BN EH HE

Ehcache
User Guide

Version 1.3.0

Greg Luck

Contents

1 Preface

11
1.2
1.3
1.4

Audience e
BookFormat
Acknowledgements
About the ehcache nameandlogo

2 Introduction

2.1
2.2

2.3

2.4

AboutCaches
Why cachingworks o
2.2.1 LocalityofReference.
222 ThelongTail.
Will an Application Benefit from Caching?
2.3.1 Speeding up CPU bound Applications
2.3.2 Speeding up I/O bound Applications
2.3.3 Increased Application Scalability
How much will an application speed up with Caching?
24.1 Theshortanswer,
2.4.2 Applying Amdahl'sLaw
2.4.3 CachekEfficiency,
2.4.4 ClusterEfficiency.
2.45 Acacheversionof Amdahl'slaw
246 WebPageexample

3 Getting Started

3.1
3.2
3.3
3.4

General Purpose Caching

Hibernate
JEE ServletCaching
Spring, Cocoon, Acegi and other frameworks

4 Features

4.1

Fastand LightWeight,

11

11
11
11
12

13
13
13
13
13
14
14
14
15
15
15
15
16
17
17
18

19
19
19
19
20

21

4.2

4.3

4.4

4.5

4.6

4.7

4.8
4.9

4.10

4.1.1 Fast e 22
4.1.2 Simple e 23
4.1.3 Smallfootprint e 23
4.1.4 Minimaldependencies e 24
Scalable e 24
4.2.1 Provides Memory and Disk stores for scalabilty ingadpytes 24
4.2.2 Scalableto hundredsofcaches 24
4.2.3 Tuned for high concurrent load on large multi-cpuessv. 24
4.2.4 Multiple CacheManagers per virtual machine 24
Complete 24
4.3.1 Supports Object or Serializablecaching 24
4.3.2 Support cache-wide or Element-based expiry policies 24
4.3.3 Provides LRU, LFU and FIFO cache eviction policies 24
4.3.4 Provides Memory and Diskstores oL 25
435 Distributed 25
StandardsBased e 25
4.4.1 Fullimplementation of JSR107 JCACHEAPI 25
Extensible e 25
45.1 Listenersmaybepluggedin 25
4.5.2 Peer Discovery, Replicators and Listeners may begeldgn 25
Application Persistence e e 25
4.6.1 Persistent disk store which stores data between Vidrtes 25
4.6.2 Flushtodiskondemand 26
Listeners. e 26
4.7.1 CacheManagerlisteners e 26
4.7.2 Cacheeventlisteners e 26
JMXEnabled 26
Distributed Caching e e 26
4.9.1 PeerDiscovery e e 26
4.9.2 Reliable Delivery e e 27
4.9.3 Synchronous Or Asynchronous Replication 27
4.9.4 Copy Or Invalidate Replication 27
4.9.5 TransparentReplication 27
49.6 Extensible. 27
4.9.7 BootstrappingfromPeers 27
JEE and Applied Caching 27
4.10.1 Blocking Cache to avoid duplicate processing foccorent operations 27
4.10.2 SelfPopulating Cache for pull through caching ofemgive operations 27
4.10.3 JEE Gzipping ServletFilter o 27
4.10.4 CacheableCommands co-. 28

4.10.5 Workswith Hibernate

4.11 HighQuality e e

4.11.1 HighTestCoverage o i i i i e e e e e e e e e
4.11.2 Automated Load, Limit and Performance SystemTests
4.11.3 Specific Concurrency Testing e
4.11.4 Productiontested e
4115 Fullydocumented e
4.11.6 Trusted by Popular Frameworks
4.11.7 Conservative Commitpolicy
4.11.8 Full public information on the history ofeverybug
4.11.9 Responsiveness to serious bugs

4.12 Open SourcelLicensing e

4.12.1 Apache2.0license

Key Ehcache Concepts

5.1

5.2

53

Key Ehcache Classes e

5.1.1 CacheManager e

5.1.2 Ehcache e
5.1.3 Element
Cache Sizeand Eviction e
5.2.1 Supported Eviction Algorithms o
5.2.2 MenoryStore Eviction Algorithms oo oo

5.2.3 DiskStore Eviction Algorithms L

Cache Usage Patterns e
5.3.1 DirectManipulation e
5.3.2 SelfPopulating e e

Code Samples

6.1

6.2

Usingthe CacheManager e
6.1.1 Singletonversusinstance. e
6.1.2 Ways of loading Cache Configuration
6.1.3 Adding and Removing Caches Programmatically
6.1.4 Shutdownthe CacheManager uuuo..
UsingCaches e
6.2.1 ObtainingareferencetoaCache «o......
6.2.2 Performing CRUD operations i
6.2.3 Disk Persistenceondemand L e e
6.2.4 ObtainingCache Sizes e

6.2.5 Obtaining Statistics of Cache Hitsand Misses
6.3 Creating a new cache from defaults

31
31
32
34
35
36
36
36
37
37
37
37

39
39
39
40
40
41
41
41
41
42
42
42

10

11

12

6.4 Creating a new cache with custom parameters
6.5 Registering CacheStatistics inan MBeanServer
6.6 BrowsetheJUnitTests

Java Requirements, Dependencies and Maven POM snippet

7.1 JavaRequirements e

7.2 Mandatory Dependencies e
7.2.1 BackportConcurrent e

7.3 Optional Dependencies e
7.3.1 IMX
7.3.2 Commonscollections. e

7.4 Maven pom.xmlsnippet e

Logging And Debugging

8.1 CommonsLogging e
8.2 Logging Philosophy e
8.3 Remote Network debugging and monitoring for Distribu@aches

JMX Management and Monitoring

9.1 JIMXOVEIVIEW e e
9.2 Dependencies e e
9.3 MBeEaNS e
9.4 RemoOting
9.5 njectName hamingscheme
9.6 The ManagementService i e
9.7 JConsole Example e

Class loading and Class Loaders
10.1 Pluginclassloading e
10.2 Loading of ehcache.xmlresources o u ..

Performance Considerations
11.1 DiskStore e
11.2 Replication e

Cache Decorators

12.1 Creatinga Decorator e e e

12.2 Accessingthe decoratedcache
12.2.1 Using CacheManager to access decoratedcaches

12.3 Built-in Decorators e e e
12.3.1 BlockingCache e
12.3.2 SelfPopulatingCache

43
44
44

47

47

47
48

53
53
54

55
55
55

13

14

15

16

Cache Configuration

13.1 ehcache.xxsd e e
13.2 ehcache-failsafe.xml e
13.3 ehcache.xml and other configurationfiles

Storage Options

141 Memory StOre e e e
14.1.1 Memory Use, Spooling and Expiry Strategy L.

14.2 DiSkStOre e

Shutting Down Ehcache

15.1 Theshutdownhook e
15.2 Whento use the shutdownhook,
15.3 What the shutdown hookdoes
15.4 When a shutdown hook will run, and whenitwillnot
15.5 If ehcacheis shutdowndirty

Hibernate Caching

16.1 Setting ehcache as the cache provider
16.1.1 Using the ehcache provider from the ehcache project
16.1.2 Using the ehcache provider from the Hibernate ptojec.
16.1.3 Programmatic setting of the Hibernate Cache Provide

16.2 Hibernate MappingFiles e e
16.2.1 read-write L e
16.2.2 nonstrict-read-write Lo
16.2.3 read-only

16.3 Hibernate Doclet e e

16.4 Configuration with ehcache.xml L oo
16.4.1 DomainObjects
16.4.2 Hibernate e .
16.4.3 Collections e
16.4.4 Hibernate CacheConcurrencyStrategy
16.4.5 QUETIES o e
16.4.6 StandardQueryCache e
16.4.7 UpdateTimestampsCache. e,
16.4.8 NamedQueryCaches i iimmn
16.4.9 UsingQueryCaches i
16.4.10 Hibernate CacheConcurrencyStrategy« oo oo v oo ..

16.5 Hibernate Caching Performance Tips o v o i oo
16.5.1 In-ProcessCache
16.5.2 Objectld

61
61
63
63

71
71
71
72

75
75
75
75

76
76

16.5.3 Session.doad e
16.5.4 Session.findand Query.find L L
16.5.5 Session.iterate and Query.iterateo L L

17 The Design of distributed ehcache
17.1 Acknowledgements e e
17.2 Problems with Instance Caches in a Clustered Envirahme
17.3 Replicated Cache e
17.4 Distributed Cache Terms e
17.5 Notification Strategies e e
17.6 Topology Choices e e
17.6.1 PeerCache Replicator
17.6.2 Centralised Cache Replicator. o ...
17.7 Discovery ChoiCeS o e e e
17.7.1 Multicast DiSCOVEry o e e
17.7.2 StaticList e
17.8 Delivery Mechanism Choices e
17.8.1 Custom Socket Protocol
17.8.2 Multicast Delivery e
17.8.3 JMSTOPICS . . . v v o o o e e e e e e
17.8.4 RMI RMl is the default RPC mechanisminJava.
17.8.5 IXTA . . e e
17.8.6 JGroUPS o o v e e
17.8.7 The DefaultImplementation
17.9 Replication Drawbacks and Solutions in ehcache’semghtation
17.9.1 Chatty Protocol e e
17.9.2 Redundant Notifications e
17.9.3 Potential for InconsisentData oL
17.9.4 SynchronousDelivery e
17.9.5 Updatevia lnvalidation

18 Distributed Caching
18.1 Suitable ElementTypes e e
18.2 PeerDISCOVEIY o o e
18.2.1 Automatic Peer Discovery e e
18.2.2 Manual PeerDiscovery e e e
18.3 Configuring a CacheManagerPeerListener
18.4 Configuring CacheReplicators
18.5 Common Problems e
18.5.1 Tomcaton Windows e

85
85
85
85
86
86
86
86
86
86
86
87
87
87
87
87
87
87
87
87
88
88
88
88
89
89

18.5.2 MulticastBlocking e 95

18.5.3 Multicast Not Progagating Far Enough or PropagdiowgFar 95
19 The Design of the ehcache constructs package 97
19.1 Acknowledgements e e 97
19.2 The purpose of the Constructspackage 97
19.3 Caching meets Concurrent Programming o oo oo vt 97
19.4 What can possibly gowrong? e 98
19.4.1 Safety Failures e 98
19.4.2 LivenessFailures e 98
19.5 Theconstructs e e 98
19.5.1 BlockingCache e e 98
19.5.2 SelfPopulatingCache 100
19.5.3 CachingFilter e 100
19.5.4 SimplePageCachingFilter, 100
19.5.5 PageFragmentCachingFilter 100
19.5.6 SimplePageFragmentCachingFilter 101
19.5.7 AsynchronousCommandExecutor 0w 101
19.6 Real-life problems in the constructs package and sodutions 101
19.6.1 The Blocking Cache Stampedeou. ... 101
19.6.2 TheBlank Pageproblem 101
19.6.3 BlockingCascade e e 102
20 CacheManager Event Listeners 103
20.1 Configuration e 103

20.2 Implementing a CacheManagerEventListenerFactatyawheManagerEventListener . . 104

21 Cache Event Listeners 107
21.1 Configuration e 107
21.2 Implementing a CacheEventListenerFactory and CaareEistener 108

22 JSR107 (JCACHE) Support 111
22.1 JSR107 Implementation. e e e 111
22.2 UsSingJCACHE e 111

22.2.1 CreatingJCaches e 111
22.2.2 GettingaJCache e 112
22.2.3 UsingaJCache e 112
22.3 Problems and Limitations in JSSR107 ien o 112
22.3.1 net.sfjsrl07cache.CacheManager 113
22.3.2 net.sfjsrl07cache.CacheFactory 113
22.3.3 net.sfjsrlO7cache.Cache e 113

22.3.4 net.sfjsrlO7cache.CacheEntry o 114

22.3.5 net.sf.jsrl07cache.CacheStatistics 115

22.3.6 net.sf.jsrl07cache.CachelListener. 116

22.3.7 net.sfjsrl07cache.CacheLoader 116

22.4 Other Areas o 0 e e 116
22.4.1 IMX . 16l

23 Tomcat Issues and Best Practices 117
23.1 Tomcat Known ISSUES e e 117

23.1.1 Iflrestart/reload a web application in Tomcat thet b CacheManager that is part

of a cluster, the CacheManager is unable to rejoin the clubtéset logging for
net.sf.ehcache.distribution to FINE | see the followingeption: "FINE: Unable

to lookup remote cache peer for Removing from peer [&use was: error
unmarshalling return; nested exception is: java.io.EQiepkon. 117

23.1.2 In development, there appear to be classloader nydesadc as | continually rede-

ploy my web application. 117

23.1.3 1 get net.sf.ehcache.CacheException: Problertingidistener for RMICachePeer

... java.rmi.UnmarshalException: error unmarshallirguanents; nested exception
is: java.net.MalformedURLException: no protocol: FikegAche. What is going

ON? L e 117
23.1.4 Multiple Host Entries in Tomcat's server.xml stopglication from occurring . . . 118
24 Building from Source 119
24.1 Building Approach e e 119
24.2 Building an ehcache distribution fromsource oL L 119
24.3 Running TestsforEhcache 119
24.4 Buildingthe Site e e 120
245 Deployingarelease e 120
24.5.1 SourceforgeRelease e 120
24.5.2 Central Maven Repository e 120
25 Frequently Asked Questions 121
25.1 Does ehcacherunonJDK1.3? 121
25.2 Can you use more than one instance of ehcache inasiMfe V. 121
25.3 Can you use ehcache with Hibernate and outside of Hibeat the same time? 121

25.4 What happens when maxElementsinMemory is reachedth@radest items are expired

whennewonescomein? 122
25.5 Is it thread safe to modify Element values after retdi@om a Cache? 122
25.6 Can non-Serializable objects be storedinacache? 122
25.7 Why is there an expiry thread for the DiskStore but nottie MemoryStore? 122
25.8 What elements are mandatory in ehcache.xml|? . 122
25.9 Canluse ehcache asamemorycacheonly? 123
25.10Can luse ehcache as adisk cacheonly? 123

8

25.11Where is the source code? The source code is disttiimutee root directory of the download.123

25.12How do you get statistics on an Element without affecthem? 123
25.13How do you get WebSphere to work with ehcache? 123
25.14Do you need to call CacheManager.getinstance(jietmai() when you finish with ehcache? 123
25.15Can you use ehcache after a CacheManager.shutdown(}?. 123
25.161 have created a new cache and its status is STATUS_ITIMINISED. How do | initialise

] 24
25.17Is there a simple way to disable ehcache when testing? 124
25.18Is there a Maven bundle for ehcache?. 124
25.19How do | dynamically change Cache attributes at rugftim 124

25.201 get net.sf.ehcache.distribution.RemoteCachegiiian: Error doing put to remote peerre-
mote peer. Message was: Error unmarshaling return heasltehexceptionis: java.net.SocketTimeoutException:

Read timed out. Whatdoesthismean. cu..... 124
25.21Should I use this directive when doing distributechaag? cacheManagerEventListener-

Factory class="" properties=""/ e 125
25.22What is the minimum config to get distributed cachingpg® 125
25.23How can | see if distributed caching isworking? 125
25.24Why can't | run multiple applications using ehcach@pba machine? 126
25.25How many threads does ehcache use, and how much meoesyhdit consume? 126
25.261 am using Tomcat 5, 5.5 or 6 and | am having a problem.t\&4val do? 126

26 About the ehcache name and logo 127

10

Chapter 1

Preface

This is a book about ehcache, a widely used open source Jave.d@hcache has grown in size and scope
since it was introduced in October 2003. As people usedyt dfiten noticed it was missing a feature they
wanted. Over time, the features that were repeatedly asikedrid make sense for a Cache, have been
added.

Ehcache is now used for Hibernate caching, data access @hjgting, security credential caching, web
caching, application persistence and distributed cachiing biggest issue faced by Ehcache users at the
time of writing is understanding when and how to use theseifea.

1.1 Audience

The intended audience for this book is developers who usacilec It should be able to be used to start
from scratch, get up and running quickly, and also be usefutfe more complex options.

Ehcache is about performance and load reduction of underigsources. Another natural audience is
performance specialists.

It is also intended for application and enterprise arckétecSome of the features of ehcache, such as
distributed caching and JEE caching, are alternatives twobsidered along with other ways of solving
those problems. This book discusses the trade-offs in @letaapproach to help make a decision about
appropriateness of use.

1.2 Book Format

This is the first time that the ehcache documentation hasj@en book form suitable for use as an online
PDF or printed. It is designed to be printed from PDF, so blaages have been deliberately left to give a
good flow.

1.3 Acknowledgements

Ehcache has had many contributions in the form of forum disioms, feature requests, bug reports, patches
and code commits.

Rather than try and list the many hundreds of people who hamt&ibuted to ehcache in some way it is
better to link to the web site where contributions are ackaedged in the following ways:

e Bug reports and features requests appear in the changeshepa

11

e Patch contributors generally end up with an author tag irsthece they contributed to

e Team members appear on the team list page here:
Thanks to Denis Orlov for suggesting the need for a book irfitheplace.

1.4 About the ehcache name and logo
BN EH HE

Adam Murdoch (an all round top Java coder) came up with theeriara moment of inspiration while we
were stuck on the SourceForge project create page. Ehcaehpalindrome. He thought the name was
wicked cool and we agreed.

The logo is similarly symmetrical, and is evocative of thagtam symbol for a doubly-linked list. That
structure lies at the heart of ehcache.

12

Chapter 2

Introduction

Ehcache is a cache library. Before getting into ehcaches wadrth stepping back and thinking about
caching generally.

2.1 About Caches

Wiktionary defines a cache @sstore of things that will be required in future, and can bieved rapidly
That is the nub of it.

In computer science terms, a cache is a collection of temnpala@a which either duplicates data located
elsewhere or is the result of a computation. Once in the ¢dbkealata can be repeatedly accessed inex-
pensively.

2.2 Why caching works

2.2.1 Locality of Reference

While ehcache concerns itself with Java objects, cachinges throughout computing, from CPU caches
to the DNS system. Why? Because many computer systems eldaiblity of referenceData that is near
other data or has just been used is more likely to be used.again

2.2.2 The Long Talil

Chris Anderson, of Wired Magazine, coined the téfflre Long Tailo refer to Ecommerce systems. The
idea that a small number of items may make up the bulk of salemall number of blogs might get the
most hits and so on. While there is a small list of popular ðere is a long tail of less popular ones.

The Long Tail

13

The Long Tail is itself a vernacular term for a Power Law piaibgy distribution. They don't just appear
in ecommerce, but throughout nature. One form of a Power Liawilglition is the Pareto distribution,
commonly know as the 80:20 rule.

This phenomenon is useful for caching. If 20% of objects aexilB0% of the time and a way can be found
to reduce the cost of obtaining that 20%, then the systenopaédnce will improve.

2.3 Will an Application Benefit from Caching?

The short answer is that it often does, due to the effectsraiieve.

The medium answer is that it often depends on whether it is G8hd or I/O bound. If an application
is I/0 bound then then the time taken to complete a computaiipends principally on the rate at which
data can be obtained. If it is CPU bound, then the time takewipally depends on the speed of the CPU
and main memory.

While the focus for caching is on improving performance, @$o worth realizing that it reduces load. The
time it takes something to complete is usually related toettgense of it. So, caching often reduces load
on scarce resources.

2.3.1 Speeding up CPU bound Applications
CPU bound applications are often sped up by:

e improving algorithm performance
e parallelizing the computations across multiple CPUs (Shtjultiple machines (Clusters).

e upgrading the CPU speed.
The role of caching, if there is one, is to temporarily stavenputations that may be reused again.

An example from ehcache would be large web pages that haghadndering cost. Another caching
of authentication status, where authentication requingstagraphic transforms.

2.3.2 Speeding up I/O bound Applications

Many applications are I/O bound, either by disk or networknagions. In the case of databases they can
be limited by both.

There is no Moore’s law for hard disks. A 10,000 RPM disk wast 0 years ago and is still fast. Hard
disks are speeding up by using their own caching of blocksrmgmory.

Network operations can be bound by a number of factors:

e time to set up and tear down connections
e latency, or the minimum round trip time
e throughput limits

¢ marshalling and unmarhshalling overhead

The caching of data can often help a lot with 1/O bound appibos. Some examples of ehcache
uses are:

e Data Access Object caching for Hibernate

e Web page caching, for pages generated from databases.

14

2.3.3 Increased Application Scalability

The flip side of increased performance is increased scijal8ly you have a database which can do 100
expensive queries per second. After that it backs up andifiections are added to it it slowly dies.

In this case, caching may be able to reduce the workloadnexdjuif caching can cause 90 of that 100 to
be cache hits and not even get to the database, then the slatatrascale 10 times higher than otherwise.

2.4 How much will an application speed up with Caching?

2.4.1 The short answer

The short answer is that it depends on a multitude of facteirsg

e how many times a cached piece of data can and is reused byjfiliesdipn

e the proportion of the response time that is alleviated byicer

In applications that are I/O bound, which is most businegtiegttions, most of the response time is
getting data from a database. Therefore the speed up megtgnds on how much reuse a piece of
data gets.

In a system where each piece of data is used just once, itas lrea system where data is reused a
lot, the speed up is large.

The long answer, unfortunately, is complicated and mathieaialt is considered next.

2.4.2 Applying Amdahl’'s Law

Amdahl’s law, after Gene Amdabhl, is used to find the systenedjpg from a speed up in part of the system.
1/ ((1 - Proportion Sped Up) + Proportion Sped Up / Speed up)

The following examples show how to apply Amdahl’s law to coamsituations. In the interests of sim-
plicity, we assume:

e asingle server

e a system with a single thing in it, which when cached, get94088che hits and lives forever.

Persistent Object Relational Caching

A Hibernate Session.load() for a single object is about 1008s faster from cache than from a database.

A typical Hibernate query will return a list of IDs from the tdhase, and then attempt to load each. If
Session.iterate() is used Hibernate goes back to the datadéoad each object.

Imagine a scenario where we execute a query against theadatalhich returns a hundred IDs and then
load each one.

The query takes 20% of the time and the roundtrip loadingstétke rest (80%). The database query itself
is 75% of the time that the operation takes. The proportiandgped up is thus 60% (75% * 80%).

The expected system speedup is thus:

15

1/ ((1- .6) + .6/ 1000)

1/ (.4 + .006)

= 2.5 tines system speedup

Web Page Caching

An observed speed up from caching a web page is 1000 timesacBbaan retrieve a page from its
SimplePageCachingFilter in a few ms.

Because the web page is the end result of a computation, & pasportion of 100%.
The expected system speedup is thus:

1/ ((1- 1) + 1/ 1000)

1/ (0 + .001)

1000 tines system speedup

Web Page Fragment Caching

Caching the entire page is a big win. Sometimes the liverepginements vary in different parts of the
page. Here the SimplePageFragmentCachingFilter can be use

Let's say we have a 1000 fold improvement on a page fragmantaking 40% of the page render time.
The expected system speedup is thus:

1/ ((1- .4) + .4/ 1000)

1/ (6 + .004)

1.6 tinmes system speedup

2.4.3 Cache Efficiency

In real life cache entrie do not live forever. Some examphet tome close are "static" web pages or
fragments of same, like page footers, and in the databab®,regference data, such as the currencies in
the world.

Factors which affect the efficiency of a cache are:

liveness how live the data needs to be. The less live the more it can deeda

proportion of data cached what proportion of the data can fit into the resource limitthefmachine. For
32 bit Java systems, there was a hard limit of 2GB of addressespWhile now relaxed, garbage
collection issues make it harder to go a lot large. Variousti®n algorithms are used to evict excess
entries.

Shape of the usage distributionIf only 300 out of 3000 entries can be cached, but the Parstdlalition
applies, it may be that 80% of the time, those 300 will be thesorequested. This drives up the
average request lifespan.

Read/Write ratio The proportion of times data is read compared with how oftenwiritten. Things such
as the number of rooms left in a hotel will be written to quitt However the details of a room

16

sold are immutable once created so have a maximum write ofHLawpotentially large number of
reads.

Ehcache keeps these statistics for each Cache and eachntleméhey can be measured directly
rather than estimated.

2.4.4 Cluster Efficiency

Also in real life, we generally do not find a single server?
Assume a round robin load balancer where each hit goes tetttesarver.

The cache has one entry which has a variable lifespan of ségjugay caused by a time to live. The
following table shows how that lifespan can affect hits anslsms.

Server 1 Server 2 Server 3 Server 4
M M M M
H H H H
H H H H
H H H H
H H H H

The cache hit ratios for the system as a whole are as follows:

Entry

Lifespan Ht Ratio Ht Ratio Hit Ratio Ht Ratio
in Hts 1 Server 2 Servers 3 Servers 4 Servers
2 1/2 0/ 2 0/ 2 0/ 2

4 3/4 2/ 4 1/ 4 0/ 4
10 9/ 10 8/ 10 7/ 10 6/ 10
20 19/ 20 18/ 20 17/ 20 16/ 10
50 49/ 50 48/ 50 47/ 20 46/ 50

The efficiency of a cluster of standalone caches is generally

(Lifespan in requests - Nunber of Standal one Caches) / Lifespan in requests

Where the lifespan is large relative to the number of stamdalcaches, cache efficiency is not much
affected.

However when the lifespan is short, cache efficiency is dtaailly affected.

