Ehcache v1.2.3 User Guide

Greg Luck

2 September 2006

Ehcache v1.2.3 User Guide

Contents

1 Preface
1.1 Audience
1.2 BookFormat
1.3 Acknowledgements e
1.4 Aboutthe ehcachenameandlogo

2 Introduction

2.1 AboutCaches e e

2.2 Whycachingworks e e
2.2.1 Localityof Reference. e
222 ThelongTail. e

2.3 Wil an Application Benefit from Caching?
2.3.1 Speeding up CPU bound Applications
2.3.2 Speeding up I/O bound Applications L.
2.3.3 Increased Application Scalability 0.

2.4 How much will an application speed up with Caching?
2.4.1 Theshortanswer e
2.4.2 Applying Amdahl'sLaw e
2.4.3 CachekEfficiency
2.4.4 Cluster Efficiency. e e
245 Acacheversionof Amdahl'slaw
24.6 WebPageexample

3 Getting Started
3.1 GeneralPurposeCaching e
3.2 Hibernate e
3.3 J2EE ServletCaching e
3.4 Spring, Cocoon, Acegi and otherframeworks

4 Features
4.1 FastandLightWeight. e

11

11
11
11
12

13
13
13
13
13
14
14
14
15
15
15
15
16
17
17
18

19
19
19
19
20

21

Ehcache v1.2.3 User Guide

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.1.1 Fast e 22
4.1.2 Simple e 23
4.1.3 Smallfootprint e 23
4.1.4 Minimaldependencies e 24
Scalable e 24
4.2.1 Provides Memory and Disk stores for scalabilty ingadpytes 24
4.2.2 Scalableto hundredsofcaches 24
4.2.3 Tuned for high concurrent load on large multi-cpueesv. 24

4.2.4 Multiple CacheManagers per virtualmachine 24

Complete e 24
4.3.1 Supports Object or Serializablecaching 24
4.3.2 Support cache-wide or Element-based expiry policies 24
4.3.3 Provides LRU, LFU and FIFO cache eviction policies 24
4.3.4 Provides Memory and Diskstores L. 25
435 Distributed 25
Extensible e 25
4.4.1 Listenersmay be pluggedin 25
4.4.2 Peer Discovery, Replicators and Listenersmay beggeldgn 25
Application Persistence e e 25
45.1 Persistent disk store which stores data betweenVtdrtes 25
45.2 Flushtodiskondemand 25
Listeners. e 25
4.6.1 CacheManagerlisteners e 25
4.6.2 Cacheeventlisteners e 26
Distributed Caching e e 26
4.7.1 PeerDiSCOVEIY e 26
4.7.2 Reliable Delivery e e 26
4.7.3 Synchronous Or Asynchronous Replication 26
4.7.4 Copy Or Invalidate Replication 26
4.7.5 TransparentReplication 26
4.7.6 Extensible. 26
4.7.7 BootstrappingfromPeers 27
J2EE and Applied Caching e 27
4.8.1 Blocking Cache to avoid duplicate processing for corent operations 27
4.8.2 SelfPopulating Cache for pull through caching of evgdee operations 27
4.8.3 J2EE Gzipping ServletFilter L o 27
484 CacheableCommands iiiinun 27
4.85 Workswith Hibernate 28
HighQuality e 28

49.1 HighTestCoverage o o o i i i i e 28

Ehcache v1.2.3 User Guide 5
4.9.2 Automated Load, Limit and Performance SystemTests 28

4.9.3 SpecificConcurrency Testing i 28

4.9.4 Productiontested e 28

4.9.5 Fullydocumented e 29

4.9.6 Trusted by Popular Frameworks, 29

4.9.7 Conservative Commitpolicy e 29
4.9.8 Full public information on the history ofeverybug 29

4.9.9 Responsiveness to serious bugs 29

4.10 Open SourcelLicensing e 29
4.10.1 Apache2.0license e 29

5 Key Ehcache Concepts 31
5.1 KeyEhcacheClasses e 31
5.1.1 CacheManager e 32

5.1.2 Ehcache. e 34

5.1.3 Element e 35

5.2 Cache Eviction Algorithms e 36
5.2.1 AboutEviction Algorithms 36

5.2.2 Ehcache’s Eviction Algorithmso L 36

5.3 CacheUsagePatterns e e 37
5.3.1 DirectManipulation e 37

5.3.2 SelfPopulating e e 37

6 Code Samples 39
6.1 Usingthe CacheManager e 39
6.1.1 Singletonversusinstance. e 39

6.1.2 Ways of loading Cache Configuration 40

6.1.3 Adding and Removing Caches Programmatically 40

6.1.4 Shutdownthe CacheManager c.o... 41

6.2 UsingCaches e 41
6.2.1 ObtainingareferencetoaCache «o...... 41

6.2.2 Performing CRUD operations i 41

6.2.3 Disk Persistenceondemand e e 42

6.2.4 ObtainingCache Sizes 42

6.2.5 Obtaining Statistics of Cache HitsandMisses 42

6.3 Creatinganewcachefromdefaults., 43
6.4 Creating a new cache with custom parameters 43
6.5 BrowsetheJUnitTests e e 44

7 Dependencies 45
7.1 JavaRequirements e e 45

Ehcache v1.2.3 User Guide

7.2 Dependencies e 45
Logging And Debugging 47
8.1 CommonsLogging e a7
8.2 Logging Philosophy a7
8.3 Remote Network debugging and monitoring for Distribu@aches 48
Class loading and Class Loaders 49
9.1 Pluginclassloading e 49
9.2 Loading of ehcache.xmlresources ae 50
Performance Considerations 51
10.1 DiskStore e 51
10.2 Replication 51
Cache Decorators 53
11.1 CreatingaDecorator e e 53
11.2 Accessingthe decoratedcache 53
11.2.1 Using CacheManager to access decoratedcaches 53
11.3 Built-inDecorators e e e 54
11.3.1 BlockingCache e 54
11.3.2 SelfPopulatingCache 56
Cache Configuration 57
12.1 ehcache.xxsd L e 57
12.2 ehcache-failsafexml e 59
12.3 ehcache.xml and other configurationfiles 59
Storage Options 67
13.1 Memory SEtOre o o e e e e e e e 67
13.1.1 Memory Use, Spooling and Expiry Strategy 67
13.2 DiskStore e e 68
Virtual Machine Shutdown Considerations 71
A 71
Hibernate Caching 73

15.1 Setting ehcache asthe cacheprovider 73

15.1.1 Using the ehcache provider from the ehcache project 73
15.1.2 Using the ehcache provider from the Hibernate ptojec. 74
15.1.3 Programmatic setting of the Hibernate Cache Provide 74
15.2 Hibernate Mapping Files e e 74

15.2.1 read-write L e e e 75

Ehcache v1.2.3 User Guide 7

16

15.2.2 nonstrict-read-write 75
15.2.3 read-only 75
15.3 Hibernate Doclet e e 75
15.4 Configuration with ehcache.xml L oo 76
15.4.1 DomainObjects 76
15.4.2 Hibernate e . 76
15.4.3 Collections e 76
15.4.4 Hibernate CacheConcurrencyStrategy 77
1545 QUETIES o e 77
15.4.6 StandardQueryCache e 77
15.4.7 UpdateTimestampsCache. oo ... 77
15.4.8 NamedQueryCaches immn 77
15.4.9 UsingQueryCaches e 78
15.4.10 Hibernate CacheConcurrencyStrategy« ..o v oo .. 78
15.5 Hibernate Caching Performance Tips i v v i v oo 78
15.5.1 In-ProcessCache e 78
15.5.2 Objectld 79
15.5.3 Sessiondoad e 79
15.5.4 Session.findand Query.find L 79
15.5.5 Session.iterate and Query.iterateo 79
The Design of distributed ehcache 81
16.1 Acknowledgements L e 81
16.2 Problems with Instance Caches in a Clustered Envirabhme 81
16.3 Replicated Cache e 81
16.4 Distributed Cache Terms e 82
16.5 Notification Strategies e e 82
16.6 Topology ChoiCces e e 82
16.6.1 PeerCache Replicator 82
16.6.2 Centralised Cache Replicator 82
16.7 Discovery Choices e e 82
16.7.1 Multicast Discovery e e e 82
16.7.2 StaticList e 83
16.8 Delivery Mechanism Choices e 83
16.8.1 Custom Socket Protocol 83
16.8.2 Multicast Delivery e 83
16.8.3 JMSTOPICS o e 83
16.8.4 RMI RMI is the default RPC mechanisminJava. 83
16.8.5 IXTA . . . e 83

16.8.6 JGroUPS o v e e 83

Ehcache v1.2.3 User Guide

17

18

16.9 Replication Drawbacks and Solutions in ehcache’semghtation

16.8.7

16.9.1
16.9.2
16.9.3
16.9.4
16.9.5

The Default Implementation uu......

