASSFI SH HOVE environment variable defined.
e $GLASSFI SH HOVE/ bi n added to youPATH

Do the following:

To package and deploy to domainil:
ant depl oy-defaul t - web- app- gl assfi sh

Start donuainl:
asadnmi n start-domai n domai nl

Stop donumi nl:
asadmi n st op-domai n domai n1

Overwite the config with our own which changes the port to 9080:
ant gl assfish-configuration

193

Start donmainl:
asadnmi n start-donmai n domai nl

You can then run the web tests in the web package or point yowser aht t p: / /| ocal host : 9080.
See for a quickstart to Glassfish.

32.2.2 How to get around the EJB Container restrictions on thead creation

When Ehcache is running in the EJB Container, for examplelfioernate caching, it is in technical breach
of the EJB rules. Some app servers let you override thisicéetr.

| am not exactly sure how this in done in Glassfish. For a nuroberasons we run Glassfish without the
Security Manager, and we do not have any issues.

In domain.xml ensure that the following is not included.

<j vm opti ons>-Dj ava. security. manager</jvm opti ons>

32.2.3 How To Enable Read Behind Page Caching in Glassfish

The read behind page caching feature requires that HTTRegddkives are turned off.
To do this in Glassfish:

Not sure if this is possible in dassfish. Not in the docunentation

32.3 Glassfish FAQ

32.3.1 Ehcache page caching versions below Ehcache 1.3 getleegalStateExcep-
tion in Glassfish.

This issue was fixed in Ehcache 1.3.
32.3.2 lgetacould not ungzip. Heartbeat will not be working. Not in GZIP format

reported from PayloadUtil exception when using Ehcache wh my Glassfish
cluster. Why?

Ehcache and Glassfish clustering have nothing to do with etehr. The error is caused because Ehcache

has received a multicast message from the Glassfish clistsure that Ehcache clustering has its own
unigue multicast address different to Glassfish.

194

Chapter 33

Google App Engine HowTo

33.1 Why?

e Speed - Ehcache cache operations take afewersusaround60ms forGoogle' sprovidedclient—
servercache, memcacheg.

Cost - Because it uses way less resources, it is also cheaper.

Object Storage - Ehcache in-process cache works with Ghijleat are not Serializable.

33.2 Compatibility

Ehcache is compatible and works with Google App Engine.

Google App Engine provides a constrained runtime whictristnetworking, threading and file system
access.

33.3 Limitations

All features of Ehcache can be used except for the DiskStude@plication. Having said that, there are
workarounds for these limitations. See the Recipes sebtitow.

As of June 2009, Google App Engine appears to be limited tap bize of LOOMB. (See http://gregluck.com/blog/archizee
for the evidence of this).

33.4 \Versions

Version 1.6 of Ehcache is compatible with Google App Engihés.0-rcl is not. Use a snapshot or the
released version (which will be available soon).

Older versions will not work.

33.5 Configuring ehcache.xml

Make sure the following elements are commented out:

195

o diskStore path="java.io.tmpdir"/
e cacheManagerPeerProviderFactory class= ../

e cacheManagerPeerListenerFactory class= ../
Within each cache element, ensure that:

e overFlowToDisk=false or overFlowToDisk is omitted
o diskPersistent=false or diskPersistent is omitted
e no replicators are added

o there is no bootstrapCachelLoaderFactory
Copy and past this one to get started.

<?xm version="1.0" encodi ng="UTF-8"?>

<Ehcache xm ns: xsi="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : noNanespaceSchenaLocat i on="ehcache. xsd" >

<cacheManager Event Li st ener Factory cl ass="" properties=""/>

<def aul t Cache
maxEl enent sl nMenor y="10000"
eternal ="fal se"
ti meTol dl eSeconds="120"
ti meTolLi veSeconds="120"
over f | owToDi sk="f al se"
di skPer si stent ="f al se"
menor ySt or eEvi cti onPol i cy="LRU"
/>

<!--Exanpl e sanpl e cache-->

<cache nane="sanpl eCachel"
maxEl enent sl nMenor y="10000"
maxEl ement sOnDi sk="1000"
eternal ="f al se"
ti neTol dl eSeconds="300"
ti meTolLi veSeconds="600"
menor ySt or eEvi cti onPol i cy="LFU"
/>

</ ehcache>

33.6 Recipes

33.6.1 Setting up Ehcache as a local cache in front of memcaagn

The idea here is that your caches are set up in a cache higrdblcache sits in front and memcacheg
behind. Combining the two lets you elegantly work aroundthtions imposed by Googe App Engine.
You get the benefits of thesspeedo f Ehcachetogetherwiththeumlimitedsizeo fmemcached.