(To solve this problem, ehcache supports distributed cachihere an entry put in a local cache is also
propagated to other servers in the cluster.)

2.4.5 A cache version of Amdahl’'s law

From the above we now have:

1/ ((1 - Proportion Sped Up * effective cache efficiency) + (Proportion Sped Up
effective cache efficiency = cache efficiency * cluster edficy

17

* effective ca

2.4.6 Web Page example

Applying this to the earlier web page cache example whereave bache efficiency of 35% and average
request lifespan of 10 requests and two servers:

cache efficiency = .35

cluster efficiency .(10 - 1) / 10

.9

.35 % .9

ef fective cache efficiency =
= .315

1/ ((1- 1% .315) + 1+ .315 / 1000)

1/ (.685 + .000315)

1.45 tines system speedup

What if, instead the cache efficiency is 70%; a doubling otedfficy. We keep to two servers.

cache efficiency = .70
cluster efficiency = .(10 - 1) / 10
=.9

.70 = .9
.63

ef fective cache efficiency

1/ ((1- 1% .63) +1* .63/ 1000)

1/ (.37 + .00063)

2.69 tinmes system speedup

What if, instead the cache efficiency is 90%; a doubling otedfficy. We keep to two servers.

cache efficiency = .90

cluster efficiency = .(10 - 1) / 10
=.9

.9+ .9
.81

ef fective cache efficiency

1/ ((1- 1+ .81) + 1+ .81/ 1000)

1/ (.19 + .00081)

5.24 tinmes system speedup

Why is the reduction so dramatic? Because Amdahl’s law i serssitive to the proportion of the system
that is sped up.

18

Chapter 3

Getting Started

Ehcache can be used directly. It can also be used with thdgrdpilbernate Object/Relational tool. Finally,
it can be used for JEE Servlet Caching.

This quick guide gets you started on each of these. The rabealocumentation can be explored for a
deeper understanding.

3.1 General Purpose Caching

Make sure you are using a supported Java version.

Place the ehcache jar into your classpath.

Ensure that any libraries required to satisfy dependemeealso in the classpath.

Configure ehcache.xml and place it in your classpath.

Optionally, configure an appropriate logging level.
See Code Samples for more information on direct interaetitimehcache.

3.2 Hibernate

Perform the same steps as General Purpose Caching.

Create caches in ehcache.xml.

See Hibernate Caching for more information.

3.3 JEE Servlet Caching

Perform the same steps as General Purpose Caching.

Configure a cache for your web page in ehcache.xml.

To cache an entire web page, either use SimplePageCachéngificreate your own subclass of
CachingFilter

To cache a jsp:Include or anything callable from a Requesticher, either use SimplePageFrag-
mentCachingFilter or create a subclass of PageFragmenitCglter.

19

e Configure the web.xml. Declare the filters created above amake filter mapping associating the
filter with a URL.

See JEE Servlet Caching for more information.
3.4 Spring, Cocoon, Acegi and other frameworks

Usually, with these, you are using ehcache without eversiaglit. The first steps in getting more control
over what is happening are:

e discover the cache names used by the framework

e create your own ehcache.xml with settings for the cachepkaug it in the application classpath.

20

Chapter 4

Features

Fast and Light Weight
— Fast
— Simple
— Small foot print

— Minimal dependencies

Scalable

— Provides Memory and Disk stores for scalabilty into gigaisyt
— Scalable to hundreds of caches

— Tuned for high concurrent load on large multi-cpu servers
— Multiple CacheManagers per virtual machine

Complete

— Supports Object or Serializable caching
Support cache-wide or Element-based expiry policies

Provides LRU, LFU and FIFO cache eviction policies

Provides Memory and Disk stores
Distributed Caching

Standards Based

— Full implementation of JSR107 JCACHE API

Extensible

— Listeners may be plugged in
— Peer Discovery, Replicators and Listeners may be plugged in

Application Persistence

— Persistent disk store which stores data between VM restarts
— Flush to disk on demand

Supports Listeners

21

— CacheManager listeners
— Cache event listeners

e JMX Enabled

e Distributed

— Peer Discovery

— Reliable Delivery

— Synchronous Or Asynchronous Replication
— Copy Or Invalidate Replication

— Transparent Replication

— Extensible

— Bootstrapping from Peers

¢ JEE and Applied Caching

— Blocking Cache to avoid duplicate processing for concuroperations
— SelfPopulating Cache for pull through caching of expensperations
— JEE Gzipping Servlet Filter

— Cacheable Commands

— Works with Hibernate

e High Quality

— High Test Coverage

— Automated Load, Limit and Performance System Tests
— Production tested

— Fully documented

— Trusted by Popular Frameworks

— Conservative Commit policy

— Full public information on the history of every bug

— Responsiveness to serious bugs

e Open Source Licensing

— Apache 2.0 license

4.1 Fastand Light Weight

4.1.1 Fast

Over the years, various performance tests have shown ehdache one of the fastest Java caches.
Ehcache’s threading is designed for large, high concuyreystems.

Extensive performance tests in the test suite keep ehcsapbdbrmance consistent between releases.
As an example, some guys have created a java cache testiledlcached]_perfomance_tester.
The results for ehcache-1.1 and ehcache-1.2 follow.

22

ehcache-1.1

[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]
[java]

java.version=1.4.2 09

j ava. vm name=Java Hot Spot (TM Cient VM
java.vm version=1.4.2-54
java.vm i nfo=m xed node

java.vm vendor =" Appl e Conputer, |nc.
os. nane=Mac CS X

0s.version=10.4.5

os. ar ch=ppc

This test can take about 5-10 minutes. Please wait

cache4j 0.4 | 9240 | 9116 | 5556 |
oscache 2.2 | 33577 | 30803 | 8350 |
ehcache 1.1 | 7697 | 6145 | 3395 |
jcs 1.2.7.0 | 8966 | 9455 | 4072 |

ehcache-1. 2

I R e e

[java] java.version=1.4.2 09

[java] java.vm nanme=Java Hot Spot (TM Cdient VM

[java] java.vm version=1l.4.2-54

[java] java.vm i nfo=m xed node

[java] java.vm vendor="Apple Conputer, Inc."

[java] os.nane=Mac OS X

[java] os.version=10.4.5

[java] os.arch=ppc

I R i

[java]l] This test can take about 5-10 mi nutes. Please wait

[Java] - --mmmmm e e

[java] | Get Put RenmoveT | Get Put Renove | Get

I R e

[java] cached4j 0.4 | 9410 | 9053 | 5865

[java] oscache 2.2 | 28076 | 30833 | 8031

[java] ehcache 1.2 | 8753 | 7072 | 3479

[java] jcs 1.2.7.0 | 8806 | 9522 | 4097

I B e
4.1.2 Simple

Many users of ehcache hardly know they are using it. Sendifkeults require no initial configuration.

The APl is very simple and easy to use, making it possible tag@nd running in minutes. See the Code
Samples for details.

4.1.3 Small foot print

Ehcache 1.2 is 110KB making it convenient to package.

23

4.1.4 Minimal dependencies

Commons logging and collections are the only dependenaigadst JDKs.

4.2 Scalable

4.2.1 Provides Memory and Disk stores for scalabilty into gjabytes

The largest ehcache installations use memory and diskssitotbe gigabyte range. Ehcache is tuned for
these large sizes.

4.2.2 Scalable to hundreds of caches

The largest ehcache installations use hundreds of caches.

4.2.3 Tuned for high concurrent load on large multi-cpu serers
There is a tension between thread safety and performancacké’s threading started off coarse-grained,

but has increasingly made use of ideas from Doug Lea to aelgimater performance. Over the years there
have been a number of scalability bottlenecks identifiedfexed.

4.2.4 Multiple CacheManagers per virtual machine

Ehcache 1.2 introduced multiple CacheManagers per viniaghine. This enables completely difference
ehcache.xml configurations to be applied.

4.3 Complete

4.3.1 Supports Object or Serializable caching

As of ehcache-1.2 there is an API for Objects in addition ® dhe for Serializable. Non-serializable
Objects can use all parts of ehcache except for DiskStoreepiitation. If an attempt is made to persist
or replicate them they are discarded and a WARNING level legsage emitted.

The APIs are identical except for the return methods fronmiglet. Two new methods on Element: getO-
bjectValue and getKeyValue are the only API differencesveen the Serializable and Object APIs. This
makes it very easy to start with caching Objects and thengthgaur Objects to Seralizable to participate
in the extra features when needed. Also a large number ofclasses are simply not Serializable.

4.3.2 Support cache-wide or Element-based expiry policies

Time to lives and time to idles are settable per cache. Intiatdifrom ehcache-1.2.1, overrides to these
can be set per Element.

4.3.3 Provides LRU, LFU and FIFO cache eviction policies

Ehcache 1.2 introduced Less Frequently Used and First $h ®irt caching eviction policies. These round
out the eviction policies.

24

4.3.4 Provides Memory and Disk stores

Ehcache, like most of the cache solutions, provides higfopeance memory and disk stores.

4.3.5 Distributed
Flexible, extensible, high performance distributed caghiThe default implementation supports cache
discovery via multicast or manual configuration. Updates @elivered either asynchronously or syn-

chronously via custom RMI connections. Additional disagver delivery schemes can be plugged in by
third parties.

See the Distributed Caching documentation for more featetails.

4.4 Standards Based

4.4.1 Fullimplementation of JSR107 JCACHE API

Ehcache offers the the most complete implementation of 03RCACHE to date.

Because JCACHE has not yet been released the JCACHE APlhbatke implements has been released
as net.sf.jsrl07cache.

Implementers can code to the JCACHE API which will creatdadulity to other caching solutions in the
future.

The maintainer of ehcache, Greg Luck, is on the expert cormenfibr JISR107.

4.5 Extensible

4.5.1 Listeners may be plugged in

Ehcache 1.2 provideGacheManager Event Li st ener and CacheEvent Li st ener interfaces. Imple-
mentations can be plugged in and configured in ehcache.xml.

4.5.2 Peer Discovery, Replicators and Listeners may be plggd in
Distributed caching, introduced in ehcache 1.2 involvesynzhoices and tradeoffs. The ehcache team

believe that one size will not fit all. Implementers can usiédinmechanisms or write their own. A plugin
development guide is included for this purpose.

4.6 Application Persistence

4.6.1 Persistent disk store which stores data between VM regts

With ehcache 1.1 in 2004, ehcache was the first open souraecdahe to introduce persistent storage of
cache data on disk on shutdown. The cached data is then #xbe¢ise next time the application runs.

25

4.6.2 Flush to disk on demand
With ehcache 1.2, the flushing of entries to disk can be ereauith acache. f | ush() method whenever

required, making it easier to use ehcache

4.7 Listeners

4.7.1 CacheManager listeners
Ehcache 1.2 introduced tltacheManager Event Li st ener interface with the following event methods:

e notifyCacheAdded()

e notifyCacheRenoved()

4.7.2 Cache event listeners

Ehcache 1.2 introduced theacheEvent Li st ener interfaces, providing a lot of flexibility for post-
processing of cache events. The methods are:

e noti f yEl enent Renoved
e noti f yEl ement Put
e noti f yEl enent Updat ed

e noti fyEl enent Expi red

4.8 JMX Enabled

Ehcache-1.3 is JMX enabled. You can monitor and manage lovfog MBeans:

e CacheManager

Cache

CacheConfiguration

CacheStatistics

See the net.sf.ehcache.management package.

4.9 Distributed Caching

Ehcache 1.2 introduced a full-featured, fine-grainedithisted caching mechanism for clusters.

4.9.1 Peer Discovery
Peer discovery may be either manually configured or autemaging multicast. Multicast is simple, and

adds and removes peers automatically. Manual configurghi@s fine control and is useful for situations
where multicast is blocked.

26

4.9.2 Reliable Delivery

The built-in delivery mechanism uses RMI with custom sosketer TCP, not UDP.

4.9.3 Synchronous Or Asynchronous Replication

Replication can be set to synchronous Or asynchronousgglec

4.9.4 Copy Or Invalidate Replication

Replication can be set to copy or invalidate, per cache, agpsopriate.

4.9.5 Transparent Replication

No programming changes are required to make use of reglicafinly configuration in ehcache.xml.

4.9.6 Extensible
Distributed caching, introduced in ehcache 1.2 involvesyrnzhoices and tradeoffs. The ehcache team

believe that one size will not fit all. Implementers can usiélinmechanisms or write their own. A plugin
development guide is included for this purpose.

4.9.7 Bootstrapping from Peers

Distributed caches enter and leave the cluster at diffdime@s. Caches can be configured to bootstrap
themselves from the cluster when they are first initialized.

An abstract factory, BootstrapCachelLoaderFactory has deéned along with an interface Bootstrap-
CachelLoader along with an RMI based default implementation

4.10 JEE and Applied Caching

High quality implementations for common caching scenagiod patterns.

4.10.1 Blocking Cache to avoid duplicate processing for caenrrent operations

A cache which blocks subsequent threads until the first te@@dd populates a cache entry.

4.10.2 SelfPopulating Cache for pull through caching of exgnsive operations
SelfPopulatingCache - a read-through cache. A cache tipal@tes elements as they are requested without

requiring the caller to know how the entries are populatealsb enables refreshes of cache entries without
blocking reads on the same entries.

4.10.3 JEE Gzipping Servlet Filter

e CachingFilter - an abstract, extensible caching filter.

27

e SimplePageCachingFilter

A high performance JEE servlet filter that caches pages bmas#te request URI and Query String.
It also gzips the pages and delivers them to browsers eittippgd or ungzipped depending on the
HTTP request headers. Use to cache entire Servlet pagetexliom JSP, velocity, or any other

rendering technology.

Tested with Orion and Tomcat.

e SimplePageFragmentCachingFilter

A high performance JEE filter that caches page fragmentsdbaisehe request URI and Query
String. Use with Servlet request dispatchers to cache papages, whether from JSP, velocity, or
any other rendering technology. Can be used from JSPs wsgirigglude.

Tested with Orion and Tomcat.

e Works with Servlet 2.3 and Servlet 2.4 specifications.

4.10.4 Cacheable Commands

This is the trusty old command pattern with a twist: asynobiss behaviour, fault tolerance and caching.
Creates a command, caches it and then attempts to execute it.

4.10.5 Works with Hibernate

Tested with Hibernate2.1.8 and Hibernate3.1.3, which ¢éisauall of the new features except for Object

API and multiple session factories each using a differecaehe CacheManager. Anewt . sf . ehcache. hi ber nat e. EhCache
makes those additional features available to Hiberndte3.3A version of the new provider should make it

into the Hibernate3.2 release.

4.11 High Quality

4.11.1 High Test Coverage

The ehcache team believe that the first and most importafitygmeeasure is a well designed and compre-
hensive test suite.

Ehcache has a relatively high 86% test coverage of sourae ddds has edged higher over time. Clover
enforces the test coverage. Most of the missing 14% is |ggaivd exception paths.

4.11.2 Automated Load, Limit and Performance System Tests

The ehcache JUnit test suite contains some long-runningraytests which place high load on different
ehcache subsystems to the point of failure and then are bgitkjost below that point. The same is done
with limits such as the amount of Elements that can fit in amgiveap size. The same is also done with
performance testing of each subsystem and the whole tagdthe same is also done with network tests
for cache replication.

The tests serve a number of purposes:

e establishing well understood metrics and limits
e preventing regressions

e reproducing any reported issues in production

28

¢ Allowing the design principle of graceful degradation todmhieved. For example, the asynchronous
cache replicator uses SoftReferences for queued messagtmt the messages will be reclaimed
before before an OutOfMemoryError occurs, thus favouriagitity over replication.

4.11.3 Specific Concurrency Testing

Ehcache also has concurrency testing, which typically 88esoncurrent threads hammering a piece of
code. The test suites are also run on multi-core or multifopehines so that concurrency is real rather
than simulated. Additionally, every concurrency relateslie that has ever been anticipated or resulted in
a bug report has a unit test which prevents the condition fiecarring. There are no reported issues that
have not been reproduced in a unit test.

Concurrency unit tests are somewhat difficult to write, aredadten overlooked. The team considers these
tests a major factor in ehcache’s quality.

4.11.4 Production tested

Ehcache came about in the first place because of producsioessvith another open source cache.

Final release versions of ehcache have been producti@utesta very busy e-commerce site, supporting
thousands of concurrent users, gigabyte size caches @mtargji-cpu machines. It has been the experience
of the team that most threading issues do not surface uistifytpe of load has been applied. Once an issue
has been identified and investigated a concurrency unitéesthen be crafted.

4.11.5 Fully documented

A core belief held by the project team is that a project needslglocumentation to be useful.
In ehcache, this is manifested by:

e comprehensive written documentation

e Complete, meaningful JavaDoc for every package, class ablicpand protected method. Check-
style rules enforce this level of documentation.

e an up-to-date FAQ

4.11.6 Trusted by Popular Frameworks

Ehcache is used extensively. See the Who is Using? pagepwséiGoogle.

4.11.7 Conservative Commit policy

Projects like Linux maintain their quality through a resteid change process, whereby changes are sub-
mitted as patches, then reviewed by the maintainer anddedluor modified. Ehcache follows the same
process.

4.11.8 Full public information on the history of every bug

Through the SourceForge project bug tracker, the full ysadall bugs are shown, including current status.
We take this for granted in an open source project, as thypisdlly a feature that all open source projects
have, but this transparency makes it possible to gauge théygand riskiness of a library, something not
usually possible in commercial products.

29

4.11.9 Responsiveness to serious bugs

The ehcache team is serious about quality. If one user isigavproblem, it probably means others are
too, or will have. The ehcache team use ehcache themselyesdnction. Every effort will be made to
provide fixes for serious production problems as soon aslges3 hese will be committed to trunk. From
there an affected user can apply the fix to their own branch.

4.12 Open Source Licensing

4.12.1 Apache 2.0 license

Ehcache’s original Apachel.1 copyright and licensing veagerved and approved by the Apache Software
Foundation, making ehcache suitable for use in Apachegmjehcache-1.2 is released under the updated
Apache 2.0 license.

The Apache license is also friendly one, making it safe arsg &ainclude ehcache in other open source
projects or commercial products.

30

Chapter 5

Key Ehcache Concepts

5.1 Key Ehcache Classes

netsfehcache

Ehcache
B
|

i
.l
Cache

CacheException

‘F

ObjectExistsException
CacheManager Element

Statistics Status

generated by yDoc

Top Level Package Diagram

Ehcache consists of@acheManager , which manages caches. Caches contain elements, whichsae-e
tially name value pairs. Caches are physically implemeatter in-memory, or on disk.

31

5.1.1 CacheManager

net.sf.ehcache

net.sf.ehcache.event heManager net.sf.ehcache.event
C EventLi Registry +ALL CACHE MANAGERS :List ~ =meeeed == CacheManagerEventListener
_# caches : Map

| + ENABLE_SHUTDOWN_HOOK PROPERTY : String

net.sf.ehcache .+ CacheManager() net.sf.ehcache.config

T + CacheManager(InputStream)
CacheNanagel | + CacheManager(String)

+ CacheManager(URL
Ehcache =—
| + CacheManager(Configuration)

_______ =! Configuration
L i

| Status = +addCache(String) : void Java.net

| + addCache(Cache) : void
| + addCache(Ehcache) : void
+ cacheExists(String) : boolean
+ clearAll() : void
CacheManagerPeerListener = + create() : CacheManager
+ create(inputStream) : CacheManager _______>5 Cache
CacheManagerPeerProvider ~=—— + create(String) : CacheManager
+ ereate(URL) : CacheManager
| + getCache(Siring) : Cache
| + getCacheManagerEventListener() : CacheManagerEventListener
+ getCacheManagerEventListenerRegistry() : CacheManagerEventListenerRegistry
+ getCacheManagerPeerProvider() : CacheManagerPeerProvider
| + getCacheNames() : String[]
| + getCachePeerlistener() : CacheManagerPeerListener
| + getCachePeerProvider() : CacheManagerPeerProvider
| + getEhcache(String) : Ehcache
| + getinstance() : CacheManager
| + getName() : String
+ getStatus() : Status
|+ removalAll) : void
| + removeCache(String) * void
| + replaceCacheWithDecoratedCache(Ehcache, Ehcache) : void
+ setCacheManagerEventListener(CacheManagerEventListener) : void
| + setName(String) : void
+ shutdown() : void
| + toString() : String

_______ >> URL

net.sf.ehcache distribution

net.sf.ehcache

java.io

————-—=={ InputStream

generated by yDoc

CacheManager Class Diagram

TheCacheManager comprises Caches which in turn comprise Elements.
Creation of, access to and removal of caches is controllédd@acheManager .

CacheManager Creation Modes

CacheManager supports two creation modes: singleton and instance.

Singleton Mode Ehcache-1.1 supported only o@e#cheManager instance which was a singleton. Cache-
Manager can still be used in this way using the static faactoethods.

Instance Mode From ehcache-1.2, CacheManager has constructors whiobrrthie various static create
methods. This enables multiple CacheManagers to be craatedsed concurrently. Each CacheManager
requires its own configuration.

If the Caches under management use only the MemoryStore,dine no special considerations. If Caches
use the DiskStore, the diskStore path specified in each Géarteger configuration should be unique.
When a new CacheManager is created, a check is made thatiieeme other CacheManagers using the

32

same diskStore path. If there are, a CacheException is thrif@a CacheManager is part of a cluster, there
will also be listener ports which must be unique.

Mixed Singleton and Instance Mode If an application creates instances of CacheManager usiog-a
structor, and also calls a static create method, there widt @ singleton instance of CacheManager which
will be returned each time the create method is called tagetlith any other instances created via con-

structor. The two types will coexist peacefully.

33

5.1.2 Ehcache

net.sfehcache

<<interface>> net.sfehcache.event

Ehcache »-ﬁ”;-.{ RegisteredEventListeners

+ bootstrap() : woid

+ cakculatelnMemorySize() : long

+ clearStatistics() : void

+clane() : Object ”77”7}! CacheConfiguration
+dispose() - void L.
+evictExpiredElements() © void

net.sf.ehcache.config

+flushi) - void

+get{Serializable) - Element DeE relcxhe

+get(Object) : Element ——— ~——>—im
pCacheloader() * acheloader L

+getCacheConfiguration() : CacheConfiguration T ...)! Element

+gercac ionService() : isteners I

+getCacheManager() : CacheManager b »Aavi Statistics

+getDiskExpiryThreadintervalSeconds() - long i

+getDiskStoreSize() - int T G Staws

+getGuid() : String
+getKeys(- List

+getKeysNoDuplicateCheck() : List net.sf.ehcache.store
+getKeysWithExpiryCheck() List e
+getMaxElernentsinMemory() : int s ’5'! MemoryStoreEvictionPolicy

+ getMaxElementsOnDisk() - int

+ gatMe rmoryStoreEvictionPalicy() : MemoryStoreEvictionPalicy

+ getMemoryStoreSize{) - long java.io
+getName() : Sring
+getQuiet(Seriakzable) : Element
+getQuiefObject) : Element

> Serializable

+getSize() - int

+ getStatistics() : Statistics net.sf.ehcache.bootstrap

+ getStatisticsAccuracy() : int

+ garStatus() : Smtus --———== BootstrapCachelLoader

+getTimeToldleSeconds() . long

+ getTimeToLiveSeconds() : long

+initialise : void net.sf.ehcache. extension
+isDiskPersistent() : boolean

+ isElementinMernory(Serializable) : boolean

+ isElernentinMemory(Object : boolean
+isElementOnDisk(Serializable) : boolean
+isElemnentOnDisk{Object) : boolean
+isEternall) : boolean

+isExpired(Element) : boolean

+ iskeyinCache(Object) - boolean

+ isOverflowToDisk() : boolean
+isValuelnCache{Object) : boalean
+put(Elerment) : void

+ put(Element, boolean) * void
+putQuiek(Elernent) : void

+ registerCache Extension(CacheExtension) : void
+remove(Serializable) : boolean
+remove(Serializable, boolean) : boolean
+remove(Object) : boolean

+remove(Object, bookan) . boolean

+ removeAlll) : wid

+ removeAlltboolean) : void

+ removeQuiet{Serializable) : booiean

+ removeQuiet{Object) : boolean

o+ apCachel. acheloader) : void
+ setCacheManager(CacheManager) : void

+ setDiskStore Path{String) - void

+ setName(String) : void
+selStatisticsAccuracy(ing) - void

+ toString() : String

+ isterCacheExtension{CacheExtension) * void

~~----=2_ CacheExtension

generated by yDoc

Ehcache Interface Diagram

All caches implement thehcache interface. A cache has a name and attributes. Each cachairt®nt
Elements.

A Cache in ehcache is analogous to a cache region in otheingegystems.
Cache elements are stored in tror y St or e. Optionally they also overflow to@ skSt or e.