Chatty Protocol e
Redundant Notifications e
Potential for InconsisentData o
Synchronous Delivery e
Update via lnvalidation

Distributed Caching
17.1 Suitable ElementTypes e e

17.2 Peer DISCOVEIY o e e e e e

17.21
17.2.2

Automatic Peer Discovery e
Manual Peer Discovery e e

17.3 Configuring a CacheManagerPeerListener

17.4 Configuring CacheReplicators

17.5 Common Problems e

17.5.1
17.5.2

Tomcaton WIindows e e e e
Multicast Blocking e

The Design of the ehcache constructs package

18.1 Acknowledgements e

18.2 The purpose of the Constructspackage

18.3 Caching meets Concurrent Programming o oo oo oot

18.4

18.5

18.6

18.4.1
18.4.2

Safety Failures e
Liveness Failures e

The constructs e e

1851
18.5.2
18.5.3
18.5.4
18.5.5
18.5.6
18.5.7

BlockingCache e e
SelfPopulatingCache
CachingFilter e
SimplePageCachingFilter
PageFragmentCachingFilter
SimplePageFragmentCachingFilter
AsynchronousCommandExecutor

Real-life problems in the constructs package and flioditions

18.6.1
18.6.2
18.6.3

The Blocking Cache Stampede auu....
The Blank Page problem
BlockingCascade e

19 CacheManager Event Listeners

19.1 Configuration e

87
87
87
88
88

89
90

90
90
91

93
93
93
93
94
94
94
94
94
97
97
97
97
98
98
98
98
98
99

101

Ehcache v1.2.3 User Guide 9

19.2 Implementing a CacheManagerEventListenerFactahyatheManagerEventListener . . 102

20 Cache Event Listeners 105
20.1 Configuration e e e 105
20.2 Implementing a CacheEventListenerFactory and CaaeEistener 106

21 Frequently Asked Questions 109
21.1 Does ehcacherunonJDK1.3? e e 109
21.2 Canyou use more than one instance of ehcacheinasiMe V. 109
21.3 Can you use ehcache with Hibernate and outside of Hibegat the same time? 109
21.4 What happens when maxElementsinMemory is reachedthAr@dest items are expired

when new onescomein? e e e 110
21.5 Is it thread safe to modify Element values after retdi@om a Cache? 110
21.6 Can non-Serializable objects be stored in a cache? . e A K¢
21.7 Why is there an expiry thread for the DiskStore but nottie MemoryStore'7 110
21.8 What elements are mandatory in ehcachexml? 110
21.9 Canluse ehcache asamemorycacheonly? 111
21.10Can luse ehcache as adisk cacheonly? 111

21.11Where is the source code? The source code is disttiimutee root directory of the download.111

21.12How do you get statistics on an Element without affecthem? 111
21.13How do you get WebSphere to work with ehcache? 111
21.14Do you need to call CacheManager.getinstance(fletvai() when you finish with ehcache? 111
21.15Can you use ehcache after a CacheManager.shutdown(}?. 111
21.161 have created a new cache and its status is STATUS_IJIMINISED. How do | initialise

] 12
21.17Is there a simple way to disable ehcache when testing? 112
21.18Is there a Maven bundle for ehcache?. 112
21.19How do | dynamically change Cache attributes at rieftim 112

21.201 get net.sf.ehcache.distribution.RemoteCachegiiian: Error doing put to remote peerre-
mote peer. Message was: Error unmarshaling return heasltehexceptionis: java.net.SocketTimeoutException:

Read timed out. Whatdoesthismean. «u..... 112
21.21Should I use this directive when doing distributechaag? cacheManagerEventListener-

Factory class="" properties=""/ 113
21.22What is the minimum config to get distributed cachingpg® 113
21.23How can | see if distributed caching isworking? 113

21.241 get net.sf.ehcache.CacheException: Problenrgjdidtener for RMICachePeer ... java.rmi.Unmarshalftics:
error unmarshalling arguments; nested exception is: jatdalformedURLException:

no protocol: Files/Apache. Whatisgoingon? 114
21.25Why can’t | run multiple applications using ehcache@pna machine? 114
21.26How many threads does ehcache use, and how much meossyhéit consume? 114

22 About the ehcache name and logo 115

10

Ehcache v1.2.3 User Guide

Chapter 1

Preface

This is a book about ehcache, a widely used open source Jave.d@hcache has grown in size and scope
since it was introduced in October 2003. As people usedyt dfiten noticed it was missing a feature they
wanted. Over time, the features that were repeatedly asikedrid make sense for a Cache, have been
added.

Ehcache is now used for Hibernate caching, data access @hjgting, security credential caching, web
caching, application persistence and distributed cachiing biggest issue faced by Ehcache users at the
time of writing is understanding when and how to use theseifea.

1.1 Audience

The intended audience for this book is developers who usacllec It should be able to be used to start
from scratch, get up and running quickly, and also be usefutfe more complex options.

Ehcache is about performance and load reduction of underigsources. Another natural audience is
performance specialists.

It is also intended for application and enterprise arckétecSome of the features of ehcache, such as
distributed caching and J2EE caching, are alternativeg toolsidered along with other ways of solving
those problems. This book discusses the trade-offs in @letaapproach to help make a decision about
appropriateness of use.

1.2 Book Format

This is the first time that the ehcache documentation hasj@en book form suitable for use as an online
PDF or printed. It is designed to be printed from PDF, so blaages have been deliberately left to give a
good flow.

1.3 Acknowledgements

Ehcache has had many contributions in the form of forum disioms, feature requests, bug reports, patches
and code commits.

Rather than try and list the many hundreds of people who hamt&ibuted to ehcache in some way it is
better to link to the web site where contributions are ackedged in the following ways:

e Bug reports and features requests appear in the changeshepa

11

12 Ehcache v1.2.3 User Guide

e Patch contributors generally end up with an author tag irsthece they contributed to

e Team members appear on the team list page here:
Thanks to Denis Orlov for suggesting the need for a book irfitheplace.

1.4 About the ehcache name and logo

B EH HE

Adam Murdoch (an all round top Java coder) came up with theeriara moment of inspiration while we
were stuck on the SourceForge project create page. Ehcaehpalindrome. He thought the name was
wicked cool and we agreed.

The logo is similarly symmetrical, and is evocative of thagtam symbol for a doubly-linked list. That
structure lies at the heart of ehcache.

Greg Luck Brisbane, Australia June, 2006

Chapter 2

Introduction

Ehcache is a cache library. Before getting into ehcaches wadrth stepping back and thinking about
caching generally.

2.1 About Caches

Wiktionary defines a cache @sstore of things that will be required in future, and can bieved rapidly
That is the nub of it.

In computer science terms, a cache is a collection of temnpala@a which either duplicates data located
elsewhere or is the result of a computation. Once in the ¢dbkealata can be repeatedly accessed inex-
pensively.

2.2 Why caching works

2.2.1 Locality of Reference

While ehcache concerns itself with Java objects, cachinges throughout computing, from CPU caches
to the DNS system. Why? Because many computer systems elaiblity of referenceData that is near
other data or has just been used is more likely to be used.again

2.2.2 The Long Talil

Chris Anderson, of Wired Magazine, coined the téfflre Long Tailo refer to Ecommerce systems. The
idea that a small number of items may make up the bulk of salemall number of blogs might get the
most hits and so on. While there is a small list of popular gethere is a long tail of less popular ones.

The Long Tail

13

14 Ehcache v1.2.3 User Guide

The Long Tail is itself a vernacular term for a Power Law piaibgy distribution. They don't just appear
in ecommerce, but throughout nature. One form of a Power Liatwilglition is the Pareto distribution,
commonly know as the 80:20 rule.

This phenomenon is useful for caching. If 20% of objects @edB0% of the time, and the a way can be
found to reduce the cost of obtaining that 20% the systenopadnce will improve.

2.3 Will an Application Benefit from Caching?

The short answer is that it often does, due to the effectslraiieve.

The medium answer is that it often depends on whether it is G8hd or I/O bound. If an application
is I/0 bound then then the time taken to complete a compunaiipends principally on the rate at which
data can be obtained. If it is CPU bound, then the time takewipally depends on the speed of the CPU
and main memory.

While the focus for caching is on improving performance, @$o worth realizing that it reduces load. The
time it takes something to complete is usually related toettgense of it. So, caching often reduces load
on scarce resources.

2.3.1 Speeding up CPU bound Applications
CPU bound applications are often sped up by:

e improving algorithm performance
e parallelizing the computations across multiple CPUs (Shtjultiple machines (Clusters).

e upgrading the CPU speed.
The role of caching, if there is one, is to temporarily stavenputations that may be reused again.

An example from ehcache would be large web pages that haghadndering cost. Another caching
of authentication status, where authentication requingstagraphic transforms.

2.3.2 Speeding up I/O bound Applications

Many applications are I/O bound, either by disk or networknagions. In the case of databases they can
be limited by both.

There is no Moore’s law for hard disks. A 10,000 RPM disk wast 0 years ago and is still fast. Hard
disks are speeding up by using their own caching of blocksrmgmory.

Network operations can be bound by a number of factors:

e time to set up and tear down connections
e latency, or the minimum round trip time
e throughput limits

e marshalling and unmarhshalling overhead

The caching of data can often help a lot with 1/O bound appibos. Some examples of ehcache
uses are:

e Data Access Object caching for Hibernate

e Web page caching, for pages generated from databases.

Ehcache v1.2.3 User Guide 15

2.3.3 Increased Application Scalability

The flip side of increased performance is increased scijal8ly you have a database which can do 100
expensive queries per second. After that it backs up andifiections are added to it it slowly dies.

In this case, caching may be able to reduce the workloadnexdjuif caching can cause 90 of that 100 to
be cache hits and not even get to the database, then the slatatrascale 10 times higher than otherwise.

2.4 How much will an application speed up with Caching?

2.4.1 The short answer

The short answer is that it depends on a multitude of facteirsg

e how many times a cached piece of data can and is reused byjfiliesdipn

e the proportion of the response time that is alleviated byicer

In applications that are I/O bound, which is most businegtiegttions, most of the response time is
getting data from a database. Therefore the speed up megtgnds on how much reuse a piece of
data gets.

In a system where each piece of data is used just once, itas lrea system where data is reused a
lot, the speed up is large.

The long answer, unfortunately, is complicated and mathieaialt is considered next.

2.4.2 Applying Amdahl’'s Law

Amdahl’s law, after Gene Amdabhl, is used to find the systenedjpg from a speed up in part of the system.
1/ ((1 - Proportion Sped Up) + Proportion Sped Up / Speed up)

The following examples show how to apply Amdahl’s law to coamsituations. In the interests of sim-
plicity, we assume:

e asingle server

e a system with a single thing in it, which when cached, get94088che hits and lives forever.

Persistent Object Relational Caching

A Hibernate Session.load() for a single object is about 1008s faster from cache than from a database.

A typical Hibernate query will return a list of IDs from the tdhase, and then attempt to load each. If
Session.iterate() is used Hibernate goes back to the datadéoad each object.

Imagine a scenario where we execute a query against theadatalhich returns a hundred IDs and then
load each one.

The query takes 20% of the time and the roundtrip loadingstétke rest (80%). The database query itself
is 75% of the time that the operation takes. The proportiandgped up is thus 60% (75% * 80%).