Ehcache contains the hooks to easily do this.
To update memcached, us€acheEvent Li st ener .

To search against memcacheg on a local cache misscatdes. get Wt hLoader () together with a
CachelLoader for memcacheg.

196

33.6.2 Using memcacheg in place of@skst ore

In theCacheEvent Li st ener, ensure that whenot i f yEI ement Evi ct ed() is called, which it will be
when a put exceeds the MemoryStore’s capacity, that thetheyalue are put into memcacheg.

33.6.3 Distributed Caching

Configure all notifications itacheEvent Li st ener to proxy throught to memcacheg.

Any work done by one node can then be shared by all othersthéthenefit of local caching of frequently
used data.

33.6.4 Dynamic Web Content Caching

Google App Engine provides acceleration for files declataticsin appengine-web.xml.
e.g.
<static-files>
<i ncl ude path="/*x" [>

<excl ude path="/data/**" [>
</static-files>

You can get acceleration for dynamic files using Ehcachehiog filters as you usually would.
See the Web Caching chapter.

33.7 Google App Engine FAQ

33.7.1 | get an errorj ava. | ang. Nod assDef FoundError: java.rmi.server.UDis a
restricted class

You are using a version of Ehcache prior to 1.6.

197

198

Chapter 34

Tomcat Issues and Best Practices

Ehcache is probably used most commonly with Tomcat. Thigtemalocuments some known issues with
Tomcat and recommended practices.

Ehcache’s own caching and gzip filter integration tests gairest Tomcat 5.5 and Tomcat 6. Tomcat will
continue to be tested against ehcache. Accordingly Toradggrione for ehcache.

34.1 Tomcat Known Issues

Because Tomcat is so widely used, over time a list of knowneisdias been compiled. These issues and
their solutions are listed below.

34.1.1 Problem rejoining a cluster after a reload

If | restart/reload a web application in Tomcat that has ahedMtanager that is part of a cluster, the Cache-
Manager is unable to rejoin the cluster. If | set logging fet.sf.ehcache.distribution to FINE | see the

following exception: "FINE: Unable to lookup remote cactezpfor Removing from peer list. Cause

was: error unmarshalling return; nested exception is.ij@BOFException.

The Tomcat and RMI class loaders do not get along that weleMdincache.jar to STOMCAT_HOME/common/lib.
This fixes the problem. This issue happens with anythingukas RMI, not just ehcache.

34.1.2 In development, there appear to be class loader mempoleak as | continu-
ally redeploy my web application.

There are lots of causes of memory leaks on redeploy. Movir@aéhe out of the WAR and into $TOM-
CAT/common/lib fixes this leak.

34.1.3 net.sf.ehcache.CacheException: Problem startirigtener for RMICacheP-
eer ...

| get net.sf.ehcache.CacheException: Problem starstepier for RMICachePeer ... java.rmi.UnmarshalException
error unmarshalling arguments; nested exception is: jataalformedURLEXxception: no protocol: Files/Apache.
What is going on?

This issue occurs to any RMI listener started on Tomcat wem&mcat has spaces in its installation
path.

199

Itis is a JDK bug which can be worked around in Tomcat.

See http://archives.java.sun.com/cgi-bin/wa? A2=ifd& =rmi-users&P=797 and http://www.ontotext.com/kaot/sys-
doc/fag-howto-bugs/known-bugs.html.

The workaround is to remove the spaces in your tomcat iasi@tl path.

34.1.4 Multiple Host Entries in Tomcat’s server.xml stops eplication from occur-
ring

The presence of multipldostentries in Tomcat's server.xml prevents replication fraaouwring. The issue
is with adding multiple hosts on a single Tomcat connectbonk of the hosts is localhost and another
starts with v, then the caching between machines when ditticalhost stops working correctly.

The workaround is to use a singhostentry or to make sure they don't start with "v".

Why this issue occurs is presently unknown, but is Tomcatifipe

200

Chapter 35

Building from Source

These instructions work for each of the modules, exceptM8 Replication, which requires installation
of a message queue. See that module for details.

35.1 Building an Ehcache distribution from source
To build Ehcache from source:

1. Check the source out from the subversion repository.
2. Ensure you have a valid JDK and Maven 2 installation.

3. From within the ehcache/core directory, typen - Draven. t est . ski p=true instal |

35.2 Running Tests for Ehcache
To run the test suite for Ehcache:

1. Check the source out from the subversion repository.

2. Ensure you have a valid JDK and Maven 2 installation.
3. From within the ehcache/core directory, type t est
4

. If some performance tests fail, add@ net . sf. ehcache. speedAdj ust ment Fact or =x System
property to your command line, where x is how many times yoaehine is slower than the reference
machine. Try setting it to 5 for a start.