34

5.1.3 Element

jaa.io

Serializable

"

net.sf.ehcache

java.lo
Element

+ ElementiSerializable, Serialzable) > G alie

+ Element{Serializable, Serializable; long)
+ Element{Object, Object)

+ Element(Object, Object, long)
+ ElementiObject, Object, long, long, long, long, long, long)
+ clone() : Object

+ equals(Object) : boolean

+ getCreationTime() : long

+ getExpirationTime() : long

+ getHitCount() : long

+ getKey() : Seralizable

+ getlastAccessTime() : long

+ getlastUpdateTime() : long

+ getNextToLastAccessTime() : long
+ getObjectkey() : Object

+ getObjectValue() - Object

+ getSerializedSize() : long

+ getTimeToldle() : int

+ getTimeTolive() - int

+ getValuel) : Serializable

+ getWersion() : long

+ hashCode() : int

+ IsEternall) : boolean

+ isExpired() : boolean

+ isKeySerializable() : boolean
+ IsLifespanSet]) : boolean

+ isSerializable() : boolean

+ resetAccessStatistics() : void

+ setCreate Timel) : void

+ setEternal(boolean) : void

+ setTimeToldle(int) : void

+ setTimeToLive(int) : void

+ setVersion(long) : void

+ toString() © String

+ updateAccessStatistics() : void
+ updateUpdateStatistics() : void

generated by yDoc

Element Class Diagram

An element is an atomic entry in a cache. It has a key, a valdeaarecord of accesses. Elements are
put into and removed from caches. They can also expire andrheved by the Cache, depending on the
Cache settings.

As of ehcache-1.2 there is an API for Objects in addition ® dhe for Serializable. Non-serializable
Objects can use all parts of ehcache except for DiskStoreepiitation. If an attempt is made to persist
or replicate them they are discarded without error and wIHEEBUG level log message.

The APIs are identical except for the return methods fronmiglet. Two new methods on Element: getO-
bjectValue and getKeyValue are the only API differencesveen the Serializable and Object APIs. This
makes it very easy to start with caching Objects and thengthgaur Objects to Seralizable to participate
in the extra features when needed. Also a large number ofclasses are simply not Serializable.

35

5.2 Cache Size and Eviction

A cache eviction algorithm is a way of deciding whighenent to evict when the cache is full.

In ehcache théknor ySt or e has a fixed limited size set byaxEl enent sl nMenory. TheDi skSt ore
can be optionally limited witlraxEl enent OnDi sk. If this is unset the th&i skSt or e is unlimited.

If a cache is set to only useMenor y St or e then the cache will also be full when tivenor ySt or e is
full, otherwise it will overflow to thedi skSt or e.

The eviction algorithms in ehcache thus determine whemtiher ySt or e evicts an element.
If there is noDi skSt or e this will also be a cache eviction, otherwise it will causeoaarflow to disk.

5.2.1 Supported Eviction Algorithms

The idea here is, given a limit on the number of items to calcbe,to choose the thing to evict that gives
thebestresult.

In 1966 Laszlo Belady showed that the most efficient cachiggrdhm would be to always discard the
information that will not be needed for the longest time ie fature. This it a theoretical result that is
unimplementable without domain knowledge. The Least Ricélsed ("LRU") algorithm is often used
as a proxy. It works pretty well because of the locality oerehce phenonemon. As a result, LRU is the
default eviction algorithm in ehcache, as it is in most cache

Ehcache users may sometimes have a good domain knowledgerditayly, ehcache provides three evic-
tion algorithms to choose from for tiMenor y St or e.

5.2.2 Menorystore Eviction Algorithms

TheMenor ySt or e supports three eviction algorithms: LRU, LFU and FIFO.
The defaultis LRU.

Least Recently Used (LRU)

The eldest element, is the Least Recently Used (LRU). Theitesl timestamp is updated when an element
is put into the cache or an element is retrieved from the caidthea get call.

Less Frequently Used (LFU)

For each get call on the element the number of hits is updsben a put call is made for a new element
(and assuming that the max limit is reached) the element ie@bt number of hits, the Less Frequently
Used element, is evicted.

If cache element use follows a pareto distribution, thi®eatgm may give better results than LRU.

LFU is an algorithm unique to ehcache. It takes a random sanfithe Elements and evicts the smallest.
Using the sample size of 30 elements, empirical testing shibat an Element in the lowest quartile of use
is evicted 99.99% of the time.

First In First Out (FIFO)
Elements are evicted in the same order as they come in. Whehaalpis made for a new element (and

assuming that the max limit is reached for the memory stbretement that was placed first (First-In) in
the store is the candidate for eviction (First-Out).

36

This algorithm is used if the use of an element makes it lé&dylito be used in the future. An example
here would be an authentication cache.

5.2.3 Diskstore Eviction Algorithms

TheDi skSt or e uses the Less Frequently Used eviction to evict when it Is ful

5.3 Cache Usage Patterns

Caches can be used in different ways. Each of these ways/laache usage pattern. Ehcache supports
the following:

e direct manipulation
e pull-through

e self-populating

5.3.1 Direct Manipulation

Here, to put something in the cache youakehe. put (El enment el enent) and to get something from
the cache you doache. get (bj ect key).

You are aware you are using a cache and you are doing so cosicio

5.3.2 Self Populating

Here, you just do gets to the cache usireghe. get (bj ect key). The cache itself knows how to
populate an entry.

See the SelfPopulatingCache for more on this pattern.

37

38

Chapter 6

Code Samples

¢ Using the CacheManager

— Singleton versus Instance

— Ways of loading Cache Configuration

— Adding and Removing Caches Programmatically
— Shutdown the CacheManager

e Using Caches

— Obtaining a reference to a Cache
— CRUD operations

— Disk Persistence on demand

— Cache Sizes

— Statistics of Cache Hits and Misses

e Programmatically Creating Caches

— Creating a new cache from defaults
— Creating a new cache with custom parameters

e Registering CacheStatistics in an MBeanServer

e Browse the JUnit Tests

6.1 Using the CacheManager

All usages of ehcache start with the creation of a CacheMamag

6.1.1 Singleton versus Instance

As of ehcache-1.2, ehcache CacheManagers can be creatébesssimgletons (use the create factory
method) or instances (use new).

Create a singleton CacheManager using defaults, theralites.

39

CacheManager.create();
String[] cacheNanes = CacheManager. getl nstance(). get CacheNanes();

Create a CacheManager instance using defaults, thendisesa

CacheManager nanager = new CacheManager();
String[] cacheNanes = manager. get CacheNanes();

Create two CacheManagers, each with a different configuradind list the caches in each.
CacheManager nmanagerl = new CacheManager ("src/confi g/ ehcachel. xm ");
CacheManager nmanager2 = new CacheManager ("src/confi g/ ehcache2. xm ");

String[] cacheNanmesFor Manager1 = nanager 1. get CacheNanes();
String[] cacheNanesFor Manager2 = nanager 2. get CacheNanes() ;

6.1.2 Ways of loading Cache Configuration

When the CacheManager is created it creates caches foumel @@nfiguration.
Create a CacheManager using defaults. Ehcache will loo&Hfoache.xml in the classpath.

CacheManager nanager = new CacheManager();
Create a CacheManager specifying the path of a configurfiliéon
CacheManager manager = new CacheManager ("src/ confi g/ ehcache. xm ");
Create a CacheManager from a configuration resource in &éissprth.

URL url = getd ass().get Resource("/anotherconfigurationname.xm");
CacheManager manager = new CacheManager (url);

Create a CacheManager from a configuration in an InputStream

InputStreamfis = new Fil el nput Stream(new File("src/config/ehcache.xm ") . get Absol utePath());

try {
CacheManager nmanager = new CacheManager (fis);

} finally {
fis.close();
}

6.1.3 Adding and Removing Caches Programmatically

You are not just stuck with the caches that were placed in dndiguration. You can create and remove
them programmatically.

Add a cache using defaults, then use it. The following exancptates a cache calltsstCachewhich
will be configured using defaultCache from the configuration

CacheManager si ngl et onManager = CacheManager. create();
si ngl et onManager . addCache("t est Cache");
Cache test = singl etonManager. get Cache("test Cache");

Create a Cache and add it to the CacheManager, then useéttiddCaches are not usable until they have
been added to a CacheManager.

40

CacheManager singl et onManager = CacheManager.create();

Cache nenoryOnl yCache = new Cache("test Cache", 5000, false, false, 5, 2);
nmanager . addCache(nenor yOnl yCache) ;

Cache test = singl etonManager. get Cache("test Cache");

See Cache#Cache(...) for the full parameters for a new Cache
Remove cache called sampleCachel

CacheManager singl et onManager = CacheManager. create();
si ngl et onManager . r enoveCache(" sanmpl eCachel");

6.1.4 Shutdown the CacheManager

Ehcache should be shutdown after use. It does have a shutdmknbut it is best practice to shut it down
in your code.

Shutdown the singleton CacheManager

CacheManager . get I nst ance() . shut down();

Shutdown a CacheManager instance, assuming you have aneédo the CacheManager caltednager
nmanager . shut down() ;

See the CacheManagerTest for more examples.

6.2 Using Caches

All of these examples refer tmanagey which is a reference to a CacheManager, which has a cache in i
calledsampleCachel

6.2.1 Obtaining a reference to a Cache
Obtain a Cache called "sampleCachel", which has been g@igemed in the configuration file

Cache cache = nanager. get Cache("sanpl eCachel");

6.2.2 Performing CRUD operations

Put an element into a cache

Cache cache = nanager. get Cache("sanpl eCachel");
El ement el enent = new El ement ("keyl", "valuel");

cache. put (el enent) ;

Update an element in a cache. Even thoaghhe. put () is used, ehcache knows there is an existing
element, and considers the put an update for the purposdifyfing cache listeners.

Cache cache = nanager. get Cache("sanpl eCachel");

cache. put (new El emrent ("keyl1l", "val uel");
/1 This updates the entry for "keyl"
cache. put (new El ement ("key1", "val ue2");

41

Get a Serializable value from an element in a cache with a k&yey1".

Cache cache = nanager. get Cache("sanpl eCachel");
El ement el ement = cache. get ("keyl");
Serializable value = el enent. get Val ue();

Get a NonSerializable value from an element in a cache wittyak"keyl".

Cache cache = nanager. get Cache("sanpl eCachel");
El ement el ement = cache. get ("keyl");
Ooj ect val ue = el enent. get Obj ect Val ue();

Remove an element from a cache with a key of "keyl".

Cache cache = nanager. get Cache("sanpl eCachel");
El emrent el ement = new El enent ("keyl", "val uel”
cache. remove("keyl");

6.2.3 Disk Persistence on demand

sampleCachehas a persistent diskStore. We wish to ensure that the ddtamdex are written immedi-
ately.

Cache cache = nanager. get Cache("sanpl eCachel");
cache. flush();

6.2.4 Obtaining Cache Sizes
Get the number of elements currently in texhe.

Cache cache = nanager. get Cache("sanpl eCachel");
int el enentslnMenory = cache. get Si ze() ;

Get the number of elements currently in taror ySt or e.

Cache cache = nanager. get Cache("sanpl eCachel");
I ong el enent sl nMenory = cache. get MenorySt oreSi ze() ;

Get the number of elements currently in teskSt or e.

Cache cache = nanager. get Cache("sanpl eCachel");
I ong el ement sl nMenory = cache. get Di skSt oreSi ze();

6.2.5 Obtaining Statistics of Cache Hits and Misses

These methods are useful for tuning cache configurations.
Get the number of times requested items were found in theecaeh cache hits

Cache cache = nanager. get Cache("sanpl eCachel");
int hits = cache. getHitCount();

Get the number of times requested items were found inther y St or e of the cache.

42

Cache cache = nanager. get Cache("sanpl eCachel");
int hits = cache. get MenorySt oreHit Count () ;

Get the number of times requested items were found iitk& St or e of the cache.

Cache cache = nanager. get Cache("sanpl eCachel");
int hits = cache. get Di skSt oreCount ();

Get the number of times requested items were not found inableec i.e. cache misses.

Cache cache = nanager. get Cache("sanpl eCachel");
int hits = cache. get M ssCount Not Found() ;

Get the number of times requested items were not found inableecdue to expiry of the elements.

Cache cache = nanager. get Cache("sanpl eCachel");
int hits = cache. get M ssCount Expi red();

These are just the most commonly used methods. See CaclieTegire examples. See Cache for the
full API.

6.3 Creating a new cache from defaults

A new cache with a given name can be created from defaultssiemly:

nmanager . addCache(" cache name");

6.4 Creating a new cache with custom parameters

The configuration for a Cache can be specified programmigtioghe Cache constructor:

publ i c Cache(
String nane,
i nt maxEl emrent sl nMenory,
Menor ySt or eEvi cti onPol i cy nenoryStoreEvictionPolicy,
bool ean overfl owToDi sk,
bool ean eternal,
| ong tineTolLi veSeconds,
| ong tineTol dl eSeconds,
bool ean di skPer si st ent,
| ong di skExpi ryThreadl nt erval Seconds) {

}
Here is an example which creates a cache called test.

/I Create a CacheManager using defaults
CacheManager manager = CacheManager.create();

/I Create a Cache specifying its configuration.
Cache testCache = new Cache("test", naxEl enents,

MenorySt or eEvi ctionPolicy. LFU, true, false, 60, 30, false, 0);
nmanager . addCache(cache) ;

43

Once the cache is created, add it to the list of caches marmgihe CacheManager:
nmanager . addCache(t est Cache) ;

The cache is not usable until it has been added.

6.5 Registering CacheStatistics in an MBeanServer

This example shows how to register CacheStatistics in th€lJplatform MBeanServer, which works
with the JConsole management agent.

CacheManager nanager = new CacheManager () ;
MBeanSer ver nBeanServer = Managenent Factory. get Pl at f or mMvBeanSer ver () ;
Managemnent Ser vi ce. r egi st er MBeans(nanager, nmBeanServer, false, false, false, true);

6.6 Browse the JUnit Tests

Ehcache comes with a comprehensive JUnit test suite, wiitbnly tests the code, but shows you how to
use ehcache.

A link to browsable unit test source code for the major eheatthsses is given per section. The unit tests
are also in the src.zip in the ehcache tarball.

44

Chapter 7

Java Requirements, Dependencies and
Maven POM snippet

7.1 Java Requirements

Ehcache supports 1.4, 1.5 and 1.6 at runtime. Ehcache fiealses are compiled with -target 1.4. This
produces Java class data, version 48.0.

Because of an RMI bug, in JDKs before JDK1.5 ehcache is ldntiteone CacheManager operating in
distributed mode per virtual machine. (The bug limits thenber of RMI registries to one per virtual
machine). Because this is the expected deployment confignydowever, ther should be no practical
effect.

On JDK1.5 and higher it is possible to have multiple Cachedgns per VM each participating in the
same or different clusters. Indeed the replication testthidowith 5 CacheManagers on the same VM all
run from JUnit.

7.2 Mandatory Dependencies

Ehcache requires commons-logging commons-logging isyao@mmon dependency, and is therefore not
included in the distribution.

7.2.1 Backport Concurrent
Backport Concurrentis a dependency for use of the JCachadtter than using the library which maven

will pull down, users should consider using the JDK5 versiohich is faster if they are running JDKS5.
See http://dcl.mathcs.emory.edu/util/backport-utihcurrent.

7.3 Optional Dependencies

7.3.1 JMX

The management package of ehcache requires JMX. Versiar higher will work. This is optional and
only required if you are using theanagenent Ser vi ce.

Of course JDK1.5 has it built in.

45

7.3.2 Commons collections

This is optional. Use it if you are using ehcache with TertecoThey have a limitation which prevents
them from using the build in JDK one.

It can be turned on using by setting the system propesty sf . ehcache. useLRUVAp to true.

7.4 Maven pom.xml snippet

Ehcache releases are placed in the central Maven repository
The Maven snippet for ehcache 1.2.4, for example, is:

<dependency>
<gr oupl d>net . sf. ehcache</ gr oupl d>
<artifactld>ehcache</artifactld>
<versi on>1. 2. 4</ ver si on>

</ dependency>

46

Chapter 8

Logging And Debugging

8.1 Commons Logging

Ehcache uses the Apache Commons Logging library for logging

It acts as a thin bridge between logging statements in the aad logging infrastructure detected in the
classpath. It will use in order of preference:

o log4j
e JDK1.4 logging

e and then its owrsi npl eLog

This enables ehcache to use logging infrastructures caipatith Java versions from JDK1.2 to
JDKS5. It does create a dependency on Apache Commons Lodgingyver many projects, including
Hibernate, share the same dependency.

For normal production use, use tharN level in log4J and th®ARNI NG level for JDK1.4 logging.

8.2 Logging Philosophy

Ehcache seeks to trade off informing production supporeli@ers or important messages and cluttering
the log.

ERROR (JDK logging SEVERE_ messages should not occur in alggroduction and indicate that action
should be taken.

WARNING (JDK logging WARN) messages generally indicate afgguration change should be made or
an unusual event has occurred.

DEBUG (JDK logging FINE) messages are for development udeDBEBUG level statements are sur-
rounded with a guard so that they are not executed unlesevbei$ DEBUG.

Setting the logging level to DEBUG (JDK level FINE) shoulcdpide more information on the source
of any problems. Many logging systems enable a logging lelrahge to be made without restarting the
application.

47

8.3 Remote Network debugging and monitoring for Distributed Caches
A simple new tool in ehcache-1.2, ehcache-1.x-remote-gigdajar can be used to debug replicated cache

operations. Itis included in the distribution tarball fdroache-1.2.3 and higher.
Itis invoked using:

java -jar ehcache-1. x-renot e-debugger.jar path_to_ehcache.xm cacheToMonitor

It will print a configuration of the cache, including replizn settings and monitor the number of elements
in the cache. If you are not seeing replication in your agpicn, run up this tool to see what is going on.

Itis a command line application, so it can easily be run frot@reninal session.

48

Chapter 9

JMX Management and Monitoring

9.1 JMX Overview

JMX, part of JDK1.5, and available as a download for 1.4, ta®a standard way of instrumenting classes
and making them available to a management and monitoringstficture.

Thenet . sf. ehcache. managenent package contains MBeans andvanagenent Ser vi ce for JIMX
management of ehcache. Itis in a separate package so thalildfdes are only required if you wish to
use it - there is no leakage of IMX dependencies into the daraahe package.

This implementation attempts to follow Sun’s JIMX best piceg. See http://java.sun.com/javase/technologiesittmrtr-
mgmt/javamanagement/best-practices.jsp.

Usenet . sf. ehcache. managenent . Managenent Ser vi ce. r egi st er MBeans(. . .) static method to
register a selection of MBeans to the MBeanServer providede method.

If you wish to monitor ehcache but not use JMX, just use thet#g public methods oache and
CacheStati sti cs.

net.sf.ehcache. management

CacheConfiguration MBean CacheMBean
A A
] I
1 1
He S
CacheConfiguration Cache
CacheManagerMBean CacheStatisticsMBean
7 ?
]]
1 L
CacheManager CacheStatistics

ManagementService

generated by yDoc

The Management Package

49

9.2 Dependencies

The management package of ehcache requires JMX. Versiar higher will work. This is optional and
only required if you are using theanagenent Ser vi ce.

9.3 MBeans
Ehcache uses Standard MBeans. MBeans are available falkneihg:

e CacheManager
e Cache
e CacheConfiguration

e CacheStatistics

All MBean attributes are available to a local MBeanServehe TTacheManager MBean allows
traversal to its collection of Cache MBeans. Each Cache MBikawise allows traversal to its
CacheConfiguration MBean and its CacheStatistics MBean.

9.4 Remoting

The JMX Remote API allows connection from a remote JMX Ageratrt MBeanServer via @aBeanSer ver Connect i on.

Only Seri al i zabl e attributes are available remotely. The following Ehcachgdén attributes are avail-
able remotely:

o limited CacheManager attributes

e limited Cache attributes

all CacheConfiguration attributes

all CacheStatistics attributes

9.5 ject Name NAMING SCheme

CacheManager - "net.sf.ehcache:type=CacheManagert@aubeManager

Cache - "net.sf.ehcache:type=Cache,CacheManageineManagerNameame<xacheName

CacheConfiguration - "net.sf.ehcache:type=CacheCoiafiigur, CacheManagecacheManagerNameame=zacheName

CacheStatistics - "net.sf.ehcache:type=CacheStatiSacheManagecacheManagerNameame=<xacheName

9.6 The Management Service

TheManagenent Ser vi ce class is the API entry point.

50

netsf.ehcache. event

CacheManagerEventiistener
i
i
]
i
netsf.ehcache.management
i
i

javax.management
ManagementService

MBeanServer =
| + dispose() : void

| + getStatus() : Status
| + init) < void
| + notifyCacheAdded(String) : void
CacheManager | + notifyCacheRemoved(String) : void
1 | + registerMBeans(CacheManager, MBeanServer, boolean, boolean, boolean, boolean) : void

net.sfehcache

Stams =

generated by yDoc

ManagementService

There is only one methot¥anagenent Ser vi ce. r egi st er MBeans which is used to initiate JMX regis-
tration of an ehcache CacheManager’s instrumented MB&drevanagenent Ser vi ce is aCacheManager Event Li st ener
and is therefore notified of any new Caches added or disposkdmlates the MBeanServer appropriately.

Once initiated the MBeans remain registered in the MBeargsemtil the CacheManager shuts down, at
which time the MBeans are deregistered. This behaviourreasiorrect behaviour in application servers
where applications are deployed and undeployed.

*/

This method causes the selected nonitoring options to be be registered

with the provi ded MBeanServer for caches in the given CacheManager.

<p/ >

Wil e registering the CacheManager enables traversal to all of the other itens,

this requires progranmatic traversal. The other options allow entry points closer

to an itemof interest and are nore accessible from JMX nmanagenent tools Iike JConsole.
Mor eover CacheManager and Cache are not serializable, so renbte nonitoring is not possible
or Cache, while CacheStatistics and CacheConfiguration are. Finally CacheManager and Cache
managenent operations to be perfornmed.

<p/ >

Once nmonitoring i s enabled caches will automatically added and renoved fromthe MBeanServe
as they are added and di sposed of fromthe CacheManager. When the CacheManager itself shut
all registered MBeans will be unregistered.

@ar am cacheManager the CacheManager to listen to

@ar am nBeanServer the MBeanServer to register MBeans to

@ar am regi st er CacheManager Whether to register the CacheManager MBean

@ar am regi st er Caches Whether to register the Cache MBeans

@ar am r egi st er CacheConfi gurati ons Wether to register the CacheConfigurati on MBeans
@aram regi sterCacheStatistics Wiether to register the CacheStatistics MBeans

public static void registerMeans(

net . sf. ehcache. CacheManager cacheManager,

MBeanSer ver nBeanServer,

bool ean regi st er CacheManager,

bool ean regi st erCaches,

bool ean regi st erCacheConfi gurations,

bool ean regi sterCacheStatistics) throws CacheException {

51

9.7 JConsole Example

This example shows how to register CacheStatistics in th€lJplatform MBeanServer, which works
with the JConsole management agent.

CacheManager nanager = new CacheManager () ;
MBeanServer nBeanServer = Managenent Factory. get Pl at f or mvBeanServer () ;
Managenent Servi ce. r egi st er MBeans(manager, nmBeanServer, false, false, false, true);

CacheStatistics MBeans are then registered.

506 J25E 5.0 Monitoring & Management Console: 3075@localhost
Connection
{ Summary ~ Memory = Threads = Classes = MBeans VM }
3] Tree — ! Awributes Operations — b
¥ | JMimplementation
5= B i i . Name ~Value
s : AssociatedCacheName sampleCachel
P | java.util.logging CacheHits 1
¥ | netsf.ehcache CacheMisses o]
¥ |7 CacheStatistics InMemoryHits 1
¥ (7 netsf.ehcache.CacheManager@881cb3 OpjectCount 1
@ CachedLogin gn?ls[kH:s 2
% FooterPageCache b

2 StatisticsAccuracyDescription Best Effort
@@ SimplePageCachingFilter -

¥ SimplePageCachingFilterwithBlankPageProblem

@ SimplePageFragmentCachingFilter

@ netsf.ehcache._consiructs.asynchronous.MessageCache

@@ persistentLongExpirylntervalCache

@ sampleCachel

@@ sampleCache2

@ sampleCacheNoldle

@@ sampleCacheNotEternalButNoldleOrExpiry -

@@ sampleldlingExpiringCache (_Refresh)

CacheStatistics MBeans in JConsole

52

Chapter 10

Class loading and Class Loaders

Class loading within the plethora of environments ehcaelmebe running is a somewhat vexed issue.
Since ehcache-1.2 all classloading is done in a standardnaaye utility class:Cl assLoader Utii | .

10.1 Plugin class loading

Ehcache allows plugins for events and distribution. Thesdcaded and created as follows:

| *x
* Creates a new class instance. Logs errors along the way. C asses are | oaded using the
* ehcache standard cl assl oader.
*
* @aramclassNane a fully qualified class name
* @eturn null if the instance cannot be | oaded
*/
public static Object createNew nstance(String classNane) throws CacheException {
Class clazz;
Cbj ect newl nst ance;
try {
clazz = O ass. forNanme(cl assNane, true, get StandardCd assLoader());
} catch (d assNot FoundException e) {
/1try fall back
try {
clazz = d ass.forNanme(cl assNane, true, getFall backC assLoader());
} catch (O assNot FoundException ex) {
t hrow new CacheException("Unable to load class " + classNane +
Initial cause was " + e.get Message(), e€);

}

try {
newl nst ance = cl azz. new nstance();

} catch (111 egal AccessException e) {
t hrow new CacheException("Unable to load class " + classNane +
Initial cause was " + e.getMessage(), e);
} catch (I nstantiationException e) {
t hrow new CacheException("Unable to load class " + classNane +
Initial cause was " + e.getMessage(), e);

}

return new nstance;

53

}

| **
* Gets the <code>Cl assLoader </ code> that all classes in ehcache, and extensions, should
* use for classloading. All CassLoading in ehcache should use this one. This is the only
* thing that seems to work for all of the class loading situations found in the wld.
* @eturn the thread context class | oader.
* [
public static O assLoader getStandardd assLoader () {
return Thread. current Thread() . get Cont ext Cl assLoader () ;

}

| **
* CGets a fall back <code>Cl assLoader </ code> that all classes in ehcache, and extensions,
* shoul d use for classloading. This is used if the context class | oader does not work.
* @eturn the <code>Cl assLoaderUtil . cl ass. get d assLoader(); </ code>
*/
public static O assLoader getFall backd assLoader () {
return ClassLoaderUtil.class. getd assLoader();

}

If this does not work for some reason a CacheException iswhmeith a detailed error message.