The expected system speedup is thus:

16 Ehcache v1.2.3 User Guide

1/ ((1- .6) + .6/ 1000)

1/ (.4 + .006)

= 2.5 tines system speedup

Web Page Caching

An observed speed up from caching a web page is 1000 timesacBbaan retrieve a page from its
SimplePageCachingFilter in a few ms.

Because the web page is the end result of a computation, & pasportion of 100%.
The expected system speedup is thus:

1/ ((1- 1) + 1/ 1000)

1/ (0 + .001)

1000 tines system speedup

Web Page Fragment Caching

Caching the entire page is a big win. Sometimes the liverepginements vary in different parts of the
page. Here the SimplePageFragmentCachingFilter can be use

Let's say we have a 1000 fold improvement on a page fragmantdking 40% of the page render time.
The expected system speedup is thus:

1/ ((1- .4) + .4/ 1000)

1/ (6 + .004)

1.6 tinmes system speedup

2.4.3 Cache Efficiency

In real life cache entrie do not live forever. Some examphet tome close are "static" web pages or
fragments of same, like page footers, and in the databab®,regference data, such as the currencies in
the world.

Factors which affect the efficiency of a cache are:

liveness how live the data needs to be. The less live the more it can deeda

proportion of data cached what proportion of the data can fit into the resource limitthefmachine. For
32 bit Java systems, there was a hard limit of 2GB of addressespWhile now relaxed, garbage
collection issues make it harder to go a lot large. Variousti®n algorithms are used to evict excess
entries.

Shape of the usage distributionIf only 300 out of 3000 entries can be cached, but the Parstdlalition
applies, it may be that 80% of the time, those 300 will be thesorequested. This drives up the
average request lifespan.

Read/Write ratio The proportion of times data is read compared with how oftenwiritten. Things such
as the number of rooms left in a hotel will be written to quitt However the details of a room

Ehcache v1.2.3 User Guide 17

sold are immutable once created so have a maximum write ofHLavpotentially large number of
reads.

Ehcache keeps these statistics for each Cache and eachntleméhey can be measured directly
rather than estimated.

2.4.4 Cluster Efficiency

Also in real life, we generally do not find a single server?
Assume a round robin load balancer where each hit goes tetttesarver.

The cache has one entry which has a variable lifespan of ségjugay caused by a time to live. The
following table shows how that lifespan can affect hits anslsms.

Server 1 Server 2 Server 3 Server 4
M M M M
H H H H
H H H H
H H H H
H H H H

The cache hit ratios for the system as a whole are as follows:

Entry

Lifespan Ht Ratio Ht Ratio Hit Ratio Ht Ratio
in Hts 1 Server 2 Servers 3 Servers 4 Servers
2 1/ 2 0/ 2 0/ 2 0/ 2

4 3/4 2/ 4 1/ 4 0/ 4
10 9/ 10 8/ 10 7/ 10 6/ 10
20 19/ 20 18/ 20 17/ 20 16/ 10
50 49/ 50 48/ 50 47/ 20 46/ 50

The efficiency of a cluster of standalone caches is generally

(Lifespan in requests - Nunber of Standal one Caches) / Lifespan in requests

Where the lifespan is large relative to the number of stamdalcaches, cache efficiency is not much
affected.

However when the lifespan is short, cache efficiency is dtaailly affected.

(To solve this problem, ehcache supports distributed cachihere an entry put in a local cache is also
propagated to other servers in the cluster.)

2.45 A cache version of Amdahl’'s law

From the above we now have:

1/ ((1 - Proportion Sped Up * effective cache efficiency) + (Proportion Sped Up

effective cache efficiency = cache efficiency * cluster edfiy

x effective ca

18 Ehcache v1.2.3 User Guide

2.4.6 Web Page example

Applying this to the earlier web page cache example whereave bache efficiency of 35% and average
request lifespan of 10 requests and two servers:

cache efficiency = .35

cluster efficiency .(10 - 1) / 10

.9

.35 % .9

ef fective cache efficiency =
= .315

1/ ((1- 1% .315) + 1+ .315 / 1000)

1/ (.685 + .000315)

1.45 tines system speedup

What if, instead the cache efficiency is 70%; a doubling otedfficy. We keep to two servers.

cache efficiency = .70
cluster efficiency = .(10 - 1) / 10
=.9

.70 = .9
.63

ef fective cache efficiency

1/ ((1- 1% .63) +1* .63/ 1000)

1/ (.37 + .00063)

2.69 tinmes system speedup

What if, instead the cache efficiency is 90%; a doubling otedfficy. We keep to two servers.

cache efficiency = .90

cluster efficiency = .(10 - 1) / 10
=.9

.9+ .9
.81

ef fective cache efficiency

1/ ((1- 1+ .81) + 1+ .81/ 1000)

1/ (.19 + .00081)

5.24 tinmes system speedup

Why is the reduction so dramatic? Because Amdahl’s law i serssitive to the proportion of the system
that is sped up.

Chapter 3

Getting Started

Ehcache can be used directly. It can also be used with thdgrdpilbernate Object/Relational tool. Finally,
it can be used for J2EE Servlet Caching.

This quick guide gets you started on each of these. The rabealocumentation can be explored for a
deeper understanding.

3.1 General Purpose Caching

Make sure you are using a supported Java version.

Place the ehcache jar into your classpath.

Ensure that any libraries required to satisfy dependemeealso in the classpath.

Configure ehcache.xml and place it in your classpath.

Optionally, configure an appropriate logging level.
See Code Samples for more information on direct interaetitimehcache.

3.2 Hibernate

Perform the same steps as General Purpose Caching.

Create caches in ehcache.xml.

See Hibernate Caching for more information.

3.3 J2EE Servlet Caching

Perform the same steps as General Purpose Caching.

Configure a cache for your web page in ehcache.xml.

To cache an entire web page, either use SimplePageCachéngificreate your own subclass of
CachingFilter

To cache a jsp:Include or anything callable from a Requesticher, either use SimplePageFrag-
mentCachingFilter or create a subclass of PageFragmenitgdlter.

19

20 Ehcache v1.2.3 User Guide

e Configure the web.xml. Declare the filters created above amake filter mapping associating the
filter with a URL.

See J2EE Servlet Caching for more information.
3.4 Spring, Cocoon, Acegi and other frameworks

Usually, with these, you are using ehcache without eversiaglit. The first steps in getting more control
over what is happening are:

e discover the cache names used by the framework

e create your own ehcache.xml with settings for the cachepkaug it in the application classpath.

Chapter 4

Features

Fast and Light Weight
— Fast
— Simple
— Small foot print

— Minimal dependencies

Scalable

— Provides Memory and Disk stores for scalabilty into gigaisyt
— Scalable to hundreds of caches

— Tuned for high concurrent load on large multi-cpu servers
— Multiple CacheManagers per virtual machine

Complete

— Supports Object or Serializable caching

— Support cache-wide or Element-based expiry policies
— Provides LRU, LFU and FIFO cache eviction policies
— Provides Memory and Disk stores

— Distributed Caching

Extensible

— Listeners may be plugged in
— Peer Discovery, Replicators and Listeners may be plugged in

Application Persistence

— Persistent disk store which stores data between VM restarts
— Flush to disk on demand

Supports Listeners

— CacheManager listeners
— Cache event listeners

21

22 Ehcache v1.2.3 User Guide

e Distributed

— Peer Discovery

— Reliable Delivery

— Synchronous Or Asynchronous Replication
— Copy Or Invalidate Replication

— Transparent Replication

— Extensible

— Bootstrapping from Peers
e J2EE and Applied Caching

— Blocking Cache to avoid duplicate processing for concuroperations
— SelfPopulating Cache for pull through caching of expensperations
— J2EE Gzipping Servlet Filter

— Cacheable Commands

— Works with Hibernate
e High Quality

— High Test Coverage

— Automated Load, Limit and Performance System Tests
— Production tested

— Fully documented

— Trusted by Popular Frameworks

— Conservative Commit policy

— Full public information on the history of every bug

— Responsiveness to serious bugs
e Open Source Licensing

— Apache 2.0 license

4.1 Fastand Light Weight

4.1.1 Fast

Over the years, various performance tests have shown ehdache one of the fastest Java caches.
Ehcache’s threading is designed for large, high concuyreystems.

Extensive performance tests in the test suite keep ehcsagbdbrmance consistent between releases.
As an example, some guys have created a java cache testiledlcached]_perfomance_tester.
The results for ehcache-1.1 and ehcache-1.2 follow.

Ehcache v1.2.3 User Guide 23

ehcache-1.1

N R e
[java] java.version=1.4.2 09

[java] java.vm nanme=Java Hot Spot (TM Cdient VM

[java] java.vm version=1.4.2-54

[java] java.vm i nfo=mi xed node

[java] java.vm vendor="Appl e Conputer, Inc
[java] os.nanme=Mac OS X

[java] os.version=10.4.5

[java] os.arch=ppc

[JAVA] === mmmmm e e e e e e e e e e aa
[java]l] This test can take about 5-10 mi nutes. Please wait

[JAVA] === mmmmm e e e e e e e e e e e eee oo
[java] | Get Put RemoveT | Get Put Renpve | Get

[JAVA] - mmmmmm e e e e e e e

[java] cached4j 0.4 | 9240 | 9116 | 5556

[java] oscache 2.2 | 33577 | 30803 | 8350

[java] ehcache 1.1 | 7697 | 6145 | 3395

[java] jcs 1.2.7.0 | 8966 | 9455 | 4072

N R R L LT

ehcache-1. 2

[Java] - mmmmm i m e e e e e oo
[java] java.version=1.4.2 09

[java] java.vm nane=Java Hot Spot (TM Cdient VM

[java] java.vm version=1.4.2-54

[java] java.vm i nfo=m xed node

[java] java.vm vendor="Appl e Conputer, Inc
[java] os.nane=Mac OS X

[java] os.version=10.4.5

[java] os.arch=ppc

[JAVA] - mmmmm e e e e e e e e e eeaa oo
[java]l] This test can take about 5-10 mi nutes. Please wait

[JAVA] === mmmmm e e e e e e e e e e e eee oo
[java] | Get Put RemoveT | Get Put Renove | Get

[JAVA] = mmmmm e e e e e e e

[java] cached4j 0.4 | 9410 | 9053 | 5865

[java] oscache 2.2 | 28076 | 30833 | 8031

[java] ehcache 1.2 | 8753 | 7072 | 3479

[java] jcs 1.2.7.0 | 8806 | 9522 | 4097

N I R R E LR

4.1.2 Simple

Many users of ehcache hardly know they are using it. Sendiflkeults require no initial configuration.