35.3 Deploying Maven Artifacts

Ehcache has a repository and snapshot repository at oas/perorg.
The repository is synced with the Maven Central Repository.
To deploy:

mvn depl oy

201

This will fail because SourceForge has disabled ssh exacn¥ed to create missing directories manually
using sftp accessft p gregl uck, ehcache@web. sour cef or ge. net

35.4 Building the Site

(These instructions are for project maintainers)
You need the following unix utilities installed:

e maven2.2.1

e alatex distribution (e.g. Tex Live 2008)

e ghostscript

o pdftk

e aptconvert

e netpbm

o xfig
You also need a yDoc license.
With all that, build the site as below:

m/n -Dmaven. t est. ski p=true package site

The site needs to be deployed from the target/site directsing:
rsync -v -r * ehcache-stage.terracotta.lan:/exportHehe.org
sudo -u maven -H /ustr/local/bin/syncEHcache.sh

35.5 Deploying arelease

35.5.1 Maven Release

mv/n depl oy

35.5.2 Sourceforge Release

mvn assenbl y: assenbl y

then manually upload to SourceForge
sftp gregluck@rs. sourceforge. net

and complete the file release process

202

Chapter 36

Frequently Asked Questions

36.1 There are a lot of product choices? Which one should | uge

Terracotta Ehcache is available in DX, EX and FX versions.
There is an Ehcache product brochure which explains theeehoirhat is a good start.

36.2 What are the software licenses used.

Terracotta Open Source is available with TPL.
The Ehcache open source modules are released under an Aigackse.

There are some modules which are part of the commercial ptadiering e.g. monitoring server. These
are available under a Terracotta Commercial License.

36.3 Does Ehcache run on JDK1.3/JDK1.47

Older versions run on 1.3. Ehcache 1.5 runs on 1.4. Ehcaéheduired JDK 1.5.

36.4 Canyou use more than one instance of Ehcache in a singl&/?

As of ehcache-1.2, yes. Create your CacheManager using aetve®anager(...) and keep hold of the
reference. The singleton approach accessible with thegatice(...) method is still available too. Re-
member that Ehcache can supports hundreds of caches withi@acheManager. You would use separate
CacheManagers where you want quite different configuration

The Hibernate EhCacheProvider has also been updated torstimip behaviour.

36.5 Can you use Ehcache with Hibernate and outside of Hibeate
at the same time?

Yes. You use 1 instance of Ehcache and 1 ehcache.xml. Yowcoafyour caches with Hibernate names
for use by Hibernate. You can have other caches which yotsicttavith directly outside of Hibernate.

203

That is how | use Ehcache in the original project it was dgwetbin. For Hibernate we have about 80
Domain Object caches, 10 StandardQueryCaches, 15 Domat@mpllection caches.

We have around 5 general caches we interact with directlyguBlockingCacheManager. We have 15
general caches we interact with directly using SelfPojndg&acheManager. You can use one of those or
you can just use CacheManager directly.

| have updated the documentation extensively over the éstdays. Check it out and let me know if
you have any questions. See the tests for example code apthsitaches directly. Look at CacheMan-
agerTest, CacheTest and SelfPopulatingCacheTest.

36.6 What happens when maxElementsinMemory is reached? Are
the oldest items are expired when new ones come in?

When the maximum number of elements in memory is reachedbéserecently used ("LRU") element is
removed. Used in this case means inserted with a put or axtesth a get.

If the overflowToDisk cache attribute is false, the LRU Elernes discarded. If true, it is transferred
asynchronously to the DiskStore.

36.7 Isitthread safe to modify Element values after retrieal from a
Cache?

Remember that a value in a cache element is globally acée$sin multiple threads. It is inherently not
thread safe to modify the value. It is safer to retrieve aeatielete the cache element and then reinsert the
value.

The UpdatingCacheEntryFactory does work by modifying thr@ents of values in place in the cache. This
is outside of the core of Ehcache and is targeted at high peaioce CacheEntryFactories for SelfPopulat-
ingCaches.

36.8 Can non-Serializable objects be stored in a cache?

As of ehcache-1.2, they can be stored in caches with Memorgst

Elements attempted to be replicated or overflowed to diskbeilremoved and a warning logged if not
Serializable.

36.9 Why is there an expiry thread for the DiskStore but not fo the
MemoryStore?

Because the memory store has a fixed maximum number of elepitemill have a maximum memory use
equal to the number of elements * the average size. When areatds added beyond the maximum size,
the LRU element gets pushed into the DiskStore.

While we could have an expiry thread to expire elements paradly, it is far more efficient to only check
when we need to. The tradeoff is higher average memory use.