10.2 Loading of ehcache.xml resources
If the configuration is otherwise unspecified, ehcache Idoka configuration in the following order:

e Thread.currentThread().getContextClassLoader() ggaRrce("/ehcache.xml")
e ConfigurationFactory.class.getResource("/ehcach&xml

e ConfigurationFactory.class.getResource("/ehcacteafaixml”)

Ehcache uses the first configuration found.

Note the use of "/ehcache.xml" which requires that ehcaafide placed at the root of the classpath, i.e.
not in any package.

54

Chapter 11

Performance Considerations

11.1 DiskStore

Ehcache comes with lenor ySt or e and abi skSt ore. TheMenor ySt or e is approximately an order
of magnitude faster than tha skSt or e. The reason is that tha skSt or e incurs the following extra
overhead:

e Serialization of the key and value
e Eviction from theMenor ySt or e using an eviction algorithm

e Reading from disk

Note that writing to disk is not a synchronous performancerbgad because it is handled by a separate
thread.

A Cache should alway have ibmxi nunsi ze attribute set to 1 or higher. A Cache with a maximum size
of 1 has twice the performance of a disk only cache, i.e. onergvthenaxi munSi ze is set to 0. For this
reason a warning will be issued if a Cache is created witlrax® nunti ze.

11.2 Replication
The asynchronous replicator is the highest performancerelére two different effects:

e Because it is asynchronous the caller returns immediately

e The messages are placed in a queue. As the queue is proaassiale messages are sent in one
RMI call, dramatically accelerating replication performea.

55

56

Chapter 12

Cache Decorators

Ehcache 1.2 introduced the Ehcache interface, of which €achn implementation. It is possible and
encouraged to create Ehcache decorators that are backe€Caghe instance, implement Ehcache and
provide extra functionality.

The Decorator pattern is one of the the well known Gang of patterns.

12.1 Creating a Decorator

Cache decorators are created as follows:
Bl ocki ngCache newBl ocki ngCache = new Bl ocki ngCache(cache);

The class must implement Ehcache.

12.2 Accessing the decorated cache

Having created a decorator it is generally useful to put & place where multiple threads may access it.
This can be achieved in multiple ways.

12.2.1 Using CacheManager to access decorated caches

A built-in way is to replace the Cache in CacheManager withdbcorated one. This is achieved as in the
following example:

cacheManager . repl aceCacheW t hDecor at edCache(cache, newBl ocki ngCache);

TheCacheManager r epl aceCacheW t hDecor at edCache method requires that the decorated cache be
built from the underlying cache from the same name.

Note that any overwritten Ehcache methods will take on ndvabi®urs without casting, as per the normal
rules of Java. Casting is only required for new methods tietiecorator introduces.

Any calls to get the cache out of the CacheManager now religrdécorated one.

A word of caution. This method should be called in an appedply synchronized init style method before
multiple threads attempt to use it. All threads must be efeing the same decorated cache. An example
of a suitable init method is found iBachi ngFi | t er:

57

| **

* The cache hol ding the web pages. Ensure that all threads for a given cache name are using
*/

private Bl ocki ngCache bl ocki ngCache;

| **

* |nitialises blockingCache to use

*

* @hrows CacheException The nost |ikely cause is that a cache has not been
* configured in ehcache's configuration file ehcache.xm for the filt
*/
public void dolnit() throws CacheException {
synchroni zed (this.getC ass()) {
if (blockingCache == null) {
final String cacheNane = get CacheNane();
Ehcache cache = get CacheManager (). get Ehcache(cacheNane);
if (!(cache instanceof Bl ockingCache)) {
/ / decorate and substitute
Bl ocki ngCache newBl ocki ngCache = new Bl ocki ngCache(cache);
get CacheManager () . r epl aceCacheW t hDecor at edCache(cache, newBl ocki ngCache);

}
bl ocki ngCache = (Bl ocki ngCache) get CacheManager (). get Ehcache(get CacheNane());

Ehcache bl ocki ngCache = si ngl et onManager . get Ehcache("sanpl eCachel");

The returned cache will exhibit the decorations.

12.3 Built-in Decorators

12.3.1 BlockingCache

A blocking decorator for an Ehcache, backed by a @link Eheach

It allows concurrent read access to elements already indbleec If the element is null, other reads will
block until an element with the same key is put into the cache.

This is useful for constructing read-through or self-p@pinlg caches.
BlockingCache is used b§achi ngFi l ter.

58

net.sf.ehcache

et sf ehcache. construets.locking |
netsf.ehcache | - et sf ehcache. evert |
net.sf.ehcache. constructs.concurrent i net.sf.ehcache. config
) net sf.ehcache

net.sf.ehcache. boorstrap

net.sf.ehcache. extension

generated by yDoc

BlockingCache

12.3.2 SelfPopulatingCache

A selfpopulating decorator for @link Ehcache that createdes on demand.

Clients of the cache simply call it without needing knowledd whether the entry exists in the cache. If
null the entry is created.

The cache is designed to be refreshed. Refreshes operdte badking cache, and do not degrade perfor-
mance of get calls.

59

SelfPopulatingCache extends BlockingCache. Multipledhs attempting to access a null element will

block until the first thread completes. If refresh is beinfiechthe threads do not block - they return the
stale data.

This is very useful for engineering highly scalable systems

net.sfehcache.constructs. blocking

BlockingCache |

s

ret.sf.ehcache.constructs. blocking

netsf.ehcache. constructs.blocking Selfl’upula:ing(.'ache net.sf.ehcache

factory : CacheEntryFactory -1 = Ehcache

CacheEntryFactory =

+ SelfPopulatingCache(Ehcache, CacheEntryFactory)
+ get(Object) : Element
+ refresh() : void

——————— = Element

refreshElement{Element, Ehcache) : void
setThread Name(String, Object) : void

generated by yDoc

SelfPopulatingCache

60

Chapter 13

Cache Configuration

Caches can be configured in ehcache either declarativekyninor by creating them programmatically
and specifying their parameters in the constructor.

While both approaches are fully supported it is generallpadjidea to separate the cache configuration
from runtime use. There are also these benefits:

e |t is easy if you have all of your configuration in one place.cl&s consume memory, and disk
space. They need to be carefully tuned. You can see the ffaat & a configuration file. You could
do this code, but it would not as visible.

e Cache configuration can be changed at deployment time.

e Configuration errors can be checked for at start-up, rattear tausing a runtime error.

This chapter covers XML declarative configuration. See tbdegamples for programmatic configuration.

Ehcache is redistributed by lots of projects. They may or matyprovide a sample ehcache XML config-
uration file. If one is not provided, download ehcache frotp#fehcache.sf.net. It, and the ehcache.xsd is
provided in the distribution.

13.1 ehcache.xsd

Ehcache configuration files must be comply with the ehcaché& Xthema, ehcache.xsd, reproduced be-
low.

<?xm version="1.0" encodi ng="UTF-8"7?>
<xs:schema xm ns: xs="http://ww. w3. org/ 2001/ XM_Scherma" el enent For nDef aul t =" qual i fi ed" >
<xs: el ement name="ehcache" >
<xs: conpl exType>
<XS:sequence>
<xs: el ement ref="diskStore"/>
<xs: el ement m nCccurs="0" maxCccurs="1"
r ef =" cacheManager Event Li st ener Factory"/ >
<xs: el ement m nCccurs="0" maxCccurs="1"
r ef =" cacheManager Peer Pr ovi der Factory"/ >
<xs: el ement mi nQccurs="0" maxCccurs="1"
r ef =" cacheManager Peer Li st ener Factory"/ >
<xs: el ement ref="defaultCache"/>
<xs: el emrent maxQccur s="unbounded" ref="cache"/>

61

</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nane="di skStore">
<xs:conpl exType>
<xs:attribute name="path" use="optional" />
</ xs: conpl exType>
</ xs: el enent >
<xs: el ement nane="cacheManager Event Li st ener Fact ory" >
<xs:conpl exType>
<xs:attribute nane="cl ass" use="required"/>
<xs:attribute nanme="properties" use="optional"/>
</ xs: conpl exType>
</ xs: el enent >
<xs: el emrent nanme="cacheManager Peer Provi der Fact ory" >
<xs:conpl exType>
<xs:attribute nane="cl ass" use="required"/>
<xs:attribute name="properties" use="optional"/>
</ xs: conpl exType>
</ xs: el enent >
<xs: el ement nanme="cacheManager Peer Li st ener Fact ory" >
<xs:conpl exType>
<xs:attribute nane="cl ass" use="required"/>
<xs:attribute name="properties" use="optional"/>
</ xs: conpl exType>
</ xs: el enent >
<xs: el ement nane="def aul t Cache" >
<xs: conpl exType>
<Xs:sequence>
<xs: el ement mi nQccurs="0" maxCccur s="unbounded" ref="cacheEventLi stenerFactory"/>
<xs: el ement m nCccurs="0" maxCccurs="1" ref="bootstrapCacheLoader Factory"/>
</ Xs: sequence>
<xs:attribute name="di skExpi ryThreadl nt erval Seconds" use="optional" type="xs:integer"
<xs:attribute nane="di skPersistent” use="optional" type="xs:bool ean"/>
<xs:attribute nane="eternal" use="required" type="xs:bool ean"/>
<xs:attribute name="maxEl ement sl nMenory" use="requi red" type="xs:integer"/>
<xs:attribute nane="nmenoryStoreEvictionPolicy" use="optional" type="xs:string"/>
<xs:attribute nane="overfl owlToDi sk" use="required" type="xs:bool ean"/>
<xs:attribute name="ti meTol dl eSeconds" use="optional" type="xs:integer"/>
<xs:attribute nane="ti nmeTolLi veSeconds" use="optional" type="xs:integer"/>
<xs:attribute nane="maxEl enment sOnDi sk" use="optional" type="xs:integer"/>
</ xs: conpl exType>
</ xs: el enent >
<xs: el emrent name="cache">
<xs:conpl exType>
<Xs:sequence>
<xs: el ement m nCccurs="0" maxQccur s="unbounded" ref="cacheEventLi stenerFactory"/>
<xs: el ement mi nQccurs="0" maxCccurs="1" ref="bootstrapCacheLoader Factory"/>
</ Xs: sequence>
<xs:attribute nane="di skExpi ryThreadl nt erval Seconds"” use="optional" type="xs:integer"
<xs:attribute name="di skPersistent" use="optional" type="xs:bool ean"/>
<xs:attribute nane="eternal" use="required" type="xs:bool ean"/>
<xs:attribute nane="maxEl enment sl nMenory" use="required" type="xs:integer"/>
<xs:attribute name="menoryStoreEvi ctionPolicy" use="optional" type="xs:string"/>
<xs:attribute nane="nanme" use="required" type="xs:string"/>
<xs:attribute name="overfl owToD sk" use="required" type="xs:bool ean"/>
<xs:attribute name="ti meTol dl eSeconds" use="optional" type="xs:integer"/>
<xs:attribute nane="tinmeTolLi veSeconds" use="optional" type="xs:integer"/>

62

<xs:attribute name="maxEl enment sOnDi sk" use="optional " type="xs:integer"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el emrent nanme="cacheEventLi st ener Fact ory" >
<xs: conpl exType>
<xs:attribute nanme="cl ass" use="required"/>
<xs:attribute nanme="properties" use="optional"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nane="boot strapCachelLoader Fact ory">
<xs: conpl exType>
<xs:attribute nanme="cl ass" use="required"/>
<xs:attribute nanme="properties" use="optional"/>
</ xs: conpl exType>
</ xs: el ement >
</ xs: schema>

13.2 ehcache-failsafe.xml

If the CacheManager default constructor or factory mettodalled, ehcache looks for a file called
ehcache.xml in the top level of the classpath. Failing thiddks for ehcache-failsafe.xml in the class-
path. ehcache-failsafe.xml is packaged in the ehcachagbstaould always be found.

ehcache-failsafe.xml provides an extremely simple defaurifiguration to enable users to get started be-
fore they create their own ehcache.xml.

If it used ehcache will emit a warning, reminding the usergbup a proper configuration.

The meaning of the elments and attributes are explainedarsdttion on ehcache.xml. -ehcache
diskStore path="java.io.tmpdir"/ defaultCache maxElens¢tnMemory="10000" eternal="false" timeTol-
dleSeconds="120" timeToLiveSeconds="120" overflowTkBisue" maxElementsOnDisk="10000000"
diskPersistent="false" diskExpiryThreadIntervalSedsn"120" memoryStoreEvictionPolicy="LRU"/ /ehcache

13.3 ehcache.xml and other configuration files

If the CacheManager default constructor or factory metteodalled, ehcache looks for a file called
ehcache.xmlin the top level of the classpath.

The non-default creation methods allow a configuration €ilbe specified which can be called anything.

One XML configuration is required for each CacheManagerithateated. It is an error to use the same
configuration, because things like directory paths anédist ports will conflict. Ehcache will attempt
to resolve conflicts and will emit a warning reminding the ruseconfigure a separate configuration for
multiple CacheManagers with conflicting settings.

The sample ehcache.xml, which is included in the ehcachetdison is shown below:

<ehcache xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance" xsi : noNanmespaceSchenalLocati on="ehc

<l--
Di skStore configuration

Sets the path to the directory where cache files are created

If the path is a Java System Property it is replaced by its value in the

63

runni ng VM

The following properties are transl ated:

* user.hone - User’'s hone directory

* user.dir - User’s current working directory
* java.io.tnpdir - Default tenp file path

Subdirectories can be specified belowthe property e.g. java.io.tnpdir/one
-->

<di skStore path="java.io.tnpdir"/>

<l--
Speci fi es a CacheManager Event Li st ener Factory, be used to create a CacheManager Peer Provi der,
which is notified when Caches are added or renpved fromthe CacheManager.

The attributes of CacheManager EventLi stenerFactory are:
* class - a fully qualified factory class nanme
* properties - comma separated properties having nmeaning only to the factory.

Sets the fully qualified class nane to be regi stered as the CacheManager event |istener.

The events incl ude:
* addi ng a Cache
* renoving a Cache

Cal | backs to |istener nmethods are synchronous and unsynchronized. It is the responsibility
of the inplenenter to safely handle the potential perfornmance and thread safety issues
dependi ng on what their listener is doing.

If no class is specified, no listener is created. There is no default.
-->

<cacheManager Event Li st ener Factory cl ass=

properties=""/>

<l--
(Enabl e for distributed operation)

Speci fi es a CacheManager Peer Provi der Factory which will be used to create a
CacheManager Peer Provi der, which di scovers other CacheManagers in the cluster.

The attributes of cacheManager Peer Provi der Factory are:
* class - a fully qualified factory class nane
* properties - comma separated properties having nmeaning only to the factory.

Ehcache comes with a built-in RM-based distribution systemw th two nmeans of discovery of

CacheManager peers participating in the cluster:

* automatic, using a multicast group. This one automatically discovers peers and detects
changes such as peers entering and | eaving the group

* manual , using manual rm URL configuration. A hardcoded |ist of peers is provided at
configuration tine.

Configuring Automatic Di scovery:
Aut omatic di scovery is configured as per the foll owi ng exanpl e:
<cacheManager Peer Provi der Fact ory
cl ass="net. sf. ehcache. di stri buti on. RM CacheManager Peer Pr ovi der Fact ory"
properti es="peerDi scovery=automatic, nulticastG oupAddress=230.0.0. 1,
mul ti cast G oupPort =4446, tinmeTolive=32"/>

64

Valid properties are:
* peerDi scovery (mandatory) - specify "automatic"
* mul ti cast G oupAddress (mandatory) - specify a valid multicast group address

* nulticastGoupPort (mandatory) - specify a dedicated port for the nulticast

* tinmeToLive - specify a value between 0 and 255 which determ nes how far the packets will

traffic

By convent
0 - the
1 - the
32 - the
64 - the
128 - the

ion,

samne
same
samne
samne
samne

the restrictions are
host

subnet

site

regi on

conti nent

255 - unrestricted

Configuring Manual Discovery:
Manual discovery is configured as per the follow ng exanpl e:
<cacheManager Peer Provi der Factory cl ass=

"net. sf.ehcache. di stri buti on. RM CacheManager Peer Provi der Fact or
properti es="peer D scovery=nanual ,

rm Url s=//server1: 40000/ sanpl eCachel|//server 2: 40000/ sanpl eCachel

| //serverl: 40000/ sanpl eCache2|// server2: 40000/ sanpl eCache2"/ >

Valid properties are:
* peerDi scovery (mandatory) - specify "manual "
* rm Uls (mandatory) - specify a pipe separated list of rmUls, in the form

The hostnane is the hostnanme of the renpte CacheManager peer. The port is the listening

/I host nane: port

port of the RM CacheManager PeerLi stener of the renpote CacheManager peer.

-->

<cacheManager Peer Pr ovi der Fact ory
cl ass="net. sf.ehcache. di stri buti on. RM CacheManager Peer Pr ovi der Fact ory"
properti es="peer D scovery=autonatic,

<l--

mul ti cast G oupAddr ess=230.0.0. 1,
mul ti cast G oupPort=4446, tineToLive=1"/>

(Enabl e for distributed operation)

Speci fi es a CacheManager PeerLi stenerFactory which will be used to create a
CacheManager Peer Li st ener, which
listens for nmessages from cache replicators participating in the cluster.

The attributes of cacheManager PeerLi st ener Factory are:
class - a fully qualified factory class nane
comra separated properties having neaning only to the factory.

properties -

Ehcache cones with a built-in RM-based distribution system The |istener conponent
RM CacheManager Peer Li st ener which is configured using
RM CacheManager Peer Li stener Factory. It is configured as per the foll owi ng exanpl e:

<cacheManager Peer Li st ener Fact ory
cl ass="net. sf.ehcache. di stri buti on. RM CacheManager Peer Li st ener Fact ory"
properties="host Name=ful | y_qual i fi ed_host name_or _i p,

port=40001,
socket Ti nreout M | | i s=120000"/ >

65

heart beat

y"

is

pr

Al'l properties are optional. They are:

* host Name - the hostName of the host the listener is running on. Specify
where the host is multihomed and you want to control the interface over which cluster
nmessages are received. Defaults to the host nane of the default interface if not

speci fi ed.
* port - the port the listener listens on. This defaults to a free port if not specified.
* socket TimeoutMIlis - the nunber of nms client sockets will stay open when sendi ng

nessages to the listener. This should be | ong enough for the slowest nessage.
If not specified it defaults 120000ns.

-->
<cacheManager Peer Li st ener Fact ory
cl ass="net. sf.ehcache. di stributi on. RM CacheManager Peer Li st ener Fact ory"/ >

<l -- Cache configuration.
The following attributes are required.

name:
Sets the nane of the cache. This is used to identify the cache. It nust be unique.

maxEl enent sl nMenory:
Sets the maxi mum nunber of objects that will be created in nmenory

maxEl ement sOnDi sk:
Sets the maxi num nunber of objects that will be nmaintained in the D skStore
The default value is zero, neaning unlimted.

eternal:
Sets whether elenents are eternal. If eternal, tineouts are ignored and the
el enent is never expired.

over f| owToDi sk:
Sets whet her el enments can overflow to di sk when the nenory store
has reached the maxInMenory limt.

The following attributes are optional.

ti meTol dl eSeconds:

Sets the time to idle for an elenent before it expires.

i.e. The maxi mum anmount of tinme between accesses before an el ement expires
Is only used if the element is not eternal.

Optional attribute. A value of O nmeans that an Element can idle for infinity.
The default value is O.

ti meTolLi veSeconds:

Sets the tinme to live for an elenent before it expires.

i.e. The maximumtine between creation tine and when an el ement expires.

Is only used if the elenent is not eternal.

Optional attribute. A value of 0 neans that and El ement can live for infinity.
The default value is O.

di skPersi stent:

Whet her the disk store persists between restarts of the Virtual Machine.
The default value is fal se.

66

di skExpi ryThr eadl nt er val Seconds:
The number of seconds between runs of the disk expiry thread. The default val ue
is 120 seconds.

menor ySt or eEvi cti onPol i cy:

Pol i cy woul d be enforced upon reaching the naxEl emrentsinMenory limt. Default
policy is Least Recently Used (specified as LRU). Other policies available -
First In First Qut (specified as FIFO and Less Frequently Used

(specified as LFU)

Cache el enments can al so contain sub elenments which take the sane format of a factory class
and properties. Defined sub-elenments are:

* cacheEvent Li stenerFactory - Enables registration of |isteners for cache events, such as
put, renove, update, and expire.

* boot st rapCachelLoader Factory - Specifies a BootstrapCacheLoader, which is called by a
cache on initialisation to prepopul ate itself.

Each cache that will be distributed needs to set a cache event |istener which replicates
messages to the other CacheManager peers. For the built-in RM inplenentation this is done
by addi ng a cacheEvent Li stenerFactory el enent of type RM CacheRepli catorFactory to each
distributed cache’s configuration as per the follow ng exanpl e:

<cacheEvent Li stener Factory cl ass="net. sf. ehcache. di stri buti on. RM CacheRepl i cat or Fact ory"
properti es="replicateAsynchronousl y=true,
repli cat ePut s=true,
replicat eUpdat es=true,
repl i cat eUpdat esVi aCopy=t r ue,
replicat eRenoval s=true "/>

The RM CacheReplicatorFactory recogni ses the follow ng properties:

* replicatePuts=true|fal se - whether new el enents placed in a cache are
replicated to others. Defaults to true.

* replicateUpdates=true|fal se - whether new el enents which override an
el enent already existing with the sane key are replicated. Defaults to true.

* replicateRenoval s=true - whether elenment renovals are replicated. Defaults to true.

* replicateAsynchronousl y=true | false - whether replications are
asynchronous (true) or synchronous (false). Defaults to true.

* replicateUpdatesVi aCopy=true | false - whether the new el enments are
copied to other caches (true), or whether a renpve nessage is sent. Defaults to true.

* asynchronousReplicationlnterval M11is=<nunber of nilliseconds> - The asynchronous
replicator runs at a set interval of mlliseconds. The default is 1000. The m ni mum
is 10. This property is only applicable if replicateAsynchronously=true

The RM Boot st rapCachelLoader bootstraps caches in clusters where RM CacheReplicators are
used. It is configured as per the follow ng exanple:

<boot st rapCacheLoader Fact ory

cl ass="net.sf.ehcache. di stributi on. RM Boot st rapCachelLoader Fact ory"
properties="boot st rapAsynchronousl y=true, nmaxi numChunkSi zeByt es=5000000"/ >

67

The RM Boot st rapCachelLoader Factory recogni ses the foll owi ng optional properties:

*

boot st rapAsynchronousl y=true| fal se - whether the bootstrap happens in the background
after the cache has started. If false, bootstrapping nust conplete before the cache is
made avail able. The default value is true.

maxi munChunkSi zeByt es=<i nt eger > - Caches can potentially be very large, larger than the
menory limts of the VM This property allows the bootstraper to fetched el enents in
chunks. The default chunk size is 5000000 (5MB).

-->

<l--
Mandat ory Default Cache configuration. These settings will be applied to caches
created programmtically using CacheManager.add(String cacheNane).

The default Cache has an inplicit nanme "default” which is a reserved cache nane.
-->
<def aul t Cache

mexEl enent sl nMenor y="10000"

eternal ="fal se"

ti meTol dl eSeconds="120"

ti meTolLi veSeconds="120"

over fl owToDi sk="true"

maxEl enent sOnDi sk="10000000"

di skPersi stent ="fal se"

di skExpi ryThr eadl nt er val Seconds="120"
menor ySt or eEvi cti onPol i cy="LRU"

/>
<l--
Sanpl e caches. Followi ng are sone exanpl e caches. Renove these before use.
-->
<l--
Sanpl e cache naned sanpl eCachel
Thi s cache contains a maxi mumin menory of 10000 el enents, and will expire
an element if it is idle for nore than 5 mnutes and lives for nore than
10 m nutes.
If there are nore than 10000 elenents it will overflowto the
di sk cache, which in this configuration will go to wherever java.io.tnp is
defined on your system On a standard Linux systemthis will be /tnp"
-->

<cache nane="sanpl eCachel"

mexEl enent sl nMenor y="10000"

maxEl enent sOnDi sk="1000"

eternal ="fal se"

over f | owToDi sk="true"

ti meTol dl eSeconds="300"

ti meTolLi veSeconds="600"

menor ySt or eEvi cti onPol i cy="LFU"
/>

<l--

Sanpl e cache naned sanpl eCache?2
Thi s cache has a maxi mum of 1000 el enments in nenory. There is no overflow to disk, so 1000

68

is also the nmaxi mum cache size. Note that when a cache is eternal
timeToldl e are not used and do not need to be specified.