The APl is very simple and easy to use, making it possible tag@nd running in minutes. See the Code
Samples for details.

4.1.3 Small foot print

Ehcache 1.2 is 110KB making it convenient to package.

24 Ehcache v1.2.3 User Guide

4.1.4 Minimal dependencies

Commons logging and collections are the only dependencigadst JDKs.

4.2 Scalable

4.2.1 Provides Memory and Disk stores for scalabilty into gjabytes

The largest ehcache installations use memory and diskssitotbe gigabyte range. Ehcache is tuned for
these large sizes.

4.2.2 Scalable to hundreds of caches

The largest ehcache installations use hundreds of caches.

4.2.3 Tuned for high concurrent load on large multi-cpu serers

There is a tension between thread safety and performancacké'’s threading started off coarse-grained,
but has increasingly made use of ideas from Doug Lea to aelgimater performance. Over the years there
have been a number of scalability bottlenecks identifiedfixed.

4.2.4 Multiple CacheManagers per virtual machine

Ehcache 1.2 introduced multiple CacheManagers per viniaghine. This enables completely difference
ehcache.xml configurations to be applied.

4.3 Complete

4.3.1 Supports Object or Serializable caching

As of ehcache-1.2 there is an API for Objects in addition ® dhe for Serializable. Non-serializable
Objects can use all parts of ehcache except for DiskStoreepiitation. If an attempt is made to persist
or replicate them they are discarded without error and wiHeBUG level log message.

The APIs are identical except for the return methods fronmiglet. Two new methods on Element: getO-
bjectValue and getKeyValue are the only API differencesveen the Serializable and Object APIs. This
makes it very easy to start with caching Objects and thengthgaur Objects to Seralizable to participate
in the extra features when needed. Also a large number ofclasses are simply not Serializable.

4.3.2 Support cache-wide or Element-based expiry policies

Time to lives and time to idles are settable per cache. Intiatdifrom ehcache-1.2.1, overrides to these
can be set per Element.

4.3.3 Provides LRU, LFU and FIFO cache eviction policies

Ehcache 1.2 introduced Less Frequently Used and First $h ®irt caching eviction policies. These round
out the eviction policies.

Ehcache v1.2.3 User Guide 25

4.3.4 Provides Memory and Disk stores

Ehcache, like most of the cache solutions, provides higfopeance memory and disk stores.

4.3.5 Distributed
Flexible, extensible, high performance distributed caghiThe default implementation supports cache
discovery via multicast or manual configuration. Updates @elivered either asynchronously or syn-

chronously via custom RMI connections. Additional disagver delivery schemes can be plugged in by
third parties.

See the Distributed Caching documentation for more featetails.

4.4 Extensible

4.4.1 Listeners may be plugged in

Ehcache 1.2 provideGacheManager Event Li st ener and CacheEvent Li st ener interfaces. Imple-
mentations can be plugged in and configured in ehcache.xml.

4.4.2 Peer Discovery, Replicators and Listeners may be plggd in

Distributed caching, introduced in ehcache 1.2 involvesynzhoices and tradeoffs. The ehcache team
believe that one size will not fit all. Implementers can us#{inimechanisms or write their own. A plugin
development guide is included for this purpose.

4.5 Application Persistence

45.1 Persistent disk store which stores data between VM rests

With ehcache 1.1 in 2004, ehcache was the first open souraecdahe to introduce persistent storage of
cache data on disk on shutdown. The cached data is then #xde¢ise next time the application runs.

45.2 Flush to disk on demand

With ehcache 1.2, the flushing of entries to disk can be ereauith acache. f | ush() method whenever
required, making it easier to use ehcache

4.6 Listeners

4.6.1 CacheManager listeners

Ehcache 1.2 introduced tltacheManager Event Li st ener interface with the following event methods:

e notifyCacheAdded()

e notifyCacheRenpved()

26 Ehcache v1.2.3 User Guide

4.6.2 Cache event listeners

Ehcache 1.2 introduced theacheEvent Li st ener interfaces, providing a lot of flexibility for post-
processing of cache events. The methods are:

e noti f yEl enent Renoved
e noti f yEl ement Put
e noti f yEl enent Updat ed

e noti f yEl ement Expi r ed

4.7 Distributed Caching

Ehcache 1.2 introduced a full-featured, fine-grainedithisted caching mechanism for clusters.

4.7.1 Peer Discovery

Peer discovery may be either manually configured or autemaging multicast. Multicast is simple, and
adds and removes peers automatically. Manual configurghi@s fine control and is useful for situations
where multicast is blocked.

4.7.2 Reliable Delivery

The built-in delivery mechanism uses RMI with custom sosketer TCP, not UDP.

4.7.3 Synchronous Or Asynchronous Replication

Replication can be set to synchronous Or asynchronousagbec

4.7.4 Copy Or Invalidate Replication

Replication can be set to copy or invalidate, per cache, agpsopriate.

4.7.5 Transparent Replication

No programming changes are required to make use of reglicaiinly configuration in ehcache.xml.

4.7.6 Extensible

Distributed caching, introduced in ehcache 1.2 involvesyrnzhoices and tradeoffs. The ehcache team
believe that one size will not fit all. Implementers can us#{inimechanisms or write their own. A plugin
development guide is included for this purpose.

Ehcache v1.2.3 User Guide 27

4.7.7 Bootstrapping from Peers

Distributed caches enter and leave the cluster at diffanergs. Caches can be configured to bootstrap
themselves from the cluster when they are first initialized.

An abstract factory, BootstrapCacheloaderFactory has deéned along with an interface Bootstrap-
CacheLoader along with an RMI based default implementation

4.8 J2EE and Applied Caching

High quality implementations for common caching scenagiod patterns.

4.8.1 Blocking Cache to avoid duplicate processing for concrent operations

A cache which blocks subsequent threads until the first fe@@d populates a cache entry.

4.8.2 SelfPopulating Cache for pull through caching of expasive operations

SelfPopulatingCache - a read-through cache. A cache tpalgtes elements as they are requested without
requiring the caller to know how the entries are populatealsb enables refreshes of cache entries without
blocking reads on the same entries.

4.8.3 J2EE Gzipping Servlet Filter
e CachingFilter - an abstract, extensible caching filter.

e SimplePageCachingFilter

A high performance J2EE servlet filter that caches pageglmasthe request URI and Query String.
It also gzips the pages and delivers them to browsers eithippgd or ungzipped depending on the
HTTP request headers. Use to cache entire Servlet pagetexliiom JSP, velocity, or any other

rendering technology.

Tested with Orion and Tomcat.

e SimplePageFragmentCachingFilter

A high performance J2EE filter that caches page fragmentdbas the request URI and Query
String. Use with Servlet request dispatchers to cache papages, whether from JSP, velocity, or
any other rendering technology. Can be used from JSPs wsgirigglude.

Tested with Orion and Tomcat.

e Works with Servlet 2.3 and Servlet 2.4 specifications.

4.8.4 Cacheable Commands

This is the trusty old command pattern with a twist: asynobie behaviour, fault tolerance and caching.
Creates a command, caches it and then attempts to execute it.

28 Ehcache v1.2.3 User Guide

4.8.5 Works with Hibernate

Tested with Hibernate2.1.8 and Hibernate3.1.3, which ¢disauall of the new features except for Object

API and multiple session factories each using a differecaehe CacheManager. Anewt . sf . ehcache. hi ber nat e. EnCache
makes those additional features available to Hiberndte3.3A version of the new provider should make it

into the Hibernate3.2 release.

4.9 High Quality

4.9.1 High Test Coverage

The ehcache team believe that the first and most importafitygmeasure is a well designed and compre-
hensive test suite.

Ehcache has a relatively high 86% test coverage of sourae ddds has edged higher over time. Clover
enforces the test coverage. Most of the missing 14% is lapaird exception paths.

4.9.2 Automated Load, Limit and Performance System Tests

The ehcache JUnit test suite contains some long-runningraytests which place high load on different
ehcache subsystems to the point of failure and then are bgitkjost below that point. The same is done
with limits such as the amount of Elements that can fit in amgiveap size. The same is also done with
performance testing of each subsystem and the whole tagdthe same is also done with network tests
for cache replication.

The tests serve a number of purposes:

¢ establishing well understood metrics and limits
e preventing regressions
e reproducing any reported issues in production

e Allowing the design principle of graceful degradation todmhieved. For example, the asynchronous
cache replicator uses SoftReferences for queued messagtst the messages will be reclaimed
before before an OutOfMemoryError occurs, thus favouriagitity over replication.

4.9.3 Specific Concurrency Testing

Ehcache also has concurrency testing, which typically 68esoncurrent threads hammering a piece of

code. The test suites are also run on multi-core or multifopehines so that concurrency is real rather

than simulated. Additionally, every concurrency relatexlie that has ever been anticipated or resulted in
a bug report has a unit test which prevents the condition fieearring. There are no reported issues that

have not been reproduced in a unit test.

Concurrency unit tests are somewhat difficult to write, aredadten overlooked. The team considers these
tests a major factor in ehcache’s quality.

4.9.4 Production tested

Ehcache came about in the first place because of productioessvith another open source cache.

Final release versions of ehcache have been producti@utesta very busy e-commerce site, supporting
thousands of concurrent users, gigabyte size caches @mtargi-cpu machines. It has been the experience

Ehcache v1.2.3 User Guide 29

of the team that most threading issues do not surface uigtifthe of load has been applied. Once an issue
has been identified and investigated a concurrency unitéesthen be crafted.

4.9.5 Fully documented

A core belief held by the project team is that a project needslglocumentation to be useful.
In ehcache, this is manifested by:

e comprehensive written documentation

e Complete, meaningful JavaDoc for every package, class ahliccand protected method. Check-
style rules enforce this level of documentation.

e an up-to-date FAQ

4.9.6 Trusted by Popular Frameworks

Ehcache is used extensively. See the Who is Using? pagepwséiGoogle.