The expiry thread keeps the disk store clean. There is htipéfas contention for the DiskStore’s locks
because commonly used values are in the MemoryStore. WetraoubDiskStore on Linux using RAMFS

204

so it is using OS memory. While we have more of this than the 3@Bit process size limit it is still an
expensive resource. The DiskStore thread keeps it undéwoton

If you are concerned about cpu utilisation and locking indiekStore, you can set the diskExpiryThread-
IntervalSeconds to a high number - say 1 day. Or you can afédgturn it off by setting the diskExpiry-
ThreadintervalSeconds to a very large value.

36.10 What elements are mandatory in ehcache.xml?

The documentation has been updated with comprehensiveagm/ef the schema for Ehcache and all
elements and attributes, including whether they are mangleee the Declarative Configuration chapter.

36.11 Can | use Ehcache as a memory cache only?

Yes. Just set the overflowToDisk attribute of cache to false.

36.12 Can |l use Ehcache as a disk cache only?

Yes. Set the maxElementsinMemory attribute of cache to 0.

This is strongly not recommended however. The minimum renended value is 1. Performance is as
much as 10 times higher when to one rather than 0. If not setiéast 1 a warning will be issued at Cache
creation time.

36.13 Where is the source code? The source code is distribdten
the root directory of the download.

Itis called ehcache-x.x.zip. It is also available from S@mkorge online or through SVN.

36.14 How do you get statistics on an Element without affectg them?

Use the Cache.getQuiet() method. It returns an Elemenbwithpdating statistics.

36.15 How do you get WebSphere to work with ehcache?

It has been reported that IBM Websphere 5.1 running on IBM JBKequires commons-collection.jar in
its classpath even though Ehcache will not use it for IDKha@l 3DK5. (This is for versions of Ehcache
lower than 1.6)

36.16 Do you need to call CacheManager.getinstance().slklatvn()
when you finish with ehcache?

Yes, it is recommended. If the JVM keeps running after yop sising ehcache, you should call Cache-
Manager.getinstance().shutdown() so that the threadstapped and cache memory released back to the

205

JVM. Calling shutdown also insures that your persisterk disres get written to disk in a consistent state
and will be usable the next time they are used.

If the CacheManager does not get shutdown it should not belsgm. There is a shutdown hook which
calls the shutdown on JVM exit. This is explained in the doentation here.

36.17 Can you use Ehcache after a CacheManager.shutdown()?

Yes. When you call CacheManager.shutdown() is sets théesimgin CacheManager to null. If you try an
use a cache after this you will get a CacheException.

You need to call CacheManager.create(). It will create adbreew one good to go. Internally the Cache-
Manager singleton gets set to the new one. So you can credghatdown as many times as you like.

There is a test which expliciyly confirms this behaviour. SaeheManagerTest#testCreateShutdownCreate()

36.18 | have created a new cache and its status is STATUS UNINALISED.
How do | initialise it?

You need to add a newly created cache to a CacheManager liefmes intialised. Use code like the
following:

CacheManager manager = CacheManager.create();
Cache nyCache = new Cache("testDi skOnly", 0, true, false, 5, 2);
manager . addCache(nmyCache) ;

36.19 Isthere a simple way to disable Ehcache when testing?

Yes. There is a System Property based method of disabliraghkc|f disabled no elements will be added
to a cache. Set the property "net.sf.ehcache.disablezlttrulisable ehcache.

This can easily be done usin@net . sf . ehcache. di sabl ed=t rue>in the command line.

36.20 How do I dynamically change Cache attributes at runtine?

You can’t but you can achieve the same result as follows:
Cache cache = new Cache("test2", 1, true, true, 0, 0, tri®,.1P cacheManager.addCache(cache);
See the JavaDoc for the full parameters, also reproduced her

Having created the new cache, get a list of keys using caetieeys, then get each one and put it in the
new cache. None of this will use much memory because the neflreclement have values that reference
the same data as the original cache. Then use cacheMarag®raCache("oldcachename") to remove the
original cache.

206

36.21 | get net.sf.ehcache.distribution.RemoteCacheEsgtion: Er-
ror doing put to remote peer. Message was: Error unmarshal-
ing return header; nested exception is: java.net.SocketfmeoutException:
Read timed out. What does this mean.

It typically means you need to increase your socketTimedligM This is the amount of time a sender
should wait for the call to the remote peer to complete. Havglih takes depends on the network and the
size of the Elements being replicated.

The configuration that controls this is the socketTimeollit/$etting in cacheManagerPeerListenerFac-
tory. 120000 seems to work well for most scenarios.