-->

<cache nane="sanpl eCache2"
mexEl ement s| nMeror y="1000"
eternal ="true"
overfl owToDi sk="f al se"
menor ySt or eEvi cti onPol i cy="FI FO'
/>

<l--

ti meTolLi ve and

Sanpl e cache naned sanpl eCache3. This cache overflows to disk. The disk store is
persi stent between cache and VMrestarts. The disk expiry thread interval is set to 10

m nutes, overriding the default of 2 mnutes.
-->
<cache name="sanpl eCache3"
maxEl enent sl nMenor y="500"
eternal ="fal se"
over fl owToDi sk="true"
ti meTol dl eSeconds="300"
ti meTolLi veSeconds="600"
di skPer si stent ="t rue"
di skExpi ryThr eadl nt er val Seconds="1"
menor ySt or eEvi cti onPol i cy="LFU"
/>

<l--

Sanpl e distributed cache nanmed sanpl eDi stri but edCachel

This cache replicates using defaults.

It al so bootstraps fromthe cluster, using default properties.

-->

<cache name="sanpl ebi stri but edCachel"
mexEl enent sl nMenory="10"
eternal ="fal se"
ti meTol dl eSeconds="100"
ti meTolLi veSeconds="100"
overfl owToDi sk="f al se" >

<cacheEvent Li st ener Factory

cl ass="net. sf.ehcache. di stri buti on. RM CacheRepli cat or Factory"/>

<boot st rapCachelLoader Fact ory

cl ass="net. sf.ehcache. di stri buti on. RM Boot st rapCachelLoader Factory"/ >

</ cache>

<l--

Sanpl e distributed cache naned sanpl eDi stri but edCache2

Thi s cache replicates using specific properties.

It only replicates updates and does so synchronously via copy

-->

<cache name="sanpl ebi stri but edCache2"
mexEl enent sl nMenor y="10"
eternal ="fal se"
ti meTol dl eSeconds="100"
ti meTolLi veSeconds="100"
overfl owToDi sk="f al se" >

<cacheEvent Li st ener Factory

69

cl ass="net.sf.ehcache. di stri buti on. RM CacheRepl i cat or Fact ory"
properti es="replicateAsynchronousl y=fal se, replicatePuts=fal se
repli cat eUpdat es=true, replicateUpdatesVi aCopy=true
replicat eRenoval s=f al se"/ >
</ cache>

<l--
Sanpl e distributed cache named sanpl ebi stri but edCache3
Thi s cache replicates using defaults except that the asynchronous replication
interval is set to 200ns.
-->
<cache nane="sanpl eDi stri but edCache3"
maxEl enent s| nMenor y="10"
eternal ="fal se"
ti meTol dl eSeconds="100"
ti meTolLi veSeconds="100"
overfl owToDi sk="f al se">
<cacheEvent Li st ener Fact ory
cl ass="net. sf. ehcache. di stri buti on. RM CacheRepl i cat or Fact ory"
properti es="asynchronousReplicationlnterval MIIlis=200"/>
</ cache>

</ ehcache>

70

Chapter 14

Storage Options

Ehcache has two stores:

e a MemoryStore and

e a DiskStore

14.1 Memory Store

TheMenor ySt or e is always enabled. It is not directly manipulated, but is mponent of every cache.

e Suitable Element Types
All Elements are suitable for placement in the MemoryStore.
It has the following characteristics:

— Safety
Thread safe for use by multiple concurrent threads.
Tested for memory leaks. See MemoryCacheTest#testMereakylT his test passes for ehcache
but exploits a number of memory leaks in JCS. JCS will give and@Memory error with a
default 64M in 10 seconds.

— Backed By JDK
LinkedHashMap Th&enor y St or e for JDK1.4 and JDK 5 it is backed by an extended Linked-
HashMap. This provides a combined linked list and a hash raag,is ideally suited for
caching. Using this standard Java class simplifies the imgie¢ation of the memory cache. It
directly supports obtaining the least recently used elémen

For JDK1.2 and JDK1.3, the LRUMap from Apache Commons is udegrovides similar
features to LinkedHashMap.

The implementation is determined dynamically at runtimenkedHashMap is preferred if
found in the classpath.

— Fast
The memory store, being all in memory, is the fastest cacoyign.

14.1.1 Memory Use, Spooling and Expiry Strategy

All caches specify their maximum in-memory size, in termsh&f number of elements, at configuration
time.

71

When an element is added to a cache and it goes beyond its mraximemory size, an existing element
is either deleted, if overflowToDisk is false, or evaluated $pooling to disk, if overflowToDisk is true.

In the latter case, a check for expiry is carried out. If it xpieed it is deleted; if not it is spooled. The
eviction of an item from the memory store is based on the Mg®tmreEvictionPolicy setting specified in
the configuration file.

memoryStoreEvictionPolicy is an optional attribute in &tlve.xml introduced since 1.2. Legal values are
LRU (default), LFU and FIFO.

LRU, LFU and FIFO eviction policies are supported. LRU is dledault, consistent with all earlier releases
of ehcache.

e Least Recently Used (LRU) - Default
The eldest element, is the Least Recently Used (LRU). Theutal timestamp is updated when an
element is put into the cache or an element is retrieved frentache with a get call.

e Less Frequently Used (LFU)
For each get call on the element the number of hits is updM#ten a put call is made for a new
element (and assuming that the max limit is reached for theong store) the element with least
number of hits, the Less Frequently Used element, is evicted

e First In First Out (FIFO)

Elements are evicted in the same order as they come in. Whencalpis made for a new element
(and assuming that the max limit is reached for the memomng}tbe element that was placed first
(First-In) in the store is the candidate for eviction (FiGut).

For all the eviction policies there are algot Qui et andget Qui et methods which do not update
the last used timestamp.

When there is get or aget Qui et on an element, it is checked for expiry. If expired, it is remo
and null is returned.

Note that at any point in time there will usually be some exgielements in the cache. Memory
sizing of an application must always take into account thgimam size of each cache. Thereis a
convenience method which can provide an estimate of thersizgtes of thevenor ySt ore. See
calculatelnMemorySize(). It returns the serialized siteéhe cache. Do not use this method in
production. Itis very slow. It is only meant to provide a rbuggstimate.

The alternative would have been to have an expiry thread i$ta trade-off between lower memory
use and short locking periods and cpu utilisation. The daesdn favour of the latter. For those
concerned with memory use, simply reduceh@El enent sl nMenory.

14.2 DiskStore

TheDi skSt or e provides a disk spooling facility.

e Suitable Element Types

Only El enment s which areSeri al i zabl e can be placed in the DiskStore. Any non serializable
El ement s which attempt to overflow to tHa skSt or e will be removed instead, and a WARNING
level log message emitted.

It has the following characteristics:

e Storage Files
The disk store creates one file per cache called "cache nataé.d
If the Di skSt or e is configured to be persistent, edthe namendex" file is also created.

72

Files are created in the directory specified by the diskStondiguration element. The default con-
figuration is "java.io.tmpdir”, which causes files to be tegidn the system’s temporary directory.

Following is a list of Java system properties which are sujgplas values for diskStore:

— user.home - User’s home directory
— user.dir - User’s current working directory
— java.io.tmpdir - Default temp file path

Apart from these, any directory can be specified using syapgpropriate to the operating system.

e.g. for Unix "/home/application/cache”.

Expiry Strategy

One thread per cache is used to remove expired elementsplibeal attributeli skExpi r yThr eadl nt er val Seconds
sets the interval between runs of the expiry thread. Warrgetfing this to a low value is not rec-

ommended. It can cause excesdlvaekSt or e locking and high cpu utilisation. The default value

is 120 seconds.

Eviction Strategy

If the maxEl ement sOnDi sk attribute is set, elements will be evicted from thiesk St or e when it
exceeds that amount. The LFU algorithm is used for thesdieng It is not configurable to use
another algorithm.

Serializable Objects

Only Serializable objects can be stored ibi &k St or e. A NotSerializableException will be thrown
if the object is not serializable.

Safety

Di skSt or es are thread safe.

Persistence

Di skSt or e persistence is controlled by the diskPersistent configuralement. If false or omitted,
Di skSt or es will not persist betwee@acheManager restarts. The data file for each cache will be
deleted, if it exists, both on shutdown and startup. No data fa previous instandgacheManager

is available.

If diskPersistent is true, the data file, and an index file saned. Cache Elements are available to a
newCacheManager . ThisCacheManager may be in the same VM instance, or a new one.

The data file is updated continuously during operation ofdtsk Store. New elements are spooled
to disk, and deleted when expired. The index file is only wenitivhen dispose is called on the
Di skSt ore. This happens when the CacheManager is shut down, a Caclsp@sédd, or the VM

is being shut down. It is recommended that the CacheMandged®vn() method be used. See
Virtual Machine Shutdown Considerations for guidance ow km safely shut the Virtual Machine
down.

When abi skSt or e is persisted, the following steps take place:

— Any non-expired Elements of thenor y St or e are flushed to the DiskStore
— Elements awaiting spooling are spooled to the data file
— The free list and element list are serialized to the index file

On startup the following steps take place:

— An attempt is made to read the index file. If it does not existazmot be read successfully, due
to disk corruption, upgrade of ehcache, change in JDK versio, then the data file is deleted
and theDi skSt or e starts with no Elements in it.

73

— If the index file is read successfully, the free list and eletfist are loaded into memory. Once
this is done, the index file contents are removed. This wdheife is a dirty shutdown, when
restarted, ehcache will delete the dirt index and data files.

— TheDi skSt or e starts. All data is available.
— The expiry thread starts. It will delete Elements which haxgired.

These actions favour safety over persistence. Ehcacheaishee cnot a database. If a file gets dirty,
all data is deleted. Once started there is further checlongdrruption. When a get is done, if
the Element cannot be successfully derserialized, it istdd] and null is returned. These measures
prevent corrupt and inconsistent data being returned.

— Fragmentation
Expiring an element frees its space on the file. This spacaikahle for reuse by new elements.
The element is also removed from the in-memory index of efeme

— Speed
Spool requests are placed in-memory and then asynchrgnetitien to disk. There is one
thread per cache. An in-memory index of elements on disk imtaiaed to quickly resolve
whether a key exists on disk, and if so to seek it and read it.

— Serialization

Writes to and from the disk use ObjectinputStream and tha Sesialization mechanism. This

is not required for the MemoryStore. As a result the Disk&toein never be as fast as the
MemoryStore.

Serialization speed is affected by the size of the objedtggbeerialized and their type. It has

been found in the ElementTest test that:

x The serialization time for a Java object being a large Maptdh® arrays was 126ms,
where the a serialized size was 349,225 bytes.

* The serialization time for a byte[] was 7ms, where the segdlsize was 310,232 bytes

Byte arrays are 20 times faster to serialize. Make use of agri@ys to increase DiskStore
performance.

— RAMFS

One option to speed up disk stores is to use a RAM file systemsddre operating systems
there are a plethora of file systems to choose from. For exgntipé Disk Cache has been
successfully used with Linux’ RAMFS file system. This file ®m simply consists of memory.
Linux presents it as a file system. The Disk Cache treats dt éiknormal disk - it is just
way faster. With this type of file system, object serialiaatbecomes the limiting factor to
performance.

74

Chapter 15

Shutting Down Ehcache

15.1 The shutdown hook

Ehcache CacheManager can optionally register a shutdoak ho
To do so, set the system propenigt . sf . ehcache. enabl eShut downHook=t r ue.

This will shutdown the CacheManager when it detects theuslirMachine shutting down and it is not
already shut down.

15.2 When to use the shutdown hook

Use the shutdown hook where:

e you need guaranteed orderly shutdown, when for examplg gs&rsistent disk stores, or distributed
caching.

e CacheManager is not already being shutdown by a framewarlay® using or by your application.

15.3 What the shutdown hook does

The shutdown hook is on CacheManager. It simply calls thédstwn method.
The sequence of eventsiis:

o call dispose for each registered CacheManager eventdisten

o call dispose for each Cache.
Each Cache will:

— shutdown the MemoryStore. The MemoryStore will flush to thekStore

— shutdown the DiskStore. If the DiskStore is persistent,iit write the entries and index to
disk.

— shutdown each registered CacheEventListener
— set the Cache status to shutdown, preventing any furtheatpes on it.

¢ set the CacheManager status to shutdown, preventing atmgfuoperations on it

75

15.4 When a shutdown hook will run, and when it will not

The shutdown hook runs when:

e a program exists normally. e.g. System.exit() is calledherast non-daemon thread exits
e the Virtual Machine is terminated. e.g. CTRL-C. This cop@sds toki | | - SI GTERM pi d or
kill -15 pidon Unix systems.

The shutdown hook will not run when:

o the Virtual Machine aborts

e A SIGKILL signal is sent to the Virtual Machine process on ¥systems. e.gki | | -SI GKI LL
pidorkill -9 pid

e A Ter ni nat ePr ocess call is sent to the process on Windows systems.

15.5 If ehcache is shutdown dirty

If ehcache is shutdown dirty, either because no applicatmts down ehcache and there is not shutdown
hook, or there is a shutdown hook but the JVM terminated ith suway that the shutdown hooks were not

run then any persistent disk stores will be corrupted. Thiéybe deleted, with a log message, on the next

startup.

76

Chapter 16

Hibernate Caching

Note these instructions are for Hibernate 3.1. Go to Guid&éosion 1.1 for older instructions on how to
use Hibernate 2.1.

Ehcache easily integrates with the Hibernate Object/Relal persistence and query service. Gavin King,
the maintainer of Hibernate, is also a committer to the ehegroject. This ensures ehcache will remain
a first class cache for Hibernate.

Since Hibernate 2.1, ehcache has been the default cachdipfennate.

The net.sf.ehcache.hibernate package provides clagsgsdting ehcache with Hibernate. Hibernate is an
application of ehcache. Ehcache is also widely used a geperpose Java cache.

To use ehcache with Hibernate do the following:

e Ensure ehcache is enabled in the Hibernate configuration.

Add the cache element to the Hibernate mapping file, eithaualdy, or via hibernatedoclet for each
Domain Object you wish to cache.

Add the cache element to the Hibernate mapping file, eithaualdy, or via hibernatedoclet for each
Domain Object collection you wish to cache.

Add the cache element to the Hibernate mapping file, eithaualdy, or via hibernatedoclet for each
Hibernate query you wish to cache.

Create a cache element in ehcache.xml

Each of these steps is illustrated using a fictional CountrgnBin Object.

For more about cache configuration in Hibernate see the Rberdocumentation. Parts of this chapter
are drawn from Hibernate documentation and source code eorsm

They are reproduced here for convenience in using ehcache.

16.1 Setting ehcache as the cache provider

16.1.1 Using the ehcache provider from the ehcache project

To ensure ehcache is enabled, verify that the hibernateeqarovider_class property is set to net.sf.ehcacherbe EhCachePrec
in the Hibernate configuration file; either hibernate.cfigl.gr hibernate.properties. The format given is for

hibernate.cfg.xml.

77

If you are using hibernate-3 or hibernate-3.1 you will needise the ehcache provider to use multiple
SessionFactories/CacheManagers in a single VM. That geowhould be integrated into the Hibernate-
3.2 version.1

hi ber nat e. cache. provi der _cl ass=net. sf. ehcache. hi ber nat e. EhCachePr ovi der
net . sf. ehcache. confi gur ati onResour ceNarme=/ nane_of _confi gurati on_resource

The meaning of the properties is as follows:
hibernate.cache.provider_class - The fully qualifiedslz@me of the cache provider
net.sf.ehcache.configurationResourceName - The nameouifi@geration resource to use.

The resource is searched for in the root of the classpatb.niééded to support multiple CacheManagers
in the same VM. It tells Hibernate which configuration to uaa.example might be "ehcache-2.xml".

16.1.2 Using the ehcache provider from the Hibernate projec

To use the one from the Hibernate project:

hi ber nat e. cache. provi der _cl ass=or g. hi ber nat e. cache. EnCachePr ovi der
hi ber nat e. cache. provi der_configuration_fil e_resource_pat h=/ name_of _confi gurati on_resource

16.1.3 Programmatic setting of the Hibernate Cache Provide

The provider can also be set programmatically in HibernsiteguConfiguration.setProperty("hibernate.cache.geviclass",
"net.sf.ehcache.hibernate.EhCacheProvider").

16.2 Hibernate Mapping Files

In Hibernate, each domain object requires a mapping file.

For example to enable cache entries for the domain objecismonecompany.someproject.domain.Country
there would be a mapping file something like the following:

<hi ber nat e- mappi ng>

<cl ass
nane="com someconpany. somepr oj ect . dormai n. Country"
tabl e="ut_Countries"
dynami c- updat e="f al se"
dynam c-i nsert="f al se"
>

</ hi ber nat e- mappi ng>

To enable caching, add the following element.

78

<cache usage="read-wite|nonstrict-read-wite|read-only" />

e.g.

<cache usage="read-wite" />

16.2.1 read-write

Caches data that is sometimes updated while maintainingehgantics of "read committed" isolation
level. If the database is set to "repeatable read", thisurwency strategy almost maintains the semantics.
Repeatable read isolation is compromised in the case oLicmrt writes.

This is an "asynchronous" concurrency strategy.

16.2.2 nonstrict-read-write

Caches data that is sometimes updated without ever lockingdche. If concurrent access to an item is
possible, this concurrency strategy makes no guarante¢hthétem returned from the cache is the latest
version available in the database. Configure your cacheotitreccordingly! This is an "asynchronous”
concurrency strategy.

This policy is the fastest. It does not use synchronized austhvhereas read-write and read-only both do.

16.2.3 read-only

Caches data that is never updated.

16.3 Hibernate Doclet

Hibernate Doclet, part of the XDoclet project, can be usegktterate Hibernate mapping files from markup
in JavaDoc comments.

Following is an example of a Class level JavaDoc which condiga read-write cache for the Country
Domain Object:

[**

* A Country Domai n Cbj ect

*

* @i bernate. cl ass tabl e=" COUNTRY"

* @i bernate.cache usage="read-wite"

*/

public class Country inplenents Serializable

{
}

The @hibernate.cache usage tag should be set to one of rdagdrenstrict-read-write and read-only.

79

16.4 Configuration with ehcache.xml

Because ehcache.xml has a defaultCache, caches will ahgayreated when required by Hibernate. How-
ever more control can be exerted by specifying a configurgtér cache, based on its name.

In particular, because Hibernate caches are populated daiabases, there is potential for them to get
very large. This can be controlled by capping their maxEletsiaMemory and specifying whether to
overflowToDisk beyond that.

Hibernate uses a specific convention for the naming of caafigemain Objects, Collections, and Queries.

16.4.1 Domain Objects

Hibernate creates caches named after the fully qualifiecer@r®omain Objects.

So, for example to create a cache for com.somecompany.sojeepdomain.Country create a cache con-
figuration entry similar to the following in ehcache.xml.

<cache
nanme="com someconpany. sonepr oj ect. domai n. Count ry"
mexEl ement sl nMenor y="10000"
eternal ="fal se"
ti meTol dl eSeconds="300"
ti meTolLi veSeconds="600"
over fl owToDi sk="true"
/>

16.4.2 Hibernate

CacheConcurrencyStrategy read-write, nonstrict-reatevand read-only policies apply to Domain Ob-
jects.

16.4.3 Collections

Hibernate creates collection caches named after the fuljified name of the Domain Object followed by
"." followed by the collection field name.

For example, a Country domain object has a set of advanced&eilities. The Hibernate doclet for the
accessor looks like:

| *x
* Returns the advanced search facilities that shoul d appear for this country.
* @i bernate.set cascade="all" inverse="true"

* @i bernate.collection-key col um="COUNTRY_I D"
* @i bernate.collection-one-to-many cl ass="com wotif.jaguar.domai n. AdvancedSear chFacility"
* (@i bernate.cache usage="read-wite"
* [
public Set getAdvancedSearchFacilities() {
return advancedSear chFacilities;

}
You need an additional cache configured for the set. The @canl configuration looks like:

<cache nane="com sonmeconpany. sonmepr oj ect . domai n. Country"
maxEl enent sl nMenor y="50"

80

eternal ="fal se"
ti meTolLi veSeconds="600"
over fl owToDi sk="true"

/>

<cache
name="com sonmeconpany. sonepr oj ect . Country. advancedSear chFacilities"
nmaxEl ement sl nMenor y="450"
eternal ="f al se"
ti meTolLi veSeconds="600"
over fl owToDi sk="true"

/>

16.4.4 Hibernate CacheConcurrencyStrategy

read-write, nonstrict-read-write and read-only poliaeply to Domain Object collections.

16.4.5 Queries

Hibernate allows the caching of query results using two each

"net.sf.hibernate.cache.StandardQueryCache" andfingbernate.cache.UpdateTimestampsCache"in ver-
sions 2.1to0 3.1 and "org.hibernate.cache.StandardQaehgCand "org.hibernate.cache.UpdateTimestampsCache"
in version 3.2. are always used.

16.4.6 StandardQueryCache

This cache is used if you use a query cache without settingreend typical ehcache.xml configuration
is:

<cache
nanme="or g. hi ber nat e. cache. St andar dQuer yCache"
maxEl enent sl nMenor y="5"
eternal ="fal se"
ti meTolLi veSeconds="120"
overfl owToDi sk="true"/>

16.4.7 UpdateTimestampsCache

Tracks the timestamps of the most recent updates to patiables. It is important that the cache timeout
of the underlying cache implementation be set to a higharevéthan the timeouts of any of the query
caches. In fact, it is recommend that the the underlyingeaci be configured for expiry at all.

A typical ehcache.xml configuration is:

<cache
nanme="or g. hi ber nat e. cache. Updat eTi mest anpsCache"
mexEl ement s| nMeror y="5000"

eternal ="true"
over f | owToDi sk="true"/ >

16.4.8 Named Query Caches

In addition, a QueryCache can be given a specific name in Hitberusing Query.setCacheRegion(String
name). The name of the cache in ehcache.xml is then the nase igi that method. The name can be

81

whatever you want, but by convention you should use "quéoiidwed by a descriptive name.
E.g.

<cache name="query. Adm ni strativeAreasPer Country"

eternal ="fal se"
ti meTolLi veSeconds="86400"
over f | owToDi sk="true"/ >

16.4.9 Using Query Caches

For example, let’'s say we have a common query running ag&iestountry Domain.
Code to use a query cache follows:

public List getStreetTypes(final Country country) throws Hi bernateException {
final Session session = createSession();

try {
final Query query = session.createQuery(
"select st.id, st.nanme"
+ " from Street Type st "
+ " where st.country.id = :countryld "
+ " order by st.sortOrder desc, st.nanme");
query. setLong("countryld", country.getld().!|ongValue());
query. set Cacheabl e(true);
query. set CacheRegi on("query. Street Types");
return query.list();
} finally {
sessi on. cl ose();
}
}

Thequery. set Cacheabl e(true) line caches the query.
Thequery. set CacheRegi on("query. Street Types") line sets the name of the Query Cache.

16.4.10 Hibernate CacheConcurrencyStrategy

None of read-write, nonstrict-read-write and read-onliigies apply to Domain Objects. Cache policies
are not configurable for query cache. They act like a nonHarkead only cache.

16.5 Hibernate Caching Performance Tips

To get the most out of ehcache with Hibernate, Hibernatessafst's in-process cache is important to
understand.

16.5.1 In-Process Cache

From Hibernate's point of view, Ehcache is an in-procesieacCached objects are accessible across
different sessions. They are common to the Java process.

82

16.5.2 ObjectId

Hibernate identifies cached objects via an object id. Thimisnally the primary key of a database row.

16.5.3 Session.load

Session.load will always try to use the cache.

16.5.4 Session.find and Query.find

Session.find does not use the cache for the primary objedierhfate will try to use the cache for any
associated objects. Session.find does however cause tiretode populated.
Query.find works in exactly the same way.

Use these where the chance of getting a cache hit is low.

16.5.5 Session.iterate and Query.iterate

Session.iterate always uses the cache for the primarytabjecany associated objects.
Query.iterate works in exactly the same way.
Use these where the chance of getting a cache hit is high.

83

84

Chapter 17

The Design of distributed ehcache

This is a discussion and explanation of the distributedgieshoices made in ehcache. One or more
default implementations are provided in each area. A plugéchanism has been provided which will
allow interested parties to implement alternative appneadiscussed here and hopefully contribute them
back to ehcache.

17.1 Acknowledgements

Much of the material here was drawn from Data Access PattbynGlifton Nock.
Thanks to Will Pugh and ehcache contributor Surya Suravei@suggesting we take ehcache distributed.
Finally, thanks to James Strachan for making helpful sugges

17.2 Problems with Instance Caches in a Clustered Environnme

Many production applications are deployed in clusters.atffeapplication maintains its own cache, then

updates made to one cache will not appear in the others. Aakoukd for web based applications is to use

sticky sessions, so that a user, having established a Bassione server, stays on that server for the rest
of the session. A workaround for transaction processintesys using Hibernate is to do a session.refresh
on each persistent object as part of the save. sessioghefxelicitly reloads the object from the database,

ignoring any cache values.