4.9.7 Conservative Commit policy

Projects like Linux maintain their quality through a resteid change process, whereby changes are sub-
mitted as patches, then reviewed by the maintainer anddediuor modified. Ehcache follows the same
process.

4.9.8 Full public information on the history of every bug

Through the SourceForge project bug tracker, the full ysddall bugs are shown, including current status.
We take this for granted in an open source project, as thypisdlly a feature that all open source projects
have, but this transparency makes it possible to gauge théygand riskiness of a library, something not
usually possible in commercial products.

4.9.9 Responsiveness to serious bugs

The ehcache team is serious about quality. If one user isgavproblem, it probably means others are
too, or will have. The ehcache team use ehcache themselyesduction. Every effort will be made to
provide fixes for serious production problems as soon asiges3 hese will be committed to trunk. From
there an affected user can apply the fix to their own branch.

4.10 Open Source Licensing

4.10.1 Apache 2.0 license

Ehcache’s original Apachel.1 copyright and licensing veagerved and approved by the Apache Software
Foundation, making ehcache suitable for use in Apachegjehcache-1.2 is released under the updated
Apache 2.0 license.

The Apache license is also friendly one, making it safe arsg &ainclude ehcache in other open source
projects or commercial products.

30

Ehcache v1.2.3 User Guide

Chapter 5

Key Ehcache Concepts

5.1 Key Ehcache Classes

net.sf.ehcache

Ehcache

i
Cache
: CacheException .
i
| ObjectExistsException
CacheManager | Element
.Stalistics Status

generated by yDoc

Top Level Package Diagram

Ehcache consists of@acheManager , which manages caches. Caches contain elements, whichsae-e
tially name value pairs. Caches are physically implemeatter in-memory, or on disk.

31

32 Ehcache v1.2.3 User Guide

5.1.1 CacheManager

java.lang
Object
net.sf.ehcache
net.sf.ehcache.event net.sf.ehcache. confi
CacheManager 2
CacheManagerEventLi: +ALL CACHE MANAGERS: List =2 = Configuration

caches : Map

+ CacheManager()
java.lang + CacheManager(InputStream) java.net
+ CacheManager(5tring)

+ CacheManager(URL)
+ CacheManager(Configuration)

String ec——————— L = URL

- + addCache(String) - void
java.util + addCache(Cache) : void net.sf.ehcache

+ addCache(Ehcache) : vaid

List<E> ‘g1 +addCache(Ehcache) :vad] L [—
+ cacheExists(String) : boolean | |
Map<K, V> = T clearAll]) : void
+create(: CacheManager
java.io

+ create(lnputStream) : CacheManager
+ create(String) : CacheManager
- + create(URL) : CacheManager
CacheManager |% + getCache(String) : Cache
+ getCacheManagerEventListener() : CacheManagerEventListener
Ehcache ==—————— + getCacheManagerPeerProvider() : CacheManagerPeerProvider
;) + getCacheNames() : String[]
Status = | getCachePeerlistener() : CacheManagerPeerListener
+ getCachePeerProvider() - CacheManagerPeerProvider
+ getEhcache(String) : Ehcache

retsf.ehcache | — ——— ——— o-——= = InputSream

org.apache.commons.logging + getinstance() : CacheManager
+ getStatus() : Status
Log + removalAlll) : void

+ removeCache(String) : void
+ replaceCacheWithDecorated Cache(Ehcache, Ehcache) : void
net.sf.ehcache. distribution + setCacheManagerEventlistener(CacheManagerEventListener) : void
+ shutdown() : void
CacheManagerPeerListener —~=———

CacheManagerPeerProvider =

generated by yDoc

CacheManager Class Diagram

TheCacheManager comprises Caches which in turn comprise Elements.
Creation of, access to and removal of caches is controlledd@acheManager .

CacheManager Creation Modes

CacheManager supports two creation modes: singleton and instance.

Singleton Mode Ehcache-1.1 supported only obe#cheManager instance which was a singleton. Cache-
Manager can still be used in this way using the static factoethods.

Instance Mode From ehcache-1.2, CacheManager has constructors whiobrrthie various static create
methods. This enables multiple CacheManagers to be craatedsed concurrently. Each CacheManager

Ehcache v1.2.3 User Guide 33

requires its own configuration.

If the Caches under management use only the MemoryStore,dine no special considerations. If Caches
use the DiskStore, the diskStore path specified in each Géantneger configuration should be unique.
When a new CacheManager is created, a check is made thatiieeme other CacheManagers using the
same diskStore path. If there are, a CacheException is thrifa CacheManager is part of a cluster, there
will also be listener ports which must be unique.

Mixed Singleton and Instance Mode If an application creates instances of CacheManager usiog-a
structor, and also calls a static create method, there widt @ singleton instance of CacheManager which
will be returned each time the create method is called tagetlith any other instances created via con-
structor. The two types will coexist peacefully.

34 Ehcache v1.2.3 User Guide

5.1.2 Ehcache

java.lang

Cloneable

net.sf.ehcache

<<interface>> net.sf.ehcache.event

Ehcache ~------>= RegisteredEventListeners

+ bootstrap() : void
+ calculateinMe morySize() : long

+clearStatistics() : void fava.ang
+clone() : Object . -—-—== Object
+dispose() : void

+ evictExpiredElements() : void ————-—== String
+ flush() - void

+get(Serializable) : Elernent

+ get(Object) : Element java.uil

+ getBootstrapCacheLoader() : BootstrapCacheloader

+ getCacheEveniNotificationService() : RegisteredEventListeners —————— == LiSt<E>
+ getCacheManager() : CacheManager

+ getDiskExpiryThreadintervalSeconds() : long
+ getDiskStore HitCount() : int

+ getDiskStoreSize() : int

+getGuidy) : String = CacheManager
+ getHitCount() - int

+getKeys() : List ——----== Element

+ getKeysNoDuplicateCheck() : List - _
+getkeysWithExpiryCheck() - List ~—---->> Statistics

+ getMaxElernentsinMernory() : int

+ getMermoryStore EvictionPoilicy() : MermaoryStore EvictionPolicy
+ getMemoryStoreHitCount() : int

+ getMemaoryStoreSize() : long

+ getMissCountExpired() : int net.sf.ehcache.store
+ getMissCountNotFound() : int
+getName() : String

+ getQuiet(Serializable) - Element
+ getQuietObject) : Element
+getSize() : int java.io
+ getStatistics() : Statistics

+ getStatisticsAccuracyr) : int

+ getStatus() : Status

+ getTime ToldleSeconds() : long
+ getTime ToLiveSeconds() : long net.sf.ehcache.bootstrap
+initlalise() : void

+isDiskPersistent() : boolean

+ isFlementinMemary(Serializable) - boolean
+ isElementinMemory(Object) : boolean
+IsElementOnDisk(Senalizable) : boolean

+ isElementOnDisk(Object) : boolean
+isEternalk) : boolean

+isExpired(Element) : boolean
+isKeylnCache(Object) : boolean
+isOverflowToDisk() : boolean
+isValuelnCache{Object) : boolean

+ put{Element) : void

+ put(Element, boolean) : void

+ putQuietElement) : void

+ remove(Serializable) : boolean

+ remove(Serializable, boolean) : boolean

+ remove(Object) : boolean
+remove(Object, boolean) : boolean

+ removeAll() : void

+ removeAll{boolean) : void

+ removeQuiet(Serializable) : bookan

+ removeQuiet{Object) : boalean

net.sf.ehcache

—--———2= Status

——-----= MemeoryStoreEviction Policy

—-----== Serializable

——---->= BootstrapCacheLoader

+ setBootstrap Cacheloader{BootstrapCacheloader) : void
+ setCacheManager{CacheManager) : void

+ setDiskStorePath{String) : void

+ setName(String) : void

+ setStatisticsAccuracyfint) : void

+ toString() : String

generated by yDoc

= T T I

Ehcache v1.2.3 User Guide 35

All caches implement thehcache interface. A cache has a name and attributes. Each cachartont
Elements.

A Cache in ehcache is analogous to a cache region in otheinggsystems.
Cache elements are stored in taor ySt or e. Optionally they also overflow to & skSt or e.

5.1.3 Element

Java.lang java.lang Java.io
Object Cloneable Serializable
i |
e ;
net.sf.ehcache i i
| 1
1
Jjava.lang Element ; ‘ Jjava.lang
Object | Stri
L e '+ ElementSerializable, Serializable) I
+ Element(Serializable, Serializable, long)
+ Element(Object, Object)
org.apache.commons.logging + Element(Object, Object, long) java.o

+ done(} : Object

+ equals(Object) : boolean
+ getCreationTime() : long

+ getExpirationTime() : long
+ getHitCount() : long

+ getKey(: Seralizable

+ getlastAccessTime(: long
+ getlastipdateTime(: long

~—----== Serializable

Log

/ getNextTolLastAccessTime() : long
+ getObjectieyl) : Object

+ getObjectValue() : Object

+ getSerializedSize() : long

+ getTimeToldle() : int

+ getTimeTolLive() © int

+ getValue() : Serializable

+ getVersion() : long

+ hashCode() : int

+ isEternal() - boolean

+ isExpired() : boolean

+ iskeySerializable() : boolean
+ isLifespanSet] : bodean

+ isSerializable(: boolean

+ resetAccessStatistics() | void
+ setCreateTime() : void

+ setEternal(boolean) : void

+ setTimeToldle(int) : void

+ setTimeToLive(int) : void

+ setVersion(long) : void

+ toString() - String

+ updatesAccessStatistics() : void
+ updateUpdateStatistics() : void

generated by yDoc

Element Class Diagram

An element is an atomic entry in a cache. It has a key, a valdeaarcord of accesses. Elements are
put into and removed from caches. They can also expire andrbeved by the Cache, depending on the
Cache settings.

As of ehcache-1.2 there is an API for Objects in addition ® d¢ine for Serializable. Non-serializable
Objects can use all parts of ehcache except for DiskStoreepiitation. If an attempt is made to persist
or replicate them they are discarded without error and wIHEEBUG level log message.