<cacheManager Peer Li st ener Fact ory
cl ass="net. sf. ehcache. di stri buti on. RM CacheManager Peer Li st ener Fact ory"
properti es="host Name=ful | y_qual i fi ed_host nane_or _i p,
port =40001,
socket Ti meout M | | i s=120000"/ >

36.22 Should | use this directive when doing distributed cdung?
cacheManager EventListener Factory class="" properties=""/

No. Itis unrelated. It is for listening to changes in yourdb€acheManager.

36.23 What is the minimum config to get distributed caching gmg?
The minimum configuration you need to get distributed caglgining is:

<cacheManager Peer Pr ovi der Fact ory
cl ass="net . sf. ehcache. di stri buti on. RM CacheManager Peer Pr ovi der Fact ory"
properti es="peer Di scovery=aut onati c,
mul ti cast G oupAddr ess=230. 0. 0. 1,
mul ti cast G oupPort =4446"/>

<cacheManager Peer Li st ener Fact ory
cl ass="net . sf. ehcache. di stri buti on. RM CacheManager Peer Li st ener Fact ory"/ >
and then at least one cache declaration with

<cacheEvent Li st ener Fact ory
cl ass="net . sf. ehcache. di stri buti on. RM CacheRepl i cat or Fact ory"/ >>>>

in it. An example cache is:

<cache nane="sanpl eDi stri but edCachel”
maxEl enent sl nMenor y="10"
eternal ="f al se"
ti meTol dl eSeconds="100"

207

ti meTolLi veSeconds="100"
over f | owToDi sk="f al se">
<cacheEvent Li st ener Fact ory
cl ass="net . sf. ehcache. di stri buti on. RM CacheRepl i cat or Factory"/>
</ cache>

Each server in the cluster can have the same config.

36.24 How can | see if distributed caching is working?

You should see the listener port open on each server.
You can use the distributed debug tool to see what is goin@Ree http://ehcache.org/documentation/remotede bungiopd).

36.25 Why can’t | run multiple applications using Ehcache onone
machine?

Because of an RMI bug, in JDKs before JDK1.5 such as JDK1Eh2ache is limited to one CacheMan-
ager operating in distributed mode per virtual machine.e(ibhg limits the number of RMI registries to

one per virtual machine). Because this is the expected geyant configuration, however, there should be
no practical effect. The tell tail error jsava. rmi . server. Export Exception: internal error:

oj I D al ready in use

On JDK1.5 and higher it is possible to have multiple Cachedd@ns per VM each participating in the
same or different clusters. Indeed the replication testhidowith 5 CacheManagers on the same VM all
run from JUnit.

36.26 How many threads does Ehcache use, and how much memory
does that consume?

The amount of memory consumed per thread is determined gtk Size. This is set using -Xss. The
amount varies by OS. It is 512KB for Linux. | tend to overritte default and set it to 100kb.

The threads are created per cache as follows:
e DiskStore expiry thread - if DiskStore is used
e DiskStore spool thread - if DiskStore is used

¢ Replication thread - if asynchronous replication is coniégl
If you are not doing any of the above, no extra threads ar¢entea

36.27 | am using Tomcat 5, 5.5 or 6 and | am having a problem.
What can | do?

Tomcat is such a common deployment option for applicatisisgiEhcache that there is a chapter on
known issues and recommended practices.

See the Using Ehcache with Tomcat chapter. (http://ehcadidocumentation/tomcat.html)

208

36.28 | am using Java 6 and getting a java.lang.VerifyError m the
Backport Concurrent classes. Why?

The backport-concurrent library is used in Ehcache to pi®yava.util.concurrency facilities for Java 4 -
Java 6. Use either the Java 4 version which is compatibledaith 4-6 or use the version for your JDK.

36.29 How do | get a memory only cache to persist to disk betwae
VM restarts?

While disk persistence between restarts is a feature of thkkSiore only, you can get the same behaviour
for a memory only cache by setting up a cache with maxEleriravitsmory set to Integer.MAX_VALUE,
2147483647, overflowToDisk set to true and diskPersisttrtostrue.

36.30 |getajavax.servilet.ServletException: Could not inialise servlet
filter when using SimplePageCachingFilter. Why?

If you use this default implementation, the cache name ied¢d5implePageCachingFilter". You need to
define a cache with that name in ehcache.xml. If you overraeh@hgFilter you are required to set your
own cache name.

36.31 | see, in my application’s log:

WARN CacheManager ... Creating a new instance of CacheManager using the di skStorePath
"C:\tenp\tenpcache" which is already used by an exi sting CacheManager.

This means, that for some reason, your application is trigimgeate a second or more instance of Ehcache’s
CacheManager with the same configuration. Ehcache is atitaiaresolving the Disk path conflict,
which works fine.