17.3 Replicated Cache

Another solution is to replicate data between the cachesep khem consistent. This is sometimes called
cache coherency. Applicable operations include:

e put
e update (put which overwrites an existing entry)

e remove

85

17.4 Distributed Cache Terms

Distributed Cache - a cache instance that notifies others vtheontents change
Notification - a mechanism to replicate changes
Topology - a layout for how replicated caches connect witth matify each other

17.5 Notification Strategies

The best way of notifying of put and update depends on the@afiithe cache.

If the Element is not available anywhere else then the Eleitssif should form the payload of the notifi-
cation. An example is a cached web page. This notificati@ategy is called copy. Where the cached data
is available in a database, there are two choices. Copy asshef invalidate the data. By invalidating the
data, the application tied to the other cache instance wifidoced to refresh its cache from the database,
preserving cache coherency. Only the Element key needspgassed over the network.

Ehcache supports notification through copy and invalidskctable per cache.

17.6 Topology Choices

17.6.1 Peer Cache Replicator

Each replicated cache instance notifies every other caskamnice when its contents change. This requires
n-1 notifications per change, where n is the number of caddtarines in the cluster. If multicast is used,
these notifications can be emitted as one notification franotiginating cache.

17.6.2 Centralised Cache Replicator

Each replicated cache instance notifies a master cacha&dest@hen its contents change. The master
cache then notifies the other instances. This requires ctifecation from the originating cache and n-2
notifications from the master cache to other slaves.

Ehcache uses a peer topology. The main advantages arecsiynatid greater redundancy as there is no
single point of failure.

17.7 Discovery Choices

In a peer based system, there needs to be a way for peerstvaligach other so as to perform delivery
of changes.

17.7.1 Multicast Discovery

In multicast discovery, peers join a multicast group on acsjelP address in the multicast range of
224.0.0.1 to 239.255.255.255 (specified in RFC1112) anceaifsp port. Each peer notifies the other
group members of its membership.

The configurable multicast time to live can be used to reagtiszovery to the host, subnet, site or larger
scope.

This approach is simple and allows for dynamic entry andfeodh the cluster.

86

17.7.2 Static List

Here alist of listeners in the cluster is configured. Thermigynamic entry or exit. Peer listener addresses
must be known in advance.

Ehcache provides both techniques.

17.8 Delivery Mechanism Choices

17.8.1 Custom Socket Protocol

This approach uses a protocol built directly on TCP or UDPpttmary advantage is high performance.

17.8.2 Multicast Delivery
The advantage with multicast is that the sender only tratssonice. It is however based on UDP datagrams
and is nonreliable. Practical experience on modern newsyaor&twork cards and operating systems has

shown this approach to be quite lossy. Whether it would befspecific combination is hard to predict.
This approach is thought unlikely to produce sufficientaiaility.

17.8.3 JMS Topics
JMS Topics are standard, well understood way to propagassages to multiple subscribers. JMS is not

used in the default ehcache implementation because mamglhasers are outside the scope of JEE.
However JMS based delivery, with its richer services, ctnglé could choice for JEE bases systems.

17.8.4 RMI RMI is the default RPC mechanism in Java.

17.8.5 JIXTA

JXTA is a peer to peer technology that provides discoverydatidery, together with much else.

17.8.6 JGroups
JGroups provides many of the desired features for a peereodistributed system. The default mode

for JGroups on a LAN is UDP, which is not desired. However J@sodoes provide reliably transmission
using TCP, similar to the approach taken in ehcache.

17.8.7 The Default Implementation

Ehcache uses RMI, based on custom socket options for delivits default implementation.
Ehcache does not use JXTA or JGroups for the following resison

e enables fine control over distribution behaviour
¢ allows tuning specific to a distributed cache, rather thatriBution generally

e reduces the number of dependent libraries to run ehcache
RMI is used by default because:

87

o ititself is the default remoting mechanism in Java
e itis mature
e it allows tuning of TCP socket options

e Element keys and values for disk storage must already balRable, therefore directly transmit-
table over RMI without the need for conversion to a third fatreuch as XML.

e it can be configured to pass through firewalls

¢ RMI had improvements added to it with each release of Javashadan then be taken advantage of.

However the pluggable nature of ehcache’s distributiontraeism allows for both of these approaches to
be plugged in. These approaches may become a standard phdaahe in a future release.

A JGroups implementation is planned for ehcache-1.2.1.

17.9 Replication Drawbacks and Solutions in ehcache’s impmen-
tation

Some potentially significant obstacles have to be overcbneplication is to provide a net benefit.

17.9.1 Chatty Protocol

n-1 notifications need to happen each time a a cache instéwrac®e occurs. A very large amount of
network traffic can be generated. This issue affect the spmctus replication mode of ehcache.

Ehcache provides an asynchronous replication mode whitibates this effect. All changes are buffered
for delivery. The queue is then checked each second and allages delivered in one RMI call, as a list
of messages, to each peer.

The characteristics of each RMI call will be those of RMI. Bblse does however use a custom socket
factory so that socked read timeout can be set.

17.9.2 Redundant Notifications

The cache instance that initiated the change should noiveeite own notifications. To do so would add
additional overhead. Also, notifications should not emsliego back and forth as each cache listener gets
changes caused by a remote replication.

Ehcache’s CachePeerProvider indentifies the local castenioe and excludes it from the notification list.
Each Cache has a GUID. That GUID can be compared with listaffepeers and the local peer excluded.

Infinite notifications are prevented by passing a flag wherdlobe operation occurs. Events with that flag
are ignored by instanced of CacheReplicator.

17.9.3 Potential for Inconsisent Data

Timing scenarios, race conditions, delivery, reliabil@ggnstraints and concurrent updates to the same
cached data can cause inconsistency (and thus a lack ofecayg¢rcross the cache instances.

This potential exists within the ehcache implementatiohede issues are the same as what is seen when
two completely separate systems are sharing a databaseymaaoscenario.

88

Whether data inconsistency is a problem depends on the ddthcav it is used. For those times when it
is important, ehcache provides for synchronous delivenypafates via invalidation. These are discussed
below:

17.9.4 Synchronous Delivery

Delivery can be specified to be synchronous or asynchrorsgichronous delivery gives faster returns
to operations on the local cache and is usually preferredcl@pnous delivery adds time to the local

operation, however requires successful delivery of an tgptiaall peers in the cluster before the cache
operation returns.

17.9.5 Update via Invalidation

The default is to update other caches by copying the new valtleem. If the replicateUpdatesViaCopy
property is set to false in the replication configurationdates are made by removing the element in any
other cache peers. This forces the applications using ttfeeqaeers to return to a canonical source for the
data.

A similar effect can be obtained by setting the element TTha tow value such as a second.

Note that these features impact cache performance anddshotibe used where the main purpose of a
cache is performance boosting over coherency.

89

90

Chapter 18

Distributed Caching

As of version 1.2, Ehcache can be used as a distributed cache.

The distribution feature is built using plugins. Ehcachmes with some default distribution plugins which
should be suitable for most applications. Other pluginsdamdeveloped. Developers should see the source
code in the distribution package for the fullly documentd®l £o see how to do that.

Though not necessary to use distributed caching an insightiie design decisions used in ehcache may
be helpful. See the Design of distributed ehcache page.

The rest of this section documents the distribution plugihgh are bundled with ehcache.
The following concepts are central to cache distribution:

How do you know about the other caches that are in your cleister

What form of communication will be used to distribute messy

What is replicated? Puts, Updates, Expiries?

When is it replicated? Synchronous or asynchronous?

To set up distributed caching you need to configure a Peeid&noa CacheManagerPeerListener, which
is done globally for a CacheManager. For each cache thabpdtate distributed, you then need to add a
cacheEventListener to propagate messages.

18.1 Suitable Element Types

Only Serializable Elements are suitable for replication.

Some operations, such as remove, work off Element keysrrtthe the full Element itself. In this case
the operation will be replicated provided the key is Sezxadie, even if the Element is not.

18.2 Peer Discovery

Ehcache has the notion of a group of caches acting as a distwilsache. Each of the caches is a peer to
the others. There is no master cache. How do you know abouttliee caches that are in your cluster?
This problem can be given the name Peer Discovery.

Ehcache provides two mechanisms for peer discovery, keselicar: manual and automatic.

91

To use one of the built-in peer discovery mechanisms sp#uifglass attribute afacheManager Peer Pr ovi der Fact ory
asnet . sf. ehcache. di stri buti on. RM CacheManager Peer Pr ovi der Fact ory in the ehcache.xml
configuration file.

18.2.1 Automatic Peer Discovery

Automatic discovery uses TCP multicast to establish andhtaim a multicast group. It features minimal
configuration and automatic addition to and deletion of meralfirom the group. No a priori knowledge
of the servers in the cluster is required. This is recommedehe default option.

Peers send heartbeats to the group once per second. If agseaohbeen heard of for 5 seconds it is
dropped from the group. If a new peer starts sending hedstiiés admitted to the group.

Any cache within the configuration set up as replicated vélhitade available for discovery by other peers.

To set automatic peer discovery, specify the propertiebate ofcacheManager Peer Pr ovi der Fact ory
as follows:

peerDiscovery=automatic multicastGroupAddress=mastiaddress |multicast host name multicastGroup-
Port=port timeToLive=0-255 (See below in common problei®te setting this)

Example

Suppose you have two servers in a cluster. You wish to diggibampleCachell and sampleCachel2.
The configuration required for each server is identical:

Configuration for serverl and server2

<cacheManager Peer Pr ovi der Fact ory
cl ass="net . sf.ehcache. di stri buti on. RM CacheManager Peer Pr ovi der Fact ory"

properti es="peerDi scovery=automatic, mnulticastG oupAddress=230.0.0.1,
mul ti cast G oupPort =4446, timeTolive=32"/>

18.2.2 Manual Peer Discovery

Manual peer configuration requires the IP address and peadt listener to be known. Peers cannot be
added or removed at runtime. Manual peer discovery is recamded where there are technical difficulties
using multicast, such as a router between servers in a chhstedoes not propagate multicast datagrams.
You can also use it to set up one way replications of data, bingaerver2 know about serverl but not
vice versa.

To set manual peer discovery, specify the properties at&ibfcacheManager Peer Pr ovi der Fact ory
as follows: peerDiscovery=manual rmiUrls=//server:fmatheName, ...

The rmiUrls is a list of the cache peers of the server beindigored. Do not include the server being
configured in the list.

Example

Suppose you have two servers in a cluster. You wish to diggisampleCachell and sampleCachel2.
Following is the configuration required for each server:

Configuration for serverl

<cacheManager Peer Pr ovi der Fact ory
cl ass="net . sf.ehcache. di stri buti on. RM CacheManager Peer Pr ovi der Fact ory"

92

properti es="peer D scovery=nmanual ,
rm Url s=//server?2: 40001/ sanpl eCachell|//server?2: 40001/ sanpl eCachel2"/ >

Configuration for server2

<cacheManager Peer Pr ovi der Fact ory
cl ass="net.sf.ehcache. di stri buti on. RM CacheManager Peer Pr ovi der Fact ory"

properti es="peer D scovery=manual ,
rm Url s=//server1l: 40001/ sanpl eCachell|//server1l: 40001/ sanpl eCachel2"/ >

18.3 Configuring a CacheManagerPeerListener

A CacheManagerPeerListener listens for messages frors fretire current CacheManager.

You configure the CacheManagerPeerListener by specifiyidga@eManagerPeerListenerFactory which
is used to create the CacheManagerPeerListener usingugie phechanism.

The attributes of cacheManagerPeerListenerFactory are:

e class - a fully qualified factory class name * properties - omarseparated properties having meaning
only to the factory.

Ehcache comes with a built-in RMI-based distribution systeThe listener component is RMI-
CacheManagerPeerListener which is configured using RMi€danagerPeerListenerFactory. It is
configured as per the following example:

<cacheManager Peer Li st ener Fact ory
cl ass="net. sf.ehcache. di stri buti on. RM CacheManager Peer Li st ener Fact ory"

properti es="host Nanme=l ocal host, port=40001,
socket Ti neout M | | i s=2000"/ >

Valid properties are:

e hostName (optional) - the hostName of the host the listenrrrining on. Specify where the host is
multihomed and you want to control the interface over whicisier messages are received.
The hostname is checked for reachability during CacheMamadialisation.

If the hostName is unreachable, the CacheManager will egiustart and an CacheException will
be thrown indicating connection was refused.

If unspecified, the hostname will useet Addr ess. get Local Host () . get Host Addr ess() ,which
corresponds to the default host network interface.

Warning: Explicitly setting this to localhost refers to tleeal loopback of 127.0.0.1, which is not
network visible and will cause no replications to be recgifrem remote hosts. You should only use
this setting when multiple CacheManagers are on the samhingac

e port (mandatory) - the port the listener listens on.

e socketTimeoutMillis (optional) - the number of secondstisockets will wait when sending mes-
sages to this listener until they give up. By default thisG9@ms.

93

18.4 Configuring CacheReplicators

Each cache that will be distributed needs to set a cache kstemier which then replicates messages to the
other CacheManager peers. This is done by adding a cachiistenerFactory element to each cache’s
configuration.

<!-- Sanpl e cache named sanpl eCache2. -->
<cache nane="sanpl eCache2"
mexEl enent sl nMenory="10"
eternal ="f al se"
ti meTol dl eSeconds="100"
ti meTolLi veSeconds="100"
overfl owToDi sk="f al se" >
<cacheEvent Li st ener Factory cl ass="net . sf. ehcache. di stri buti on. RM CacheRepl i cat or Fact ory"
properti es="replicateAsynchronousl y=true, replicatePuts=true,

</ cache>

class - use net.sf.ehcache.distribution.RMICacheRafpliEactory
The factory recognises the following properties:

o replicatePuts=true |false - whether new elements placaatathe are replicated to others. Defaults
to true.

¢ replicateUpdates=true |false - whether new elements vadvielride an element already existing with
the same key are replicated. Defaults to true.

e replicateRemovals=true - whether element removals ateatpd. Defaults to true.

e replicateAsynchronously=true |false - whether replaraiare asyncrhonous (true) or synchronous
(false). Defaults to true.

¢ replicateUpdatesViaCopy=true |false - whether the nemeids are copied to other caches (true),
or whether a remove message is sent. Defaults to true.

To reduce typing if you want default behaviour, which is fegte everything in asynchronous mode, you
can leave off th&M CacheRepl i cat or Fact or y properties as per the following example:

<I-- Sanpl e cache named sanpl eCache4. All mi ssing RM CacheReplicatorFactory properties defaul
<cache name="sanpl eCache4"
mexEl enent sl nMenory="10"
eternal ="true"
overfl owToDi sk="f al se"
menor ySt or eEvi cti onPol i cy="LFU" >
<cacheEvent Li st ener Factory cl ass="net. sf.ehcache. di stri buti on. RM CacheRepl i cat or Fact ory"/

</ cache>

18.5 Common Problems

18.5.1 Tomcat on Windows

There is a bug in Tomcat and/or the JDK where any RMI listeriifail to start on Tomcat if the installa-
tion path has spaces in it. See http://archives.java.emriagi-bin/wa?A2=ind0205&L=rmi-users&P=797
and http://www.ontotext.com/kim/doc/sys-doc/fag-hoveugs/known-bugs.html.

As the default on Windows is to install Tomcat in "Progranesil this issue will occur by default.

94

18.5.2 Multicast Blocking

The automatic peer discovery process relies on multicasttiddst can be blocked by routers. Virtualisa-
tion technologies like Xen and VMWare may be blocking mas§tc If so enable it. You may also need to
turn it on in the configuration for your network interfacedar

An easy way to tell if your mutlicast is getting through is teeuthe ehcache remote debugger and watch
for the heartbeat packets to arrive.

18.5.3 Multicast Not Progagating Far Enough or Propagatingloo Far

You can control how far the multicast packets propagate tiingehe badly misnamed time to live. Using
the multicast IP protocol, the timeToLive value indicatee scope or range in which a packet may be
forwarded. By convention:

O is restricted to the sane host

1lis restricted to the sane subnet

32 is restricted to the sane site

64 is restricted to the sane region
128 is restricted to the sane conti nent
255 is unrestricted

The default value in Java is 1, which propagates to the salmeesuChange the timeToLive property to
restrict or expand propagation.

95

96

Chapter 19

The Design of the ehcache constructs
package

This is a discussion and explanation of the reasons for andehign forces behind the constructs package
in ehcache.

19.1 Acknowledgements

Much of the material here was drawn from Concurrent Prograngin Java by Doug Lea. Thanks also to
Doug for answering several questions along the way.

19.2 The purpose of the Constructs package

Doug Lea in his book Concurrent Programming in Java talksiaboncurrency support constructs. One
meaning of a construct is "an abstract or general idea ixdleor derived from specific instances". Just
like patterns emerge from noting the similarities of probdeand gradually finding a solution to classes of
them, so to constructs are general solutions to commondeimzh

The ehcache constructs package, literally the net.sfobleceonstructs package, provides ready to use,
extensible implementations are offered to solve commoblpros in JEE and light-weight container ap-
plications.

Why not leave ehcache at the core and let everyone createtheiapplications? Well, everyone is doing
that. But getting it right can be devilishly hard.

19.3 Caching meets Concurrent Programming

So, why not just use Doug’s library or the one he contributethtJDK1.5? The ehcache constructs are
around the intersection of concurrency programming anthingc It uses a number of Doug’s classes
copied verbatim into the net.sf.ehcache.concurrent gpekes permiited under the license.

97

19.4 What can possibly go wrong?

Thatis a favourite tongue in cheek saying of Adam Murdochgréginal contributor to the ehcache project.
The answer in concurrent programming is a lot.

(The following section is based heavily on Chapter 1.3 of Pbaa’s Concurrent Programming in Java).
There are two often conflicting design goals at play in corentrprogramming. They are:

e liveness, where something eventually happens within awniigct

o safety, where nothing bad ever happens to an object.

19.4.1 Safety Failures

Failures of safety include:

e Read/Write Conflicts, where one thread is reading from a &ialdlanother is writing to it. The value
read depends on who won the race.

e Write/Write Conflicts, where two threads write to the samdédfieThe value on the next read is
impossible to predict.

A cache is similar to a global variable. By its nature it is esgible to multiple threads. Cache
entries, and the locking around them, are often highly aued for.

19.4.2 Liveness Failures

Failures of liveness include:

e Deadlock. This is caused by a circular dependency amonglddke threads involved cannot make
progress.

e Missed Signals. A thread entered the wait state after a catiidin to wake it up was produced.

o Nested monitor lockouts. A waiting thread holds a lock nedalea thread wishing to wake it up
e Livelock. A continously retried action continously fails.

e Starvation. Some threads never get allocated CPU time.

e Resource Exhaustion. All resourcesof some kind are in ugbreads, none of which will give one
up.

e Distributed Failure. A remote machine connected by soc&ebimes inaccessible.

e Stampede. With notifyAll(), all threads wake up and in a gtede, attempt to make progress.

19.5 The constructs

19.5.1 Blocking Cache

Imagine you have a very busy web site with thousands of coentiusers. Rather than being evenly
distributed in what they do, they tend to gravitate to poppkges. These pages are not static, they have
dynamic data which goes stale in a few minutes. Or imagindwae collections of data which go stale in

a few minutes. In each case the data is extremely expensoaddolate.

98

Let’s say each request thread asks for the same thing. Thdbtof work. Now, add a cache. Get each
thread to check the cache; if the data is not there, go and getiput it in the cache. Now, imagine that
there are so many users contending for the same data that tinth it takes the first user to request the
data and put it in the cache, 10 other users have done the bargeThe upstream system, whether a JSP
or velocity page, or interactions with a service layer oatdase are doing 10 times more work than they
need to.

Enter the BlockingCache.

net.sf.ehcache

Ehcache

H
i
i
net.sf.ehcache. constructs.blocking
h

net.sf.ehcache net.sf.ehcache.event

i
BlockingCache
Ehcache ms————¢ cache : Ehcace ~ meeees)i RegisteredEventListeners
+ LOCK_NUMBER : int. :
locks : Mutexf]

net.sf.ehcache. constructs concurrent # tmeourMills : int net.sf.ehcache. config
1 + BlockingCache(Ehcache) I

‘ Mutex <——————————————— - -- -~ CacheConfiguration
| + bootstrap() : void L

+ calculatelnMemorySize() : long

+ clearstatistics() : void

+ clone() : Object

+dispose() : void IR s
+ eviciExpiredElements() : void I

net.sf.ehcache

#fushO:vod =l Element

+ get(serializable) : Element [

+get(Object : Element - Statistics

+ getBoatstrap Cache Loader() : BootstrapCacheLoader L

getCache() - Ehcache - Staws

+ getCacheCr () : CacheC

+ getC; 0: istener:

+ getCacheManager() : CacheManager net.sf.ehcache. store

+ getDiskExpiryThreadintervalSeconds0 : long -

+ getDiskStoreSize() - int -+ -- | MemaryStoreEvictionpolicy |

+getGuid) : String
+getkeys) : List

+ getkeysNoDuplicateCheck() : List Javaio
+ getKeysWithExpiryCheck() : List
getLockForKey(Object) : Mutex ——---—== Serializable

+ getMaxElementsinMemory() : int
+ getMaxElementsOnDiskO : int

+ tionPolicy0) - A y t.5.ehcache. bootstr
+ getMemoryStoreSize() : long
+ getName() : String. ~~---~=_ BootstrapCacheloader

+ getQuiet(Serializable) : Element

+ getQuiet(Object) : Element

+ getSize) : int net.sf.ehcache.extension
+ getStatistics() - Satistics

+ getStatisticsAccuracy() : int
+ getStatus() : Status

+ getTimeoutMillis() - int

== CacheExtension

+ getTimeToldleSeconds() : long

+ getTimeToLiveSeconds(: long

+ initialise(: void

+isDiskPersistent() - boolean

+ isElementinMemory(Serializable) : boolean
+ isElementinMemory(Object) : boolean

+ isElementOnDisk(Serializable) : boolean
+ isElementOnDisk(Objecd : boolean
+isEternal) - boolean

+ isExpired(Element) : boolean

+ isKeylnCache(Object : boolean

+ isOverflowToDisk() : boolean

+ isValuelnCache(Object) : boolean

+ liveness() : String

+ put(Element) : void

+ put(Element, boolean) : void

+ putQuiet(Element) - void

+ registerCacheExtension(Cache Extension) : void
+ remove(Serializable) : boolean

+ remove(Serializable, boolean) : boolean
+ remove(Object) : boolean

+ remove(Object, boolean) : boolean

+ removeAll() : void

+ removeAll(boolean) : void

+ removeQuiet(Serializable) : boolean

+ removeQuiet(Object) : boolean

chel. ‘acheLoader) : void
+ setCacheManager(CacheManager) : void
+ setDiskStorePath(String) : void

+ setName(String) : void

+ setStatisticsAccuracy(int) - void

+ setTimeoutMillisting) : void

+ unregisterCacheExte nsion(CacheExtension) : void

generated by yDoc

Blocking Cache

99

It is blocking because all threads requesting the same kéyfovahe first thread to complete. Once the
first thread has completed the other threads simply obtaicdlche entry and return.

The BlockingCache can scale up to very busy systems.

19.5.2 SelfPopulatingCache

You want to use the BlockingCache, but the requirement t@gdwelease the lock creates gnarly code.
You also want to think about what you are doing without thingkabout the caching.

Enter the SelfPopulatingCache. The name SelfPopulaticly€s synonymous with Pull-through cache,
which is a common caching term. SelfPopulatingCache thalgays is in addition to a BlockingCache.

SelfPopulatingCache useacheEnt r yFact or y, that given a key, knows how to populate the entry.

19.5.3 CachingFilter

You want to use the BlockingCache with web pages, but theirement to always release the lock creates
gnarly code. You also want to think about what you are doirtgevit thinking about the caching.

Enter the CachingFilter, a Servlet 2.3 compliant filter. Wiloyjust do a JSP tag library, like OSCache? The
answer is that you want the caching of your responses to lepérdient of the rendering technology. The
filter chain is reexcuted every time a RequestDispatchewvidved. This is on every jsp:include and every
Servlet. And you can programmatically add your own. If yowehaontent generated by JSP, Velocity,
XSLT, Servlet output or anything else, it can all be cache€hbghingFilter. A separation of concerns.

How do you determine what the key of a page is? The filter hadbatmact calculateKey method, so it is
up to you.

You notice a problem and an opportunity. The problem is thatweb pages you are caching are huge.
That chews up either a lot of memory (MemoryStore) or a lotiskdpace (DiskStore). Also you notive
that these pages take their time going over the Internet.oppertunity is that you notice that all modern
browsers support gzip encoding. A survey of logs reveals86% of the time the browser accepts gzip-
ping. (The majority of the 15% that does not is |IE behind a gjo®k, so gzip the response before caching
it. Ungzipping is fast - so just ungzip for the 15% of the tirhe browser does not accept gzipping.

19.5.4 SimplePageCachingFilter

What if you just want to get started with the CachingFilted @on’t want to think too hard? Just use Sim-
plePageCachingFilter which has a calculateKey methoddjremplemented. It usés t pRequest . get Request URI ()) . appen:
for the key. This works most of the time. It tends to get le$sative when referrals and affiliates are added

to the query, which is the case for a lot of e-commerce sites.

SimplePageCachingFilter is 10 lines of code.