36 Ehcache v1.2.3 User Guide

The APIs are identical except for the return methods fronmtelet. Two new methods on Element: getO-
bjectValue and getKeyValue are the only API differencesveen the Serializable and Object APIs. This
makes it very easy to start with caching Objects and thengdhgaur Objects to Seralizable to participate
in the extra features when needed. Also a large number ofclasses are simply not Serializable.

5.2 Cache Eviction Algorithms

A cache eviction algorithm is a way of deciding whighenent to evict when the cache is full. In ehcache
the Menor ySt or e has a fixed limited size and th# skSt or e is unlimited. So, the only store that can
be full is theMenor ySt or e. If a cache is set to only useMenor y St or e then the cache will also be full
when theMenor y St or e is full, otherwise it will overflow to thedi skSt or e.

The eviction algorithms in ehcache thus determine whemtin@r y St or e evicts an element. If there is
noDi skSt or e this will also be a cache eviction, otherwise it will causeoaerflow to disk.

5.2.1 About Eviction Algorithms

The idea here is, given a limit on the number of items to calcbe, to choose the thing to evict that gives
thebestresult.

In 1966 Laszlo Belady showed that the most efficient cachiggrdhm would be to always discard the
information that will not be needed for the longest time ie fature. This it a theoretical result that is
unimplementable without domain knowledge. The Least Riycélsed ("LRU") algorithm is often used
as a proxy. It works pretty well because of the locality oerehce phenonemon. As a result, LRU is the
default eviction algorithm in ehcache, as it is in most cache

Ehcache users may sometimes have a good domain knowledger.dialy, ehcache provides three evic-
tion algorithms to choose from.

5.2.2 Ehcache’s Eviction Algorithms

Ehcache supports three eviction algorithms: LRU, LFU arieFI

Least Recently Used (LRU)

The eldest element, is the Least Recently Used (LRU). Theitesl timestamp is updated when an element
is put into the cache or an element is retrieved from the cadthea get call.

LRU is the default in ehcache.

Less Frequently Used (LFU)

For each get call on the element the number of hits is upd&taen a put call is made for a new element
(and assuming that the max limit is reached for the memongystbe element with least number of hits,
the Less Frequently Used element, is evicted.

If cache element use follows a pareto distribution, thi®etgm may give better results than LRU.
First In First Out (FIFO)
Elements are evicted in the same order as they come in. Whaehaalpis made for a new element (and

assuming that the max limit is reached for the memory stbretement that was placed first (First-In) in
the store is the candidate for eviction (First-Out).

Ehcache v1.2.3 User Guide 37

This algorithm is used if the use of an element makes it lé®dylito be used in the future. An example
here would be an authentication cache.

5.3 Cache Usage Patterns

Caches can be used in different ways. Each of these ways/laache usage pattern. Ehcache supports
the following:

e direct manipulation
e pull-through

e self-populating

5.3.1 Direct Manipulation

Here, to put something in the cache youdd@he. put (El enent el enent) and to get something from
the cache you doache. get (hj ect key).

You are aware you are using a cache and you are doing so coslycio

5.3.2 Self Populating

Here, you just do gets to the cache ustaxhe. get (Obj ect key). The cache itself knows how to
populate an entry.

See the SelfPopulatingCache for more on this pattern.

38

Ehcache v1.2.3 User Guide

Chapter 6

Code Samples

Using the CacheManager

— Singleton versus Instance

— Ways of loading Cache Configuration

— Adding and Removing Caches Programmatically
— Shutdown the CacheManager

Using Caches

— Obtaining a reference to a Cache
— CRUD operations

— Disk Persistence on demand

— Cache Sizes

— Statistics of Cache Hits and Misses

Programmatically Creating Caches

— Creating a new cache from defaults
— Creating a new cache with custom parameters

Browse the JUnit Tests

6.1 Using the CacheManager

All usages of ehcache start with the creation of a CacheMamag

6.1.1 Singleton versus Instance

As of ehcache-1.2, ehcache CacheManagers can be creatébesssimgletons (use the create factory
method) or instances (use new).

Create a singleton CacheManager using defaults, theralites.

CacheManager. create();
String[] cacheNanmes = CacheManager. getl nstance(). get CacheNanes();

39

40 Ehcache v1.2.3 User Guide

Create a CacheManager instance using defaults, thendisesa

CacheManager nanager = new CacheManager () ;
String[] cacheNanmes = manager. get CacheNanes();

Create two CacheManagers, each with a different configuratind list the caches in each.

CacheManager nmanagerl = new CacheManager ("src/confi g/ ehcachel. xm ");
CacheManager nmanager2 = new CacheManager ("src/ confi g/ ehcache2. xm ") ;
String[] cacheNanmesFor Manager1 = nmanager 1. get CacheNanes();
String[] cacheNanesFor Manager2 = nanager 2. get CacheNanes() ;

6.1.2 Ways of loading Cache Configuration

When the CacheManager is created it creates caches foumel @onfiguration.
Create a CacheManager using defaults. Ehcache will loo&Hfoache.xml in the classpath.

CacheManager nanager = new CacheManager();
Create a CacheManager specifying the path of a configurfiliion
CacheManager manager = new CacheManager ("src/ confi g/ ehcache. xm ");
Create a CacheManager from a configuration resource in déissprth.

URL url = getd ass().get Resource("/anotherconfigurationname.xm");
CacheManager manager = new CacheManager (url);

Create a CacheManager from a configuration in an InputStream

InputStreamfis = new Fil el nput Strean(new Fil e("src/config/ehcache. xm "). get Absol utePath());

try {
CacheManager nmanager = new CacheManager (fis);

} finally {
fis.close();
}

6.1.3 Adding and Removing Caches Programmatically

You are not just stuck with the caches that were placed in dméiguration. You can create and remove
them programmatically.

Add a cache using defaults, then use it. The following exaneptates a cache callggstCachewhich
will be configured using defaultCache from the configuration

CacheManager si ngl et onManager = CacheManager. create();
si ngl et onManager . addCache("t est Cache") ;
Cache test = singl etonManager. get Cache("test Cache");

Create a Cache and add it to the CacheManager, then useéttiddCaches are not usable until they have
been added to a CacheManager.

Ehcache v1.2.3 User Guide 41

CacheManager singl et onManager = CacheManager.create();

Cache nenoryOnl yCache = new Cache("test Cache", 5000, false, false, 5, 2);
nmanager . addCache(nenor yOnl yCache) ;

Cache test = singl etonManager. get Cache("test Cache");

See Cache#Cache(...) for the full parameters for a new Cache
Remove cache called sampleCachel

CacheManager singl et onManager = CacheManager.create();
si ngl et onManager . r enoveCache(" sanmpl eCachel");

6.1.4 Shutdown the CacheManager

Ehcache should be shutdown after use. It does have a shutdmknbut it is best practice to shut it down
in your code.

Shutdown the singleton CacheManager

CacheManager . get I nst ance() . shut down();

Shutdown a CacheManager instance, assuming you have aneédo the CacheManager caltadnager
nmanager . shut down() ;

See the CacheManagerTest for more examples.

6.2 Using Caches

All of these examples refer tmanagey which is a reference to a CacheManager, which has a cache in i
calledsampleCachel

6.2.1 Obtaining a reference to a Cache
Obtain a Cache called "sampleCachel", which has been gdigemed in the configuration file

Cache cache = nanager. get Cache("sanpl eCachel");

6.2.2 Performing CRUD operations
Put an element into a cache

Cache cache = nanager. get Cache("sanpl eCachel");
El ement el enent = new El ement ("keyl", "valuel");
cache. put (el enent) ;

Update an element in a cache. Even thoaghhe. put () is used, ehcache knows there is an existing
element, and considers the put an update for the purposdifyfing cache listeners.

Cache cache = nanager. get Cache("sanpl eCachel");
cache. put (new El ement (" keyl1l", "val uel");

/1 This updates the entry for "keyl"

cache. put (new El ement ("key1", "val ue2");

42 Ehcache v1.2.3 User Guide

Get a Serializable value from an element in a cache with a k&yey1".

Cache cache = nanager. get Cache("sanpl eCachel");
El ement el ement = cache. get ("keyl");
Serializable value = el enent. get Val ue();

Get a NonSerializable value from an element in a cache wittyak"keyl".

Cache cache = nmnager. get Cache("sanpl eCachel");
El ement el ement = cache. get ("keyl");
oj ect val ue = el enent. get Obj ect Val ue();

Remove an element from a cache with a key of "keyl".

Cache cache = nmnager. get Cache("sanpl eCachel");
El emrent el ement = new El enent ("keyl", "val uel”
cache. remove("keyl");

6.2.3 Disk Persistence on demand

sampleCachehas a persistent diskStore. We wish to ensure that the ddtamdex are written immedi-
ately.

Cache cache = nmnager. get Cache("sanpl eCachel");
cache. flush();

6.2.4 Obtaining Cache Sizes
Get the number of elements currently in texhe.

Cache cache = nmnager. get Cache("sanpl eCachel");
int el enentslnMenory = cache. get Si ze();

Get the number of elements currently in taror ySt or e.

Cache cache = nanager. get Cache("sanpl eCachel");
I ong el enent sl nMenory = cache. get MenorySt oreSi ze() ;

Get the number of elements currently in teskSt or e.

Cache cache = nmnager. get Cache("sanpl eCachel");
I ong el ement sl nMenory = cache. get Di skSt oreSi ze();

6.2.5 Obtaining Statistics of Cache Hits and Misses

These methods are useful for tuning cache configurations.
Get the number of times requested items were found in theecaeh cache hits

Cache cache = nmnager. get Cache("sanpl eCachel");
int hits = cache. getHitCount();

Get the number of times requested items were found inther y St or e of the cache.

Ehcache v1.2.3 User Guide 43

Cache cache = nanager. get Cache("sanpl eCachel");
int hits = cache. get MenorySt oreHit Count () ;

Get the number of times requested items were found iitk& St or e of the cache.

Cache cache = nanager. get Cache("sanpl eCachel");
int hits = cache. get Di skSt oreCount ();

Get the number of times requested items were not found inableec i.e. cache misses.