To eliminate the warning:

e Use a separate configuration per instance

¢ Ifyou only want one instance use the singleton creation ottheCacheManager . get | nst ance() .
In Hibernate there is a special provider for this called

net . sf. ehcache. hi bernat e. Si ngl et onEhCachePr ovi der .
See the Hibernate page for details.

36.32 How do | add a CacheReplicator to a cache that already ex
ists? The cache event listening works but it does not get plubed
into the peering mechanism.

The current API does not have a CacheManager event for cactiiggration change. You can however
make it work by calling the notifyCacheAdded event.

get Cache() . get CacheManager () . get CacheManager Event Li st ener Regi stry()
.noti fyCacheAdded(" cacheNane");

209

36.33 | am using the RemoteDebugger to monitor cluster mesgas
but all | see is "Cache size: 0"

If you see nothing happening, but cache operations shoudding through, enable trace (LOG4J) or finest
(JDK) level logging orcodenet.sf.ehcache.distributitoodein the logging configuration being used by the
debugger. A large volume of log messages will appear. Thealproblem is that the CacheManager has
not joined the cluster. Look for the list of cache peers.

Finally, the debugger in ehcache-1.5 has been improvedtdodgs far more information on the caches that
are replicated and events which are occurring.

36.34 With distributed replication on Ubuntu or Debian, | see the
following warning,

WARN [Replication Thread] RM AsynchronousCacheRepli cator.flushReplicati onQueue(324)
| Unable to send nessage to renote peer.
Message was: Connection refused to host: 127.0.0.1; nested exception is:

j ava. net. Connect Excepti on: Connection refused
java.rm . Connect Excepti on: Connection refused to host: 127.0.0.1; nested exception is:

j ava. net. Connect Excepti on: Connection refused

This is caused by a 2008 change to the Ubuntu/Debian lintauttaietwork configuration.

Essentially, this java call:net Addr ess. get Local Host () ; always returns the loopback address, which
is 127.0.0.1. Why? Because in these recent distros, a systbof $ hostname always returns an address
mapped onto the loopback device. Which causes ehcache’'$ebf creation logic to always assign the

loopback address, which causes the error you are seeing.

All'you need to do is crack open the network config and maketbiatehe hostname of the machine returns
a valid network address accessible by other peers on thenretw

36.35 |seelog messages about SoftReferences. What are éhaisout
and how do | stop getting the messages?

Ehcache uses SoftReferences with asynchronous RMI baglkchtmsn, so that replicating caches do not
run out of memory if the network is interrupted. Elementsestiied for replication will be collected
instead. If this is happening, you will see warning messdiges the replicator. It is also possible that a
SoftReference can be reclaimed during the sending in wlash gou will see a debug level message in the
receiving CachePeer.

Some things you can do to fix them:

e Set-Xms equal to -Xms. SoftReferences are also reclaimgfierence to increasing the heap size,
which is a problem when an application is warming up.

e Setthe -Xmx to a high enough value so that SoftReferencestiget reclaimed.

Having done the above, SoftReferences will then only beanexeld if there is some interruption to
replication and the message queue gets dangerously high.

210

36.36 My Hibernate Query caches entries are replicating buthe
other caches in the cluster are not using them.

This is a Hibernate 3 bug. See http://opensource.atlassiariprojects/hibernate/browse/HHH-3392 for
tracking. It is fixed in 3.3.0.CR2 which was released in JWl9&.

36.37 Active MQ Temporary Destinatons

ActiveMQ seems to have a bug in at least ActiveMQ 5.1 wheredstchot cleanup temporary queues, even
though they have been deleted. That bug appears to be lomjrggebut was though to have been fixed.

See:
¢ http://www.nabble.com/Memory-Leak-Using-TemporaryeQes-td11218217.html#a11218217

e http://issues.apache.org/activemqg/browse/AMQ-1255

The JMSCachelLoader uses temporary reply queues when ¢patlire Active MQ issue is readily
reproduced in Ehcache integration testing. Accordinglg, of the IMSCachelLoader with ActiveMQ
is not recommended. Open MQ tests fine.

36.38 Is Ehcache compatible with Google App Engine?

Version 1.6 is compatible. See the Google App Engine Howto

36.39 Can my app server use JMS Replication?

Some App Servers do not permit the creation of messagediseihis issue has been reported on Web-
sphere 5. Websphere 4 did allow it. Tomcat allows it. Glalsitows it. Jetty allows it.

Usually there is a way to turn off strict EJB compliance cteak your app server. See your vendor
documentation.