19.5.5 PageFragmentCachingFilter

You notice that an entire page cannot be cached becausettherdd vary in staleness. Say, an address
which changes very infrequently, and the price and avditgloif inventory, which changes quite a lot. Or
you have a portal, with lots of components and with diffetatenesses. Or you use the replicated cache
functionality in ehcache and you only want to rebuild thet pfithe page that got invalidated.

Enter the PageFragmentCachingFilter. It does everytiagSimplePageCachingFilter does, except it never
gzips, so the fragments can be combined.

100

19.5.6 SimplePageFragmentCachingFilter

What if you just want to get started with the PageFragmertiDaé-ilter and don’t want to think too
hard? Just use SimplePageFragmentCachingFilter which talsulateKey method already implemented.
It usesht t pRequest . get Request URI ()) . append(ht t pRequest . get QueryStri ng() for the key.
This works most of the time. It tends to get less effective nheferrals and affiliates are added to the
query, which is the case for a lot of e-commerce sites.

SimplePageFragmentCachingFilter is 10 lines of code.

19.5.7 AsynchronousCommandExecutor

What happens if your JMS server is down? The usual answehé#ve two of them. Unfortunately, not all
JMS servers do a good job of clustering. Plus it takes twieentirdware.

Once a message makes it to a JMS server, they can usually figured to store the message in a database.
You are pretty safe after that if there is a crash.

Enter AsynchronousCommandExecutor. It lets you createratand for future execution. The command
is cached and is then immediately executed in another thr&hds the asynchronous bit. If it fails, it
retries on a set interval up to a set number of times. Thudatik-tolerant.

Use this where you really don’t want to lose messages or cardsidhat execute against another system.

19.6 Real-life problems in the constructs package and thesolutions

At the time of revising this document, ehcache is almostehyrears old. That leaves plenty of time to
observe some concurrency failures. The problems that arasbow they were fixed are illustrative of the
subtleties of concurrent programming.

19.6.1 The Blocking Cache Stampede

The first BlockingCache implementation ran for almost a y@aa very busy application before the first
problems came to light. It was using notifyAll() togethertvicoarse grained synchronization on the
BlockingCache instance.

Once the load on the cache got very high indeed, the thre&dmétlock would notifyAll. Then hundreds
of threads would "stampede” - they would each attempt tolgetdck. Gradually more and more CPU
time was spent resolving contention for the object lockradch notifyAll. Eventually the server threads
went to 1500 and server output dropped to almost nothing.

The solution was to create a Mutex representing each keywasitequested and to lock on that rather than
the BlockingCache itself. That gave a 10 times improvemestalability. See Scalability Test vs the old
ScalabilityTest.

19.6.2 The Blank Page problem

About a year into the use of the CachingFilter, the idea tp g&s born. Having implemented it, it worked

fine. A few weeks into production use strange reports camieaihgeople were occasionally getting blank
pages. Timing suggested the gzip change, but how? A testee eaross similar issues that had been
reported with Apache mod_gzip. It looked like there was a mde path that was somehow screwing up.

In the end, that was how the filters made their way into the @hearoject. The level of testing required
to focus on the issue was way beyond what you would normallind®d business app. In the end | sat
down with the Servlet specification and looked at everythrag could go wrong. | ended up creating

101

FilterNonReentrantException, AlreadyGzippedExceptiad ResponseHeadersNotModifiableException.
These conditions are detected and an exception throwrr rihiidne a blank page. Then the developer fixes
the coding error that produced it.

The exception contain comments on how each issue happeit$ are reproduced below:

FilterNonReentrantException - Thrown when it is detectet & caching filter’s doFilter method is reen-
tered by the same thread. Reentrant calls will block indefiynibecause the first request has not yet
unblocked the cache. Nasty.

AlreadyGzippedException - The web package performs gagppperations. One cause of problems on
web browsers is getting content that is double or triple gegh They will either get gobblydeegook or a
blank page. This exception is thrown when a gzip is attempiealready gzipped content.

ResponseHeadersNotModifiableException - A gzip encodiglbr needs to be added for gzipped content.
The HttpServletResponse#setHeader() method is useddioptinpose. If the header had already been set,
the new value normally overwrites the previous one. In soages according to the servlet specification,
setHeader silently fails. Two scenarios where this happesis

e The response is committed.

e RequestDispatcher#include method caused the request.

This issue is extremely subtle and nasty.

There are tests that reproduce each of these issues. Than@kitter and its subclasses have been in
production for nearly two years with no more reports of tieub

19.6.3 Blocking Cascade

Let's say you do use the BlockingCache but something goeagwipstream. Maybe it is something like
a database backup that slows the database down for 10 miutgseedy SQL. With the BlockingCache
the JDBC connection will eventually timeout. The first thddails. The next queued thread then attempts
the same thing. It fails. And so on. While this is going on, enand more threads queue up. The result
is a Blocking cascade. Eventually, if the slow upstreameseoy process does not pick up you exhaust the
thread limit on your server and it goes down with an OutOfMeyEworor.

Is this what you want? Or would you prefer to have the affegtad of the system degrade with errors
while the rest of the system keeps ticking? That is a judgecedh

BlockingCache has a parameter in its constructor calleddintMillis. If you set that then any queued
thread will immediately timeout when its turn comes in thewabscenario. Some requests get exceptions,
but you do not lose your VM.

102

Chapter 20

CacheManager Event Listeners

e Configuration

e Implementing a CacheManagerEventListenerFactory antiéManagerEventListener
CacheManager event listeners allow implementers to ergisilback methods that will be executed when
aCacheManager event occurs. Cache listeners implement the CacheManegetiEstener interface.
The events include:

e adding aCache

e removing aCache

Callbacks to these methods are synchronous and unsynzadotiiis the responsibility of the implementer
to safely handle the potential performance and threadysiafetes depending on what their listener is doing.

20.1 Configuration

One CacheManagerEventListenerFactory and hence one K#anhgerEventListener can be specified per
CacheManager instance.

The factory is configured as below:

<cacheManager Event Li st ener Factory cl ass=
properties=""/>

The entry specifies a CacheManagerEventListenerFactachwiill be used to create a CacheManager-
PeerProvider, which is notified when Caches are added orverfoom the CacheManager.

The attributes of CacheManagerEventListenerFactory are:

e cl ass - a fully qualified factory class name

e properties - comma separated properties having meaning only to therfact

Callbacks to listener methods are synchronous and unsymizied. It is the responsibility of the
implementer to safely handle the potential performancetarehd safety issues depending on what
their listener is doing.

If no class is specified, or there is no cacheManagerEvestigsFactory element, no listener is
created. There is no default.

103

20.2 Implementing a CacheManagerEventListenerFactory athCache-
ManagerEventListener

CacheManagerEventListenerFactory is an abstract faéborgreating cache manager listeners. Imple-
menters should provide their own concrete factory extamttis abstract factory. It can then be configured
in ehcache.xml.

The factory class needs to be a concrete subclass of thaetfsittory CacheManagerEventListenerFac-
tory, which is reproduced below:

[**
An abstract factory for creating {@ink CacheManager Event Li stener}s. |nplenmenters should
provide their own concrete factory extending this factory. It can then be configured in

ehcache. xm

@ut hor G eg Luck

@ersion $l1d: cachemanager _event _|isteners.apt 135 2006- 06-26 06: 55: 03Z gregl uck $
* @ee "http://ehcache. sourceforge. net/docunment ati on/ cachenmanager _event _| i steners. htnl "
*/

public abstract class CacheManager Event Li st ener Factory {

L A .

| **

* Create a <code>CacheEvent Li st ener </ code>
*

* @aram properties inplenmentation specific properties. These are configured as coma

* separated nanme val ue pairs in ehcache.xm . Properties may be null
* @eturn a constructed CacheManager Event Li st ener
*/

publ i c abstract CacheManager EventLi st ener
cr eat eCacheManager Event Li st ener (Properties properties);

The factory creates a concrete implementation of CachelyEaentListener, which is reproduced below:
[**

* Allows inplementers to register callback methods that will be executed when a
* <code>CacheManager </ code> event occurs.

* The events include:

*

* <|i>addi ng a <code>Cache</code>

* <|i>renpving a <code>Cache</code>

*

* <p/ >

* Cal | backs to these nmethods are synchronous and unsynchronized. It is the responsibility of
* the inplenenter to safely handle the potential performance and thread safety issues
* depending on what their |listener is doing.

* @uthor Greg Luck

* @ersion $ld: cachemanager _event _|isteners.apt 135 2006-06-26 06:55: 03Z gregl uck $
* @ince 1.2

* @ee CacheEventLi stener

*/

public interface CacheManager Event Li st ener {

| *x

* Called imrediately after a cache has been added and acti vat ed.
* <p/>

104

* Note that the CacheManager calls this nethod froma synchronized nethod. Any attenpt to
* call a synchroni zed nmet hod on CacheManager fromthis nethod will cause a deadl ock.

* <p/>

* Note that activation will also cause a CacheEventListener status change notification
* from{@ink net.sf.ehcache. Stat us#STATUS_UNI NI TI ALI SED} to

* {@ink net.sf.ehcache. St at us#STATUS_ALI VE} . Care shoul d be taken on processing that

* notification because:

*

* the cache will not yet be accessible fromthe CacheManager.

* <|i>the addCaches nethods whi h cause this notification are synchroni zed on the

* CacheManager. An attenpt to call {@ink net.sf.ehcache. CacheManager #get Cache(String)}
* will cause a deadl ock.

*

* The calling method will block until this nethod returns.

* <p/>

* @aram cacheNanme the name of the <code>Cache</code> the operation relates to

* @ee CacheEventLi stener

*/

voi d notifyCacheAdded(Stri ng cacheNane);

| **
* Called imrediately after a cache has been di sposed and renmoved. The calling nmethod will
* block until this method returns.
* <p/>
* Note that the CacheManager calls this nethod froma synchronized nethod. Any attenpt to
* call a synchronized met hod on CacheManager fromthis nethod will cause a deadl ock.
* <p/>
* Note that a {@ink CacheEventLi stener} status changed will also be triggered. Any
* attenpt fromthat notification to access CacheManager will also result in a deadl ock.
* @aram cacheNanme the name of the <code>Cache</code> the operation relates to
* [

voi d notifyCacheRenoved(String cacheNane);

The implementations need to be placed in the classpathsibleto ehcache. Ehcache uses the Class-
Loader returned byhr ead. cur r ent Thr ead() . get Cont ext Cl assLoader () to load classes.

105

106

Chapter 21

Cache Event Listeners

Cache listeners allow implementers to register callbacthous that will be executed when a cache event
occurs. Cache listeners implement the CacheEventListeteface.

The events include:
e an Element has been put

e an Element has been updated. Updated means that an Elerstsirethe Cache with the same key
as the Element being put.

e an Element has been removed

e an Element expires, either because timeToLive or time&dtdve been reached.

Callbacks to these methods are synchronous and unsynzbdotiiis the responsibility of the implementer
to safely handle the potential performance and threadysiafetes depending on what their listener is doing.

Listeners are guaranteed to be notified of events in the andehich they occurred.

Elements can be put or removed from a Cache without notifiisigners by using the putQuiet and re-
moveQuiet methods.

21.1 Configuration

Cache event listeners are configured per cache. Each cachawamultiple listeners.
Each listener is configured by adding a cacheManagerEvastigrFactory element as follows:

<cache ...>
<cacheEvent Li stener Factory cl ass="" properties=""/>
</ cache>

The entry specifies a CacheManagerEventListenerFactoighvi$ used to create a CachePeerProvider,
which then receives notifications.

The attributes of CacheManagerEventListenerFactory are:

107

e class - a fully qualified factory class name * properties - atiamal comma separated properties
having meaning only to the factory.

Callbacks to listener methods are synchronous and unsynizled. It is the responsibility of the
implementer to safely handle the potential performancethrehd safety issues depending on what
their listener is doing.

21.2 Implementing a CacheEventListenerFactory and CachekentLis-
tener

CacheEventListenerFactory is an abstract factory forttrg@ache event listeners. Implementers should
provide their own concrete factory, extending this absfietory. It can then be configured in ehcache.xml

The factory class needs to be a concrete subclass of thaetifsittory class CacheEventListenerFactory,
which is reproduced below:

[**

* An abstract factory for creating listeners. Inplenenters should provide their own
* concrete factory extending this factory. It can then be configured in ehcache. xm
*

* @uthor Greg Luck

* @ersion $ld: cache_event_listeners.apt 135 2006- 06-26 06: 55: 03Z gregluck $

*/

public abstract class CacheEventLi stenerFactory {

[**
* Create a <code>CacheEvent Li st ener </ code>

*

* @aram properties inplenmentation specific properties. These are configured as coma

* separ at ed nanme val ue pairs in ehcache. xm
*x @eturn a constructed CacheEvent Li st ener
*/

public abstract CacheEventlLi stener createCacheEventListener(Properties properties);

The factory creates a concrete implementation of the CadmgEistener interface, which is reproduced
below:

[**

* Allows inplementers to register callback methods that will be executed when a cache event
* OCCurs.

The events include:

<l i >put El enent

<l i >updat e El enment

renpve El enent

an El ement expires, either because tineToLive or tineToldl e has been reached.

</ ol >

<p/ >

Cal | backs to these nethods are synchronous and unsynchronized. It is the responsibility of
the inplenmenter to safely handle the potential performance and thread safety issues
dependi ng on what their |istener is doing.

<p/ >

Events are guaranteed to be notified in the order in which they occurred.

<p/ >

E I I I . T S A T

108

* % * Ok

*

*/

Cache al so has put Qui et and renmoveQui et nmethods which do not notify |isteners.
@ut hor G eg Luck

@ersion $l1d: cache_event _|isteners.apt 135 2006- 06-26 06: 55: 03Z gregluck $
@ee CacheManager Event Li st ener

@ince 1.2

public interface CacheEventLi stener extends C oneable {

/

E B I I S T B

*

*

*

/

Called i medi ately after an el enent has been renoved. The renove nethod will block until
this nethod returns.

<p/ >

Ehcache does not chech for

<p/ >

As the {@ink net.sf.ehcache. El enent} has been renoved, only what was the key of the

el ement i s known.

<p/ >

@ar am cache the cache emtting the notification
@ar am el ement just del eted

voi d notifyEl ement Renoved(fi nal Ehcache cache, final Elenent el enent) throws CacheException;

/

L R S . . L I N

*

*

*

/

Called i medi ately after an el enent has been put into the cache. The

{@ink net.sf.ehcache. Cache#put (net. sf.ehcache. El enent)} net hod

will block until this method returns.

<p/ >

I mpl erenters may wi sh to have access to the Elenent’s fields, including value, so the
el ement is provided. Inplenenters should be careful not to nodify the el enent. The

ef fect of any nodifications is undefined.

@ar am cache the cache emtting the notification
@aram el ement the el enent which was just put into the cache.

voi d notifyEl ement Put (final Ehcache cache, final Elenent elenment) throws CacheExcepti on;

/

EE I S . S T N

*

*

*

/

Called i medi ately after an el enent has been put into the cache and the el enent already
existed in the cache. This is thus an update.

<p/ >

The { @i nk net.sf.ehcache. Cache#put (net. sf. ehcache. El enrent)} et hod
will block until this method returns.

<p/ >

I mpl ementers may wi sh to have access to the Element’s fields, including value, so the
el ement is provided. Inmplenenters should be careful not to nodify the el enent. The
effect of any nodifications is undefined.

@ar am cache the cache emtting the notification
@aram el ement the el ement which was just put into the cache.

voi d noti fyEl ement Updat ed(fi nal Ehcache cache, final Elenent el enent) throws CacheException;

[**
* Called imediately after an elenment is <i>found</i> to be expired. The
* {@ink net.sf.ehcache. Cache#renove(Cbject)} nmethod will block until this nmethod returns.

109

<p/ >

As the {@ink Elenent} has been expired, only what was the key of the elenment is known.
<p/ >

El ements are checked for expiry in ehcache at the follow ng tines:

When a get request is nade

When an elenent is spooled to the diskStore in accordance with a MenoryStore
eviction policy

In the DiskStore when the expiry thread runs, which by default is

{@ink net.sf.ehcache. Cache#DEFAULT_EXPI RY_THREAD | NTERVAL_SECONDS}

</ ul >

If an elenent is found to be expired, it is deleted and this nethod is notified.

@ar am cache the cache emtting the notification

@ar am el enent the el enent that has just expired
<p/ >
Deadl ock Warning: expiry will often come fromthe <code>Di skSt ore</ code>
expiry thread. It holds a lock to the DiskStorea the tinme the
notification is sent. If the inplenmentation of this method calls into a
synchroni zed <code>Cache</ code> nethod and that subsequently calls into
Di skStore a deadlock will result. Accordingly inplenenters of this nmethod
shoul d not call back into Cache.

E I I D S . S N N B N N N I S

*

*/
voi d notifyEl ement Expi red(fi nal Ehcache cache, final Elenent elenent);

[**

* Gve the replicator a chance to cleanup and free resources when no | onger needed
* [

voi d di spose();

[**
Creates a clone of this listener. This nethod will only be called by ehcache before a
cache is initialized.
<p/ >

This may not be possible for listeners after they have been initialized. |nplenentations
shoul d t hrow Cl oneNot Support edException if they do not support clone.

@eturn a clone

* @hrows Cl oneNot SupportedException if the listener could not be cloned.

* [

public Object clone() throws C oneNot SupportedExcepti on;

* 0% X X X X F

The implementations need to be placed in the classpathsiblzet ehcache.
See the chapter on Classloading for details on how cladgigadithese classes will be done.

110

Chapter 22

JSR107 (JCACHE) Support

22.1 JSR107 Implementation

Ehcache provides a preview implementation of JSR107 via¢hesf . cache. j cache package.

WARNING: JSR107 is still being drafted with the ehcache rnteiimer as Co Spec Lead. This package will
continue to change until JSR107 is finalised. No attemptlvélmade to maintain backward compatiblity
between versions of the package. It is therefore recommisiodese Ehcache’s proprietary API directly.

22.2 Using JCACHE

22.2.1 Creating JCaches
JCaches can be created in two ways:

e as an ehcache decorator

e from JCache’s CacheManager

Creating a JCache using an ehcache decorator
manager in the following sample is an net.sf.ehcache.CacheManager

net . sf.jsrl07cache. Cache cache = new JCache(rmanager. get Cache("sanpl eCacheNol dl e"),

Creating a JCache using the JCache CacheManager

The JCache CacheManager only works as a singleton. Youndbtaith get | nst ance

The CacheManager uses a CacheFactory to create CachesadteFactory is specified using the Service
Provider Interface mechanism introduced in JDK1.3.

The factory is specified in theETA- | NF/ ser vi ces/ net . sf. j sr107cache. CacheFact ory resource
file. This would normally be packaged in a jar. The defaulueafor the ehcache implementation is
net . sf.ehcache. j cache. JCacheFact ory

The configuration for a cache is assembled as a map of prepeialid properties can be found in the
JavaDoc for the JCacheFactory.createCache() method.

See the following full example.

111

nul I');

CacheManager singl et onManager = CacheManager. getl nstance();
CacheFactory cacheFactory = singl et onManager . get CacheFactory();
assert Not Nul | (cacheFactory);

Map config = new HashMap();

config. put("name", "test");

config. put ("nmaxEl enent sl nMenory", "10");
config. put (" nmenoryStoreEvictionPolicy", "LFU");
config. put ("overfl owlToDi sk", "true");
config.put("eternal", "false");
config.put("timeTolLi veSeconds", "5");
config.put("timeTol dl eSeconds", "5");

config. put ("di skPersistent", "false");

confi g. put ("di skExpi ryThreadl nt erval Seconds", "120");

Cache cache = cacheFactory. createCache(config);
si ngl et onManager . regi st erCache("test", cache);

22.2.2 Getting a JCache

Once a cache is registered in CacheManager, you get it frera.th
The following example shows how to get a Cache.

manager = CacheManager. getlnstance();

Ehcache ehcache = new net. sf. ehcache. Cache("UseCache", 10, MenoryStoreEvictionPolicy.LFU,
false, null, false, 10, 10, false, 60, null);

manager . regi sterCache("test", new JCache(ehcache, null));

Cache cache = nmnager.get Cache("test");

22.2.3 Using a JCache

The JavaDoc is the best place to learn how to use a JCache.
The main point to remember is that JCache implements Maphetdstthe best way to think about it.

JCache also has some interesting asynchronous methodasiued andl oadAl | which can be used to
preload the JCache.

22.3 Problems and Limitations in JSR107

If you are used to the richer API that ehcache provides, yadne be aware of some problems and
limitations in the specification.

You can generally work around these by gettingkheache backing cache. You can then access the extra
features available in ehcache.

| *x

* Gets the backi ng Ehcache

*/

publ i ¢ Ehcache get Backi ngCache() {
return cache;

}

The following is both a critique of JCache and notes on theaEhe implementation. As a member of the
JSR107 Expert Group these notes are also intended to beasegrbve the specification.

112

22.3.1 net.sf.jsrl07cache.CacheManager

CacheManager does not have the following features:

shutdown the CacheManager - there is no way to free resoorgesrsist. Implementations may
utilise a shutdown hook, but that does not work for applaaserver redeployments, where a shut-
down listener must be used.

List caches in the CacheManager. There is no way to iterate owget a list of caches.

remove caches from the CacheManager - once its there itris thdil JVM shutdown. This does
not work well for dynamic creation, destruction and redmabf caches.

CacheManager does not provide a standard way to configuhesaé Map can be populated with
properties and passed to the factory, but there is no way figooation file can be configured. This
should be standardised so that declarative cache configuraather than programmatic, can be
achieved.

22.3.2 net.sf.jsrl07cache.CacheFactory

A property is specified in the resource services/net.&Djgcache.CacheFactory for a CacheFactory.

The factory then resolves the CacheManager which must begkesin.

A singleton CacheManager works in simple scenarios. Buetag: many where you want multiple Cache-
Managers in an application. Ehcache supports both singtreation semantics and instances and defines
the way both can coexist.

The singleton CacheManager is a limitation of the speciticat

(Alternatives: Some form of annotation and injection schgm

todo how to create caches from configuration?

22.3.3 net.sf.jsrl07cache.Cache

The spec is silent on whether a Cache can be used in the albseséacheManager. Requiring a
CacheManager makes a central place where concerns affatittaches can be managed, not just a
way of looking them up. For example, configuration for peesise and distribution.

Cache does not have a lifecycle. There is no startup and ridakin. There is no way, other than a
shutdown hook, to free resources or perform persistencetpes. Once again this will not work
for redeployment of applications in an app server.

There is no mechanism for creating a new cache from a defanfiguration such as publ i c
voi d regi sterCache(String cacheName) on CacheManager. This feature is considered in-
dispensable by frameworks such as Hibernate.

Cache does not haveget Nane() method. A cache has a name; that is how it is retrieved from the
CacheManager. But it does not know its own name. This ford@lsu&ers to keep track of the name
themselves for reporting exceptions and log messages.

Cache does not support setting a TTL override on a put.patg. Ooj ect key, Object val ue,
I ong tineToLive). Thisis a useful feature.

The spec is silent on whether the cache accepts null keyslampts. Ehcache allows all imple-
mentations. i.e.

113

cache.put(null, null);

assertNul | (cache.get(null));

cache. put(null, "value");

assert Equal s("val ue", cache.get(null));
cache. put ("key", null);

assert Equal s(null, cache. get("key"));

nul | is effectively a valid key. However becausel | id not an instance oferi al i zabl e null-
keyed entries will be limited to in-process memory.

e Thel oad(Obj ect key),l oadAl | (Col | ection keys) andget Al | (Col | ecti on col |l ection)
methods specify in the javadoc that they should be asyncduriNow, most load methods work off
a database or some other relatively slow resource (othetwise would be no need to have a cache
in the first place).

To avoid running out of threads, these load requests need tpubued and use a finite number of
threads. The ehcache implementation does that. Howewetodhe lack of lifecycle management,
there is no immediate way to free resources such as thredsl poo

e Thel oad method ignores a request if the element is already loadeut ith&t key.

e get andget Al | are inconsistentget Al | throws CacheException, bget does not. They both

should.
| *x
* Returns a collection view of the values contained in this map. The
* collection is backed by the map, so changes to the nmap are reflected in
* the collection, and vice-versa. |If the map is nodified while an
* jteration over the collection is in progress (except through the
* jterator’s own <tt>renove</tt> operation), the results of the
* jteration are undefined. The collection supports el enent renoval,
* whi ch renoves the correspondi ng mappi ng fromthe map, via the
* <tt>lterator.renmove</tt>, <tt>Collection.renove</tt>,
* <tt>renoveAl |l </tt> <tt>retainAll</tt> and <tt>clear</tt> operations.
* |t does not support the add or <tt>addAll</tt> operations.
* <p/>
*

*

@eturn a collection view of the values contained in this nap.
*/
public Collection values() {

It is not practical or desirable to support this contract.c&dhe has multiple maps for storage of
elements so there is no single backing map. Allowing chatg@sopagate from a change in the
collection maps would break the public interface of the esahd introduce subtle threading issues.

The ehcache implementation returns a new collection wtsgtot connected to internal structures
in ehcache.

22.3.4 net.sf.jsrl07cache.CacheEntry

e getHits() returns int. It should return long because préidunccache systems have entries hit more
than Integer.MAX_VALUE times.