Cache cache = nanager. get Cache("sanpl eCachel");
int hits = cache. get M ssCount Not Found() ;

Get the number of times requested items were not found inableecdue to expiry of the elements.

Cache cache = nanager. get Cache("sanpl eCachel");
int hits = cache. get M ssCount Expi red();

These are just the most commonly used methods. See CaclieTegire examples. See Cache for the
full API.

6.3 Creating a new cache from defaults

A new cache with a given name can be created from defaultssiemly:

nmanager . addCache("cache name");

6.4 Creating a new cache with custom parameters

The configuration for a Cache can be specified programmigtioghe Cache constructor:

publ i c Cache(
String nane,
i nt maxEl emrent sl nMenory,
Menor ySt or eEvi cti onPol i cy nenoryStoreEvictionPolicy,
bool ean overfl owToDi sk,
bool ean eternal,
| ong tineTolLi veSeconds,
| ong tineTol dl eSeconds,
bool ean di skPer si st ent,
| ong di skExpi ryThreadl nt erval Seconds) {

}
Here is an example which creates a cache called test.

// Create a CacheManager using defaults
CacheManager manager = CacheManager.create();

/I Create a Cache specifying its configuration.
Cache testCache = new Cache("test", naxEl enents,

MenorySt or eEvi ctionPolicy. LFU, true, false, 60, 30, false, 0);
nmanager . addCache(cache) ;

44 Ehcache v1.2.3 User Guide

Once the cache is created, add it to the list of caches marmgheé CacheManager:
nmanager . addCache(t est Cache) ;

The cache is not usable until it has been added.

6.5 Browse the JUnit Tests

Ehcache comes with a comprehensive JUnit test suite, wiitbniy tests the code, but shows you how to
use ehcache.

A link to browsable unit test source code for the major eheatthsses is given per section. The unit tests
are also in the src.zip in the ehcache tarball.

Chapter 7

Dependencies

7.1 Java Requirements

Ehcache supports 1.3, 1.4, 1.5 and 1.6 at runtime. Ehcadhiedleases are compiled with -target 1.3.
This produces Java class data, version 47.0.

When compiling from source, the build process requiresastldDK 1.4, because 1.4 features are compile
in but switched out at runtime if the JDK is 1.3. JDK1.3 is sofipd by catching NoSuchMethodError and
providing an alternate implementation. No JDK1.4 or 1.9lsage features are used.

Ehcache is known not to work with JDK1.1 and is not tested ok1IPR.

Because of an RMI bug, in JDKs before JDK1.5 ehcache is lanibteone CacheManager operating in
distributed mode per virtual machine. (The bug limits thenber of RMI registries to one per virtual
machine). Because this is the expected deployment confignydowever, ther should be no practical
effect.

On JDK1.5 and higher it is possible to have multiple Cacheddgns per VM each participating in the
same or different clusters. Indeed the replication testhidowith 5 CacheManagers on the same VM all
run from JUnit.

7.2 Dependencies

For JDK1.4, JDK1.5 and JDK 1.6, ehcache requires commaygitig and commons-collections 2.1.1
from Apache’s Jakarta project.

For JDK 1.3, ehcache also requires Apache xerces (xmljapisid xercesimpl.jar), version 2.5.
These dependencies are very common, so they are probaddyglglmet in your project.

45

46

Ehcache v1.2.3 User Guide

Chapter 8

Logging And Debugging

8.1 Commons Logging

Ehcache uses the Apache Commons Logging library for logging

It acts as a thin bridge between logging statements in the aad logging infrastructure detected in the
classpath. It will use in order of preference:

o log4j
e JDK1.4 logging

e and then its owrsi npl eLog

This enables ehcache to use logging infrastructures caipatith Java versions from JDK1.2 to
JDKS5. It does create a dependency on Apache Commons Lodgingyver many projects, including
Hibernate, share the same dependency.

For normal production use, use tharN level in log4J and th®ARNI NG level for JDK1.4 logging.

8.2 Logging Philosophy

Ehcache seeks to trade off informing production supporeli@ers or important messages and cluttering
the log.

ERROR (JDK logging SEVERE_ messages should not occur in alggroduction and indicate that action
should be taken.

WARNING (JDK logging WARN) messages generally indicate afgguration change should be made or
an unusual event has occurred.

DEBUG (JDK logging FINE) messages are for development udeDBEBUG level statements are sur-
rounded with a guard so that they are not executed unlesevbki$ DEBUG.

Setting the logging level to DEBUG (JDK level FINE) shoulcbpide more information on the source
of any problems. Many logging systems enable a logging lelrahge to be made without restarting the
application.

47

48 Ehcache v1.2.3 User Guide

8.3 Remote Network debugging and monitoring for Distributed Caches

A simple new tool in ehcache-1.2, ehcache-1.x-remote-gigdajar can be used to debug replicated cache
operations. Itis included in the distribution tarball fdroache-1.2.3 and higher.

Itis invoked using:
java -jar ehcache-1. x-renot e-debugger.jar path_to_ehcache.xm cacheToMonitor

It will print a configuration of the cache, including replizan settings and monitor the number of elements
in the cache. If you are not seeing replication in your agpicn, run up this tool to see what is going on.

Itis a command line application, so it can easily be run frot@reninal session.

Chapter 9

Class loading and Class Loaders

Class loading within the plethora of environments ehcaelmebe running is a somewhat vexed issue.
Since ehcache-1.2 all classloading is done in a standardnaaye utility class:Cl assLoader Uti | .

9.1 Plugin class loading

Ehcache allows plugins for events and distribution. Thesdcaded and created as follows:

| *x
* Creates a new class instance. Logs errors along the way. C asses are | oaded using the
* ehcache standard cl assl oader.
*
* @aramclassNane a fully qualified class name
*x @eturn null if the instance cannot be | oaded
*/
public static Object createNew nstance(String classNane) throws CacheException {
Class cl azz;
Cbj ect newl nst ance;
try {
clazz = d ass. forNanme(cl assNane, true, get StandardCd assLoader());
} catch (d assNot FoundException e) {
[/try fall back
try {
clazz = d ass.forNanme(cl assNane, true, getFall backC assLoader());
} catch (O assNot FoundException ex) {
t hrow new CacheException("Unable to load class " + classNane +
Initial cause was " + e.get Message(), e€);

}

try {
newl nst ance = cl azz. new nstance();

} catch (111 egal AccessException e) {
t hrow new CacheException("Unable to | oad cl ass + cl assName +
Initial cause was " + e.getMessage(), e);
} catch (I nstantiationException e) {
t hrow new CacheException("Unable to | oad cl ass + cl assName +
Initial cause was " + e.get Message(), e);

}

return new nstance;

49

50

Ehcache v1.2.3 User Guide

}

| **
* Gets the <code>Cl assLoader </ code> that all classes in ehcache, and extensions, should
* use for classloading. All CassLoading in ehcache should use this one. This is the only
* thing that seems to work for all of the class |oading situations found in the wld.
* @eturn the thread context class | oader.
*/
public static O assLoader getStandardd assLoader () {
return Thread. current Thread() . get Cont ext C assLoader () ;

}

| **
*x CGets a fall back <code>Cl assLoader </ code> that all classes in ehcache, and extensions,
* shoul d use for classloading. This is used if the context class | oader does not work.
* @eturn the <code>C assLoaderUtil . cl ass. get d assLoader(); </ code>
* [
public static O assLoader getFall backd assLoader () {
return ClassLoaderUtil.class. getd assLoader();

}

If this does not work for some reason a CacheException iswhmith a detailed error message.

9.2 Loading of ehcache.xml resources

If the configuration is otherwise unspecified, ehcache Idoka configuration in the following order:

e Thread.currentThread().getContextClassLoader() ggaRrce("/ehcache.xml")
e ConfigurationFactory.class.getResource("/ehcach&xml

e ConfigurationFactory.class.getResource("/ehcacteafaixml”)

Ehcache uses the first configuration found.

Note the use of "/ehcache.xml" which requires that ehcaafide placed at the root of the classpath, i.e.
not in any package.

Chapter 10

Performance Considerations

10.1 DiskStore

Ehcache comes with lenor ySt or e and abi skSt ore. TheMenor ySt or e is approximately an order
of magnitude faster than thHa skSt or e. The reason is that tha skSt or e incurs the following extra
overhead:

e Serialization of the key and value
e Eviction from theMenor ySt or e using an eviction algorithm

e Reading from disk

Note that writing to disk is not a synchronous performancerbgad because it is handled by a separate
thread.

A Cache should alway have ibmxi nunsi ze attribute set to 1 or higher. A Cache with a maximum size
of 1 has twice the performance of a disk only cache, i.e. onergvthenaxi munSi ze is set to 0. For this
reason a warning will be issued if a Cache is created withrax® nunti ze.

10.2 Replication
The asynchronous replicator is the highest performancerelére two different effects:

e Because it is asynchronous the caller returns immediately

e The messages are placed in a queue. As the queue is proaassiale messages are sent in one
RMI call, dramatically accelerating replication performea.

51

52

Ehcache v1.2.3 User Guide

Chapter 11

Cache Decorators

Ehcache 1.2 introduced the Ehcache interface, of which €achn implementation. It is possible and
encouraged to create Ehcache decorators that are backe€Caghe instance, implement Ehcache and
provide extra functionality.

The Decorator pattern is one of the the well known Gang of patterns.

11.1 Creating a Decorator

Cache decorators are created as follows:
Bl ocki ngCache newBl ocki ngCache = new Bl ocki ngCache(cache);

The class must implement Ehcache.

11.2 Accessing the decorated cache

Having created a decorator it is generally useful to put & place where multiple threads may access it.
This can be achieved in multiple ways.

11.2.1 Using CacheManager to access decorated caches

A built-in way is to replace the Cache in CacheManager withdbcorated one. This is achieved as in the
following example:

cacheManager . repl aceCacheW t hDecor at edCache(cache, newBl ocki ngCache);

TheCacheManager r epl aceCacheW t hDecor at edCache method requires that the decorated cache be
built from the underlying cache from the same name.

Note that any overwritten Ehcache methods will take on ndvabi®urs without casting, as per the normal
rules of Java. Casting is only required for new methods tietiecorator introduces.