36.40 Why does Ehcache 1.6 use more memory than 1.5?

ConcurrentHashMap does not provide an eviction mechani&eadd that ourselves. For caches larger
than 5000 elements, we create an extra ArrayList equal teitieeof the cache which holds keys. This can
be an issue with larger keys. An optimisation which cachent$i can use is:

http://ww. codei nstructions. com 2008/ 09/ i nst ance- pool s-wi t h- weakhashmap. ht m
To reduce the nunber of key instances in nmenory to just one per |ogical

key, all puts to the underlying Concurrent HashMap coul d be repl aced by

map. put (pool . repl ace(key), value), as well as keyArray. set (index,

pool . repl ace(key))

You can take this approach when produci ng the keys before handing them over to EhCache.

Even with this approach there is still some added overheadwned by a reference consumed by each
ArrayList element.

211

Index

A CacheManagerEventListenerFactory.......... 139
About the Ehcache name andlogo............. TacheName..............o i 123
ACON . .. 128odeSamples........ccovveeiiiiiiinn. 71,124
Active MQ ... 121comes as a WAR or as a complete server 33
AdamMurdoch.............ooooiiiiii 1&onfiguration.................oooia.. 45,149
Adding and Removing Caches Programmatically Zonservative Commitpolicy 35
AlreadyGzippedException................... 10€opy Or Invalidate Replication................ 31
Amdahl'sLaw...............cciiiiiinnnn.. 19CPU bound Applications 18
Apache 2.0license...........ccoovvvvieii... 3Greating a new cache from defaults 75
Architecture........... .. 4%reating a new cache with custom parameters...75
Automatic Peer Discovery 11Creating Massive Caches 169
B D
BlockingCache...............ccoovieiii... 13PEBUG. ... 79
Blocking Cache to avoid duplicate processing fPELETE ... 162, 163
concurrent operations 3Pisk Persistence ondemand................... 74
BlockingCacheoouveeeeeii... 96, 13RiskStore ... 64
Bootstrapping from Peers..................... 3RiskStore Eviction Algorithms 70
Browse the JUNit Testso ovo e 7@istributed ... 29
Building an Ehcache distribution from source . _opRistributed Caching.......................... 31
Building fromSource 20Pistributed Caching Using Terracotta 131
Buildingthe Site............... ... o L ZO?E
c Ehcache........ 40
Cache Decorators cacheXxsd ... 45
Cache Event Listeners. 1 EMeNt. 41
Cacheeventlisteners...................coo... _RQR """""""""""""""""""" 79
Cache Eviction AIgorithms 6 V|c_t|on 69
Cache ExceptionHandlers................... 1 fé;ysiﬁ;ategy """""""""""""""" 2?2’
Cache Exception Handlers may be plugged n. . Bervar s pupiishers.. . 123
Cache Extensions may be pluggedin........... $0
Cache Loaders. ... 8BSt o 27
Cache Loaders may be pluggedin............. ALUMES . .ottt 25
Cache Server.................oon 32 1F0 70
gacne 3erver Exzmples ----------------------- TféterNonReentrantException 105
ache Usage Fallerns.oeeenns StINFIrstOUtooeee e 70
Cacheable Commands........................ $Fhush to disk ondemand 30
CacheExceptionHandlerFactory 1%}equently Asked Questions 203
CacheExtensionFactory...................... 1571 implementation of JSR107 JCACHE API .. 29
gacﬂell_/loaderFactory 1;%“” public information on the history of every bug
acheManager............... ...t
CacheManager Event Listeners............... 18911y docﬁrsnented 35
CacheManagerlisteners 30
CacheManagerEventListener................. 13D