Once you get to Integer.MAX_VALUE the counter rolls overeSke following test:

public void testintOverflow) {
Il ong val ue = I nteger. MAX VALUE;
val ue += I nteger. MVAX_VALUE;

114

val ue += 5;

LOG info("" + val ue);

int valueAslnt = (int) val ue;
LOG i nfo("" + val ueAsint);
assert Equal s(3, val ueAsint);

e get Cost () requirs the CacheEntry to know where itis. Ifitis in a Distke®tthen its cost of retrieval
could be higher than if it is in heap memory. Ehcache elendmtsot have this concept, and it is not
implemented. i.e. getCost always returns 0. Also, if it isha DiskStore, when you retrieve it is in
then in the MemoryStore and its retrieval cost is a lot loweo not see the point of this method.

e get Last Updat eTi me() is the time the last "update was made". JCACHE does not suppdates,
only puts

22.3.5 net.sf.jsrl07cache.CacheStatistics

e getObjectCount() is a strange name. How about getSize@Zédiche entry is an object graph each
entry will have more than one "object" in it. But the cacheesizwhat is really meant, so why not
call it that?

e Once agaimget CacheHi t s andget CacheM sses should be longs.

public interface CacheStatistics {
public static final int STATI STI CS_ACCURACY_NONE = O;
public static final int STATI STI CS_ACCURACY_BEST_EFFORT = 1;
public static final int STATI STI CS_ACCURACY_ GUARANTEED = 2;
public int getStatisticsAccuracy();
public int getObjectCount();
public int getCacheHits();

public int getCacheM sses();

public void clearStatistics();

e There is aget Stati sti csAccuracy() method but not a corresponding setStatisticsAccuracy
method on Cache, so that you can alter the accuracy of thist&steturned.

Ehcache supports this behaviour.

e There is no method to estimate memory use of a cache. Ehcaihkzes each Element to a byte][]
one at a time and adds the serialized sizes up. Not perfebeltgrr than nothing and works on older
JDKs.

e CacheStatistics is obtained usingche. get CacheSt ati sti cs() It then has getters for values.
In this way it feels like a value object. The ehcache impletaton is Serializable so that it can act
as a DTO. However it also has a clearStatistics() methods Miethod clear counters on the Cache.
Clearly CacheStatistics must hold a reference to Cachedtolethis to happen.

115

But what if you are really using it as a value object and haviakeed it? The ehcache implementa-
tion marks the Cache referencetasansi ent . If clearStatistics() is called when the cache reference
is no longer there, an lllegalStateException is thrown.

A much better solution would be to move clearStatisticsGathe.
22.3.6 net.sf.jsrl07cache.CacheListener

| **
* |Interface describing various events that can happen as elenents are added to
* or renoved froma cache
*/
public interface Cachelistener {
[+* Triggered when a cache mapping is created due to the cache | oader being consulted */
public void onLoad(Obj ect key);

[+* Triggered when a cache mapping is created due to calling Cache.put() =/
public void onPut (Object key);

[+* Triggered when a cache mapping is renoved due to eviction */
public void onEvict(CObject key);

[+ Triggered when a cache mapping is renoved due to calling Cache.renove() =/
public void onRenpbve(Obj ect key);

public void ond ear();

e Listeners often need not just the key, but the cache Entif.it¥his listener interface is extremely
limiting.
e There is no onUpdate notification method. These are mapp#dACHE’s onPut notification.

e There is no onExpired notification method. These are mapp@@ACHE’s onEvict notification.

22.3.7 net.sfjsrl07cache.CachelLoader

e JCache can store null values against a key. In this case, aché&@et or get Al | should an im-
plementation attempt to load these values again? They thayle been null in the system the Cach-
eLoader loads from, but now aren’t. The ehcache implemientatill still return nulls, which is
probably the correct behaviour. This point should be cldifi

22.4 Other Areas

2241 JIMX

JSR107 is silent on JIMX which has been included in the JDKesinb.

116

Chapter 23

Tomcat Issues and Best Practices

Ehcache is probably used most commonly with Tomcat. Thiptemnalocuments some known issues with
Tomcat and recommended practices.

Ehcache’s own caching and gzip filter integration tests gairest Tomcat 5.5 and Tomcat 6. Tomcat will
continue to be tested against ehcache. Accordingly Toradagrione for ehcache.

23.1 Tomcat Known Issues

Because Tomcat is so widely used, over time a list of knowmeisdas been compiled. These issues and
their solutions are listed below.

23.1.1 If | restart/reload a web application in Tomcat that has a CacheManager
that is part of a cluster, the CacheManager is unable to rejan the cluster.
If |1 set logging for net.sf.ehcache.distribution to FINE | see the following
exception: "FINE: Unable to lookup remote cache peer for ... Removing
from peer list. Cause was: error unmarshalling return; nested exception is:
java.io.EOFException.

The Tomcat and RMI classloaders do not get along that welveMdtnicache.jar to STOMCAT _HOME/common/lib.
This fixes the problem. This issue happens with anythingubas RMI, not just ehcache.

23.1.2 Indevelopment, there appear to be classloader memgaleak as | continually
redeploy my web application.

There are lots of causes of memory leaks on redeploy. Mowiieg&he and backport-util-concurrent out
of the WAR and into STOMCAT/common/lib fixes this leak.

23.1.3 | get net.sf.ehcache.CacheException: Problem stag listener for RMI-
CachePeer ... java.rmi.UnmarshalException: error unmar$alling argu-
ments; nested exception is: java.net.MalformedURLExcepbn: no proto-
col: Files/Apache. What is going on?

This issue occurs to any RMI listener started on Tomcat wwem&mcat has spaces in its installation
path.

117

Itis is a JDK bug which can be worked around in Tomcat.

See http://archives.java.sun.com/cgi-bin/wa?A2=ifd&_=rmi-users&P=797 and http://www.ontotext.com/kaot/sys-
doc/fag-howto-bugs/known-bugs.html.

The workaround is to remove the spaces in your tomcat iasi@tl path.

23.1.4 Multiple Host Entries in Tomcat's server.xml stops eplication from occur-
ring

The presence of multipldostentries in Tomcat's server.xml prevents replication frazowring. The issue
is with adding multiple hosts on a single Tomcat connectbonk of the hosts is localhost and another
starts with v, then the caching between machines when dpiticalhost stops working correctly.

The workaround is to use a singhostentry or to make sure they don't start with "v".
Why this issue occurs is presently unknown, but is Tomcatifipe

118

Chapter 24

Building from Source

24.1 Building Approach

Ehcache is transitioning, slowly, from a full ant based ¢htd a Maven build. At present ant is used to
build, but using Maven Antlib for dependency resolution.

The website and documentation are built using Maven.

Because of the transition, the ant based ehcache build issubalirectory called core in the ehcache
directory.

24.2 Building an ehcache distribution from source

To build Ehcache from source:

1.
2.

3.

Check the source out from the subversion repository.

Ensure you have a valid JAVA_ HOME and ANT_HOME configurathvbinaries for both in your
PATH

From within the ehcache/core directory, type

24.3 Running Tests for Ehcache

To run the test suite for Ehcache:

1.
2.

Check the source out from the subversion repository.

Ensure you have a valid JAVA_ HOME and ANT_HOME configurathvbinaries for both in your
PATH

The integration tests rely on a standard Tomcat to beliedtdDefine TOMCAT _HOME to point to
a Tomcat 5 or 6 installation.

From within the ehcache/core directory, type t est

If some performance tests fail, add@ net . sf. ehcache. speedAdj ust ment Fact or =x System
property to your command line, where x is how many times yoachine is slower than the reference
machine. Try setting it to 5 for a start.

119

24.4 Building the Site

(These instructions are for project maintainers)
You need the following unix utilities installed:

e Maven 2.0.5
o latex or tetex
e ghostscript
e pdftk

e aptconvert

e netpbm
You also need a yDoc license.
With all that, build the site as below:

m/n conpile site:site site:deploy

24.5 Deploying arelease

24.5.1 Sourceforge Release

ant dist-tgz

then manually upload to SourceForge and complete the fédaselprocess

24.5.2 Central Maven Repository

mvn depl oy

This deploys to http://ehcache.sourceforge.net/repggitvhich is synced with the Maven central reposi-
tory.

120

Chapter 25

Frequently Asked Questions

25.1 Does ehcache run on JDK1.3?

Yes. It runs on JDK1.3, 1.4 and 5. The restriction for JDKE.8hiat you must either use the precompiled
ehcache.jar or build it using JDK1.4 with a target of 1.3. sTisi because ehcache makes use of some
JDK1.4 features but substitutes alternatives at runtimelides not find those features.

25.2 Canyou use more than one instance of ehcache in a singls¥

As of ehcache-1.2, yes. Create your CacheManager using aehe®anager(...) and keep hold of the
reference. The singleton approach accessible with thegatice(...) method is still available too. Re-
member that ehcache can supports hundreds of caches wiliGacheManager. You would use separate
CacheManagers where you want quite different configuration

The Hibernate EhCacheProvider has also been updated torstinip behaviour.

25.3 Can you use ehcache with Hibernate and outside of Hibeate
at the same time?

Yes. You use 1 instance of ehcache and 1 ehcache.xml. Yowaooafyour caches with Hibernate names
for use by Hibernate. You can have other caches which yotsicttavith directly outside of Hibernate.

That is how | use ehcache in the original project it was dguedoin. For Hibernate we have about 80
Domain Object caches, 10 StandardQueryCaches, 15 Dom@ct@pllection caches.

We have around 5 general caches we interact with directlyguBlockingCacheManager. We have 15
general caches we interact with directly using SelfPojnd&acheManager. You can use one of those or
you can just use CacheManager directly.

| have updated the documentation extensively over the &stdays. Check it out and let me know if
you have any questions. See the tests for example code aptheirtaches directly. Look at CacheMan-
agerTest, CacheTest and SelfPopulatingCacheTest.

121

25.4 What happens when maxElementsinMemory is reached? Are
the oldest items are expired when new ones come in?

When the maximum number of elements in memory is reachededisérecently used ("LRU") element is
removed. Used in this case means inserted with a put or aztesth a get.

If the overflowToDisk cache attribute is false, the LRU Elernis discarded. If true, it is transferred
asynchronously to the DiskStore.

25.5 Isitthread safe to modify Element values after retrieal from a
Cache?

Remember that a value in a cache element is globally acée$sin multiple threads. It is inherently not
thread safe to modify the value. It is safer to retrieve a@alielete the cache element and then reinsert the
value.

The UpdatingCacheEntryFactory does work by modifying thretents of values in place in the cache. This
is outside of the core of ehcache and is targeted at highpeaface CacheEntryFactories for SelfPopulat-
ingCaches.

25.6 Can non-Serializable objects be stored in a cache?

As of ehcache-1.2, they can be stored in caches with Memorgst

Elements attempted to be replicated or overflowed to diskheilremoved and a warning logged if not
Serializable.

25.7 Why is there an expiry thread for the DiskStore but not fa the
MemoryStore?

Because the memory store has a fixed maximum number of elenitamill have a maximum memory use
equal to the number of elements * the average size. When areatds added beyond the maximum size,
the LRU element gets pushed into the DiskStore.

While we could have an expiry thread to expire elements paradly, it is far more efficient to only check
when we need to. The tradeoff is higher average memory use.

The DiskStore’s size is unbounded. The expiry thread ke®pslisk store clean. There is hopefully less
contention for the DiskStore’s locks because commonly wsdaks are in the MemoryStore. We mount
our DiskStore on Linux using RAMFS so it is using OS memory. ie/lwe have more of this than the

2GB 32 bit process size limit it is still an expensive reseuithe DiskStore thread keeps it under control.

If you are concerned about cpu utilisation and locking inDiekStore, you can set the diskExpiryThread-
IntervalSeconds to a high number - say 1 day. Or you can efédgturn it off by setting the diskExpiry-
ThreadintervalSeconds to a very large value.

25.8 What elements are mandatory in ehcache.xml?

The documentation has been updated with comprehensiveagw/ef the schema for ehcache and all
elements and attributes, including whether they are mangleee the Declarative Configuration chapter.

122

25.9 Can | use ehcache as a memory cache only?

Yes. Just set the overflowToDisk attribute of cache to false.

25.10 Can | use ehcache as a disk cache only?

Yes. Set the maxElementsinMemory attribute of cache to 0.

This is strongly not recommended however. The minimum renended value is 1. Performance is as
much as 10 times higher when to one rather than 0. If not setéast 1 a warning will be issued at Cache
creation time.

25.11 Where is the source code? The source code is distribdten
the root directory of the download.

Itis called ehcache-x.x.zip. It is also available from S@korge online or through SVN.

25.12 How do you get statistics on an Element without affecig them?

Use the Cache.getQuiet() method. It returns an Elemenbwithpdating statistics.

25.13 How do you get WebSphere to work with ehcache?

It has been reported that IBM Websphere 5.1 running on IBM J3Kequires commons-collection.jar in
its classpath even though ehcache will not use it for IDKadHDKS5.

25.14 Do you need to call CacheManager.getinstance().sllatvn()
when you finish with ehcache?

Yes, it is recommended. If the JVM keeps running after yop stsing ehcache, you should call Cache-
Manager.getinstance().shutdown() so that the threadst@pped and cache memory released back to the
JVM. Calling shutdown also insures that your persisterk disres get written to disk in a consistent state
and will be usable the next time they are used.

If the CacheManager does not get shutdown it should not belagm. There is a shutdown hook which
calls the shutdown on JVM exit. This is explained in the doeatation here.

25.15 Can you use ehcache after a CacheManager.shutdown()?

Yes. When you call CacheManager.shutdown() is sets théesimgin CacheManager to null. If you try an
use a cache after this you will get a CacheException.

You need to call CacheManager.create(). It will create adbreew one good to go. Internally the Cache-
Manager singleton gets set to the new one. So you can credighatdown as many times as you like.

There is a test which expliciyly confirms this behaviour. SaeheManagerTest#testCreateShutdownCreate()

123

25.16 | have created a new cache and its status is STATUS _UNINALISED.
How do I initialise it?

You need to add a newly created cache to a CacheManager liefmts intialised. Use code like the
following:

CacheManager manager = CacheManager.create();
Cache nyCache = new Cache("testDi skOnly", 0, true, false, 5, 2);
nmanager . addCache(nmyCache) ;

25.17 Isthere a simple way to disable ehcache when testing?

Yes. There is a System Property based method of disabliraghbcIf disabled no elements will be added
to a cache. Set the property "net.sf.ehcache.disablegl4ttrdisable ehcache.

This can easily be done usin@net . sf . ehcache. di sabl ed=t r ue>in the command line.

25.18 Isthere a Maven bundle for ehcache?

Yes. http://www.ibiblio.org/maven/net.sf.ehcache/débcache-1.2 and higher.
http://www.ibiblio.org/maven/ehcache/ for earlier vierss.

25.19 How do | dynamically change Cache attributes at runtine?

You can’t but you can achieve the same result as follows:
Cache cache = new Cache("test2", 1, true, true, 0, O, tri®,.1P cacheManager.addCache(cache);
See the JavaDoc for the full parameters, also reproduced her

Having created the new cache, get a list of keys using caetieys, then get each one and put it in the
new cache. None of this will use much memory because the nelwecdement have values that reference
the same data as the original cache. Then use cacheMapag®raCache("oldcachename") to remove the
original cache.

25.20 | get net.sf.ehcache.distribution.RemoteCacheEsption: Er-
ror doing put to remote peerremote peer. Message was: Error
unmarshaling return header; nested exception is: java.neSocketTimeoutEXce
Read timed out. What does this mean.

It typically means you need to increase your socketTimedlgM This is the amount of time a sender
should wait for the call to the remote peer to complete. Havglit takes depends on the network and the
size of the Elements being replicated.

The configuration that controls this is the socketTimeollit/$etting in cacheManagerPeerListenerFac-
tory. 120000 seems to work well for most scenarios.

<cacheManager Peer Li st ener Fact ory
cl ass="net. sf.ehcache. di stri buti on. RM CacheManager Peer Li st ener Fact ory"

124

properties="host Name=ful | y_qual i fi ed_host nane_or _ip,
port =40001,
socket Ti meout M | | i s=120000"/ >

25.21 Should | use this directive when doing distributed cdung?
cacheManager EventListenerFactory class="" properties=""/

No. Itis unrelated. It is for listening to changes in yourdb€acheManager.

25.22 What is the minimum config to get distributed caching gmg?
The minimum configuration you need to get distributed caglgioing is:

<cacheManager Peer Pr ovi der Fact ory
cl ass="net. sf.ehcache. di stri buti on. RM CacheManager Peer Pr ovi der Fact ory"
properti es="peer D scovery=autonatic,
mul ti cast G oupAddr ess=230.0.0. 1,
mul ti cast G oupPort =4446"/ >

<cacheManager Peer Li st ener Fact ory
cl ass="net. sf. ehcache. di stri buti on. RM CacheManager Peer Li st ener Factory"/ >

and then at least one cache declaration with
<cacheEvent Li stener Factory cl ass="net. sf.ehcache. di stribution. RM CacheRepl i cat or Fact ory"/>>>>

in it. An example cache is:

<cache nane="sanpl eDi stri but edCachel"

maxEl enent s| nMenor y="10"

eternal ="fal se"

ti meTol dl eSeconds="100"

ti meTolLi veSeconds="100"

overfl owToDi sk="fal se">

<cacheEvent Li st ener Factory cl ass="net. sf.ehcache. di stri buti on. RM CacheRepl i cat or Fact ory"/

</ cache>

Each server in the cluster can have the same config.

25.23 How can | see if distributed caching is working?

You should see the listener port open on each server.
You can use the distributed debug tool to see what is goingSee).

125

25.24 Why can’t | run multiple applications using ehcache onone
machine?

Because of an RMI bug, in JDKs before JDK1.5 such as JDK1efi@che is limited to one CacheManager
operating in distributed mode per virtual machine. (The lonits the number of RMI registries to one
per virtual machine). Because this is the expected deplayeenfiguration, however, there should be
no practical effect. The tell tail error jsava. rmi . server. Export Exception: internal error:

oj I D already in use

On JDK1.5 and higher it is possible to have multiple Cachehd@ns per VM each participating in the
same or different clusters. Indeed the replication testhidowith 5 CacheManagers on the same VM all
run from JUnit.

25.25 How many threads does ehcache use, and how much memory
does that consume?

The amount of memory consumed per thread is determined Wytdek Size. This is set using -Xss. The
amount varies by OS. Itis 512KB for Linux. | tend to overritie default and set it to 100kb.

The threads are created per cache as follows:

e DiskStore expiry thread - if DiskStore is used
e DiskStore spool thread - if DiskStore is used

¢ Replication thread - if asynchronous replication is corégll
If you are not doing any of the above, no extra threads ar¢extea

25.26 | am using Tomcat 5, 5.5 or 6 and | am having a problem.
What can | do?

Tomcat is such a common deployment option for applicatisisgiehcache that there is a chapter on
known issues and recommended practices. See the Usingleheib Tomcat chapter. (http://ehcache.sourceforgeloetmenta

126

Chapter 26

About the encache name and logo

Adam Murdoch (an all round top Java coder) came up with theeriara moment of inspiration while we
were stuck on the SourceForge project create page. Ehcaehgdlindrome. We thought the name was
wicked cool.

B EH HE

The logo is similarly symmetrical, and is evocative of thagiam symbol for a doubly-linked list. The
JDK1.4 LinkedHashMap, and Apache’s LRUMap are a HashMalp avitoubly-linked list running through
all of its entries. These structures lie at the heart of efieac

127

Index

A Disk Persistenceondemand................... 42
About the ehcache name and logo........... 12, 1DISKSIOre . ..o 72
AdamMurdoch......................... 12, 12DiskStore Eviction Algorithms 37
Adding and Removing Caches Programmatically4istributed 25
Amdahl'sLaw............... ..., 18istributed Caching 26
Apache 2.0license..............ccovvviii.t. 3Distributed Failure 98
AsynchronousCommandExecutor............ 101
Automated Load, Limit and Performance System Tests

28 Ehcache......... 34
Automatic Peer Discovery gghcache constructso i 97

ehcachexsd i i 61

B ehcache-1.x-remote-debugger.jar.............. 48
BlockingCache...........c.ovvviiininnnn.s. oglement......... ... 35
B|ocking Cache to avoid dup"cate processing fdERROR 47

concurrent operations 2EXpiry Strategy ... oo 71
B|ockingCache ______________________________ 5§xtensible 27
Bootstrapping fromPeers..................... 27
Browsethe JUnitTestscovenn.. 47

Fast. ... 22

C Features........ ... 21
Cache CONfigurationcoeveini., 6rlIFO ... PR EERERERE 36
Cache Decoratorsoovueuneeneen... g7ushtodiskondemand...................... 26
Cache EventListeners....................... 1¢ ¢!l implementation of JSR107 JCACHE API . . 25
Cacheeventlisteners..................cove... Fgll public information on the history of every bug
Cache Sizeand Eviction...................... 36 29
Cache Usage Patterns......................... Gylly documented ... 29
Cacheable Commands........................ 29
CacheManager............ccoiiiiiinnennnnnnn. 3 .
CacheManager Event Listeners............... 1 neral Purpose Caching..................... 19
CacheManagerlisteners 26
CacheManagerEventL!stener """"""""" 104bernateo o 77
CachgMapagerEventLlstenerFactory """"" 19hernate Caching..........covviiiin ., 77
CachingFilter...............ooi, 10Qibernate DOCIELvveeeeeeeeaen 79
Code Samples ..., Hibernate Mapping Files. 78
Commons Logging..................oooeeee. Aligh QUality 28
Conﬁgurat_lon R R EE PR EER PP RERPP RS 10_F|igh TESt COVEIAGE « + v e e 28
Conservative Commit policy 29
Copy Or Invalidate Replication................ 27
CPU bound Applications 14/0 bound Applications 14
Creating a new cache fromdefaults 4hplementing a CacheEventListenerFactory and CacheEigent
Creating a new cache with custom parameters...43 108 1=) S 108
5 InstanceMode ..., 32
Deadlock............ ... 98
DEBUG. ... 470ava Requirementsc.oiiiiiiine... 45

128

JDK1.410gQiNg . vvvei i 47 78
JEE and Applied Caching..................... 2lProvides LRU, LFU and FIFO cache eviction poli-
JEE Gzipping ServletFilter 27 ClBS . 24
IMX . 4%Provides Memory and Disk stores 25
JMXEnabled.................. 2@®rovides Memory and Disk stores for scalabilty into
JSR107 (JCACHE) Support.................. 111 gigabytes........... ...l 24
JSR107 Implementation..................... 111
R
K Registering CacheStatistics in an MBeanServer . 44
Key Ehcache Conceptscovvn... FReliable Delivery 27
Remote Network debugging and monitoring for Dis-
L tributed Caches..................... 48
LeastRecentlyUsed 36, #2placeCacheWithDecoratedCache............. 57
LessFrequentlyUsed 36, Resource Exhaustion......................... 98
LFU. .o 36, 7Responsiveness to seriousbugs................ 30
Listeners may be pluggedin................... 25
LiveloCK . ..o 985
Liveness Failurescooooin.. 98afety Failures................ ... it 98
Loading of ehcache.xmlresources............. Salable to hundredsof caches 24
Locality of Reference......................... 1SelfPopulating Cache for pull through caching of
0G4 . 47 expensive operations 27
LRU .o 36, 78elfPopulatingCache..................... 59, 100
Setting ehcache as the cache provider 77
M Shutdown the CacheManager.................. 41
Manual Peer Discovery..............coovuun.. 93hutting Down Ehcache 75
Memory Store ... 7Bimple. ... 23
MemoryStore Eviction Algorithms............. 365IMpIeLog ... 47
Minimal dependencies........................ 28implePageCachingFilter 100
Missed Signals.............. ... 98implePageFragmentCachingFilter 101
Mixed Singleton and Instance Mode 38ingletonMode. ... 32
Multiple CacheManagers per virtual machine ... 28ingleton versus Instance 39
Small footprint........... i, 23
N Specific Concurrency Testing.................. 29
Nested monitor lockouts 98pooling ... 71
Stampede ... 98
0 Starvation ... 98
Obtaining a referencetoa Cache Support cache-wide or Element-based expiry poli-
Obtaining Cache Sizes........................ 42 CIBS . o 24
Obtaining Statistics of Cache Hits and Misses. . . &upported Eviction Algorithms................ 36
Open Source Licensing....................... 3Bupports Object or Serializable caching 24
Synchronous Or Asynchronous Replication. 27
P
PageFragmentCachingFilter.................. 100
Peer DiSCOVery ..ot 26,9ThelongTailcoviviiii i 13
Peer Discovery, Replicators and Listeners may lfeansparent Replication....................... 27
pluggedin.......................... 25Trusted by Popular Frameworks 29
Performance Considerations................... S%ned for high concurrent load on large multi-cpu
Performing CRUD operations 41 SBIVEIS . ottt et 24
Persistenceo 73
Persistent disk store which stores data between ¥/
restarts. ..., 2%JsingCaches.............. 41
Pluginclassloading...................ocoout. 5BISINgJCACHE 111
Productiontested il 29sing the CacheManager 39

129

Using the ehcache provider from the Hibernate project

78
w
WARNING. ... e 47
Ways of loading Cache Configuration.......... 40
Works with Hibernate 28

130