Garbage Collection.................. BB2. . 135

General Purpose Caching 22astRecentlyUsed 64, 69
generic extensionstoa Cache 16éss FrequentlyUsed 64,70
GET . 162FU. ..o e 64,70
GlassfishFAQ ..., 194isteners may be pluggedin................... 29
Google AppEngine 19%o0adBalancers.............cooiiiiiit 169
Google AppEngine FAQ 19T oad, Limit and Performance System Tests..... 34
Loading of ehcache.xmlresources............. 92
H Locality of Reference......................... 17
Hibernatet 17Zogging _____________________________________ 79
Hibernate 2.1.......... ... 17[RU ____________________________________ 64, 69
Hibernate 3.1.............. ... o i it 177
Hibernate Caching.......................... 17\
H?bemate DOCIet 17Q/|anagement Service _________________________ 87
Hibernate FAQooo s, 18R1anual Peer Discovery...................... 111
Hibernate Mapping Files LTBNAVEN . oo oo 202
High Quality ... 34aven Releasec.cccoeeeeiiinnn.. 202
High Test Coverage 3thaxElementsinMemory 69
http://oasis-open.org 17haxElementsOnDISKcco.oo.n.. 69
http:/IWwWwW.W3.0rg/ ... 17IMBeans..........coovvii 86
http:/www.w3.0rg/2002/Ws/ 17MBeanServerConnection 86
http://iwww.ws-i.org/ooL 17IMEmMOry StOr€ ... 63
| MemoryStore Eviction Algorithms............. 69
o essage Queue Reliability................... 128
I/0O bound Applications....................... 18 .
Implementing a CacheEventListenerFactory ... 1 !"?”ype """"" STty 123
Instance Mode 3 inimal dependencies........................ 28
"""""""""""""""" ixed Singleton and Instance Mode 39
J Multiple CacheManagers per virtual machine ... 28
Java EE and Applied Caching 33
Java EE Gzipping Servlet Filter................ 3B i
Java ReqUIrementsovoveeeeeeenn spet.sf.ehcache.disabled R R RTER 62
Java Ut LOGGING -+« e oo e sdiet.sf.ehcache.use.classic.lru.................. 63
JCacheExamples ..., 7
JC le E le . 8 .
JDﬁqsg ©Bxample 2 btaining a referencetoa Cache 73
iDKi4 . soPbtaining Cache Sizes........................ 74
JGroﬁpé """"""""""""""""""" btaining Statistics of Cache Hits and Misses. .. 75
IMS e 11@PENMQ e 122
jmsreplication module pen Source L|_censmg_ 35
IMX 8é)penJPA Caching Provider.................. 183
IMX Enabled 3i)verflowToDisk is false and diskPersistent. 67
JMX Management and Monitoring............. 8%
JMX R tNg .o 8 .
e oDy 3,310,115
JSR107 (JCACHE) Support.................. 18%eer Discovery, Repllcators and Listeners may be
JSR107 Implementation..................... 18 plugged mn..... ST 29
erformance Considerations................... 93
K performancetestsfail........................ 201
KEY e 128 erforming CRUD operations 73
Key Ehcache Concepts _______________________ ﬁersistence 66
KNOWN IMS ISSUES .+« o eve oo 12Bersistent disk store which stores data between VM
restartS. ... 30
L Pluginclassloading.................ooooooet. 91
P 13%roductiontestedo, 34

213

Programmatic setting of the Hibernate Cache Providested by Popular Frameworks 35

178 Tuned for high concurrent load on large multi-cpu
Provides LRU, LFU and FIFO cache eviction poli- SEIVEIS . ottt 28
ClBS . 29
Provides Memory and Disk stores 2d
Provides Memory and Disk stores for Sca|abi|ty |ntHDP Multicast. ... 116
gigabytes ___________________________ zgjpdateCheck 132
PUT .o 162, 16%singCaches. ... 73
USingJCACHE........ ..., 185
R Using the CacheManager 71
Registering CacheStatistics in an MBeanServer . @sing the Hibernate Ehcache provider 178
Reliable Delivery 3Using the IMSCacheloader.................. 126
Remote Network debugging and monitoring for Dis-
tributed Caches..................... sW
replaceCacheWithDecoratedCache............. YADL ..o 32,161
ResponseHeadersNotModifiabIeException L 1WRN R R RERRERREERER 79
Responsiveness to serious bugs................ Wagys of loading Cache Configuration........... 72
RESTful cache Servercooveuuuvno... 3¥/eb Caching.............. SEEEEEEEEREEEEEEE 101
RESTful Code Samples 104/0rks with Google App Engine 34
RMI Distributed Caching.................... 10gVorks with Hibernate 33
Running Tests for Encache................... ogH/S-Security ... 171
WSDL ..o 171
S
Scalable to hundreds of caches 28
SelfPopulating Cache for pull through caching of
expensive operations 33
SelfPopulatingCache 97,137, 139
Setting Ehcache as the cache provider......... 177
Shutdown the CacheManager.................. 73
Shutting Down Ehcache 99
Simple. ... 28
SimplePageCachingFilter.................... 101
SimplePageFragmentCachingFilter 103
SingletonMode...............oaa 38
SingletonversusInstance 72
Smallfootprint.......... ...t 28
SOAP cacheserver.........cooovvvuiaanaaann. 32
SourceforgeRelease......................... 202
Specific Concurrency Testing. 34
Spooling ... 63
Support cache-wide or Element-based expiry poli-
ClBS . 29

Support for replication via RMI or JGroups.. 31
Supported MemoryStore Eviction Algorithms. . .69

Supports Object or Serializable caching 28
Synchronous Or Asynchronous Replication.... ... 31
T

TCPUNICaSt. ... 116
TCPPING protocol.............cooinnnn... 116
TerracottaExample............ ...t 76
Terracotta Server Configuration 133
ThelongTail ..., 17
Transparent Replication....................... 31