Any calls to get the cache out of the CacheManager now religrdécorated one.

A word of caution. This method should be called in an appedply synchronized init style method before
multiple threads attempt to use it. All threads must be eefeing the same decorated cache. An example
of a suitable init method is found iBachi ngFi | t er:

53

54 Ehcache v1.2.3 User Guide

| **

* The cache holding the web pages. Ensure that all threads for a given cache name are using
*/

private Bl ocki ngCache bl ocki ngCache;

| **
* |Initialises blockingCache to use
*
* @hrows CacheException The nost likely cause is that a cache has not been
* configured in ehcache’s configuration file ehcache.xm for the filt
*/
public void dolnit() throws CacheException {
synchroni zed (this.getC ass()) {
if (blockingCache == null) {
final String cacheNane = get CacheNane();
Ehcache cache = get CacheManager (). get Ehcache(cacheNane);
if (!(cache instanceof Bl ockingCache)) {
// decorate and substitute
Bl ocki ngCache newBl ocki ngCache = new Bl ocki ngCache(cache);
get CacheManager () . r epl aceCacheW t hDecor at edCache(cache, newBl ocki ngCache);

}
bl ocki ngCache = (Bl ocki ngCache) get CacheManager (). get Ehcache(get CacheNane());

Ehcache bl ocki ngCache = si ngl et onManager . get Ehcache("sanpl eCachel");

The returned cache will exhibit the decorations.

11.3 Built-in Decorators

11.3.1 BlockingCache

A blocking decorator for an Ehcache, backed by a @link Eheach

It allows concurrent read access to elements already indbleec If the element is null, other reads will
block until an element with the same key is put into the cache.

This is useful for constructing read-through or self-p@pinlg caches.
BlockingCache is used bgachi ngFi l ter.

Ehcache v1.2.3 User Guide

55

Jjava.lang |

net.sf.ehcache I

net.sf.ehi

L..l

=

net.sf.ehcache |
Ehcache
org.apache.commons.logging
@)=
net.sf.ehcachi rent |

net.sf.ehcache. event |

java.lang

java.util

List<E>

net.sf.ehcache |

net.sf.ehcache store

java.io |

Serializable

net.sf.ehcache.bootstrap

BootstrapCacheLoader

56 Ehcache v1.2.3 User Guide

11.3.2 SelfPopulatingCache

A selfpopulating decorator for @link Ehcache that createéges on demand.

Clients of the cache simply call it without needing knowledy whether the entry exists in the cache. If
null the entry is created.

The cache is designed to be refreshed. Refreshes operdite badking cache, and do not degrade perfor-
mance of get calls.

SelfPopulatingCache extends BlockingCache. Multipledhds attempting to access a null element will
block until the first thread completes. If refresh is beintiezhthe threads do not block - they return the
stale data.

This is very useful for engineering highly scalable systems

netsf.ehcache.constructs. blocking

BlockingCache

net.sf.ehcache. constructs. blocking

net.sf.ehcache. constructs. blocking [Il Jjava.lang

| SelfPopulatingCache
CacheEntryFactory -e——— # factory : CacheEntryFactory ===~ Object

| + SelfPopulatingCache(Eheache, CacheEntryFactory)
pulating () yFactory) [

+ getiObject) : Element
+ refresh() : vaid
| # refreshElement(Element, Ehcache) : void

Log netsf.ehcache
setThreadName(String, Object) : void

org.apache.commaons.logging

~~----== Ehcache

——————— == Element

generated by yDoc

SelfPopulatingCache

Chapter 12

Cache Configuration

Caches can be configured in ehcache either declarativekyninor by creating them programmatically
and specifying their parameters in the constructor.

While both approaches are fully supported it is generallpadjidea to separate the cache configuration
from runtime use. There are also these benefits:

e |t is easy if you have all of your configuration in one place.cl&s consume memory, and disk
space. They need to be carefully tuned. You can see the ffaat & a configuration file. You could
do this code, but it would not as visible.

e Cache configuration can be changed at deployment time.

e Configuration errors can be checked for at start-up, rattear tausing a runtime error.

This chapter covers XML declarative configuration. See tbdegamples for programmatic configuration.

Ehcache is redistributed by lots of projects. They may or matyprovide a sample ehcache XML config-
uration file. If one is not provided, download ehcache frotp#fehcache.sf.net. It, and the ehcache.xsd is
provided in the distribution.

12.1 ehcache.xsd

Ehcache configuration files must be comply with the ehcaché& Xthema, ehcache.xsd, reproduced be-
low.

<?xm version="1.0" encodi ng="UTF-8"7?>
<xs:schema xm ns: xs="http://ww. w3. org/ 2001/ XM_Schena"
el enent For nDef aul t =" qual i fi ed">
<xs: el ement name="ehcache" >
<xs:conpl exType>
<Xs:sequence>
<xs: el ement ref="diskStore"/>
<xs: el ement mi nQccurs="0" maxCccurs="1"
r ef =" cacheManager Event Li st ener Fact ory" />
<xs: el ement m nCccurs="0" maxCccurs="1"
r ef =" cacheManager Peer Pr ovi der Factory"/ >
<xs: el ement m nCccurs="0" maxCccurs="1"
r ef =" cacheManager Peer Li st ener Factory"/ >
<xs: el ement ref="defaultCache"/>

57

58

Ehcache v1.2.3 User Guide

<xs: el ement maxCccurs="unbounded" ref="cache"/>
</ Xxs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: el emrent nanme="di skStore">
<xs:conpl exType>
<xs:attribute name="path" use="required" type="xs:NCNane"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nane="cacheManager Event Li st ener Fact ory" >
<xs: conpl exType>
<xs:attribute name="cl ass" use="required"/>
<xs:attribute nane="properties" use="optional"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="cacheManager Peer Provi der Fact ory" >
<xs:conpl exType>
<xs:attribute nanme="cl ass" use="required"/>
<xs:attribute nane="properties" use="optional"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement name="cacheManager Peer Li st ener Fact ory" >
<xs:conpl exType>
<xs:attribute nanme="cl ass" use="required"/>
<xs:attribute nane="properties" use="optional"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nane="def aul t Cache" >
<xs: conpl exType>
<XS:sequence>
<xs: el ement m nCccurs="0" ref="cacheEventLi stenerFactory"/>
<xs: el ement m nCccurs="0" ref="bootstrapCacheLoader Factory"/>
</ xs: sequence>
<xs:attribute nane="di skExpi ryThreadl nt erval Seconds"
use="optional" type="xs:integer"/>
<xs:attribute name="di skPersistent" use="optional" type="xs:bool ean"/>
<xs:attribute nane="eternal" use="required" type="xs:bool ean"/>
<xs:attribute nane="maxEl enment sl nMenory" use="required"
type="xs:integer"/>
<xs:attribute nane="nmenoryStoreEvictionPolicy" use="optional"
t ype="xs: NCNane"/ >

<xs:attribute name="overfl owToD sk" use="required" type="xs:bool ean"/>

<xs:attribute nane="ti nmeTol dl eSeconds" use="optional" type="xs:integer"/>

<xs:attribute nane="tinmeTolLi veSeconds" use="optional" type="xs:integer"/>
</ xs: conpl exType>

</ xs: el enent >
<xs: el enent name="cache">

<xs:conpl exType>
<Xs:sequence>
<xs: el ement m nCccurs="0" ref="cacheEventLi stenerFactory"/>
<xs: el ement mi nQccurs="0" ref="bootstrapCacheLoader Factory"/>
</ Xs: sequence>
<xs:attribute nane="di skExpi ryThreadl nt erval Seconds" type="xs:integer"/>
<xs:attribute name="di skPersistent" type="xs:bool ean"/>
<xs:attribute nane="eternal" use="required" type="xs:bool ean"/>
<xs:attribute name="maxEl enent sl nMenory" use="required"
type="xs:integer"/>
<xs:attribute nane="nmenoryStoreEvictionPolicy" type="xs:NCNane"/ >

Ehcache v1.2.3 User Guide 59

<xs:attribute name="name" use="required" type="xs:NCNane"/>
<xs:attribute nane="overfl owlToDi sk" use="required" type="xs:bool ean"/>
<xs:attribute name="tineTol dl eSeconds" type="xs:integer"/>
<xs:attribute name="tineToLi veSeconds" type="xs:integer"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el emrent nanme="cacheEventLi st ener Fact ory" >
<xs: conpl exType>
<xs:attribute name="cl ass" use="required"/>
<xs:attribute nane="properties" use="optional"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nane="boot strapCachelLoader Fact ory">
<xs:conpl exType>
<xs:attribute nanme="cl ass" use="required"/>
<xs:attribute nanme="properties" use="optional"/>
</ xs: conpl exType>
</ xs: el ement >
</ xs: schema>

12.2 ehcache-failsafe.xml

If the CacheManager default constructor or factory mettodadlled, ehcache looks for a file called
ehcache.xml in the top level of the classpath. Failing thaddks for ehcache-failsafe.xml in the class-
path. ehcache-failsafe.xml is packaged in the ehcachaghskould always be found.

ehcache-failsafe.xml provides an extremely simple defaurifiguration to enable users to get started be-
fore they create their own ehcache.xml.

If it used ehcache will emit a warning, reminding the userebup a proper configuration.

The meaning of the elments and attributes are explainedarsdttion on ehcache.xml. -ehcache

diskStore path="java.io.tmpdir"/ defaultCache maxElens¢tnMemory="10000" eternal="false" timeTol-
dleSeconds="120" timeToLiveSeconds="120" overflowTkBisue" diskPersistent="true" diskExpiry-
ThreadIntervalSeconds="120" memoryStoreEvictionRalit RU" / /ehcache--

12.3 ehcache.xml and other configuration files

If the CacheManager default constructor or factory metteodalled, ehcache looks for a file called
ehcache.xmlin the top level of the classpath.

The non-default creation methods allow a configuration €ilbe specified which can be called anything.

One XML configuration is required for each CacheManagerithateated. It is an error to use the same
configuration, because things like directory paths anédist ports will conflict. Ehcache will attempt
to resolve conflicts and will emit a warning reminding the ruseconfigure a separate configuration for
multiple CacheManagers with conflicting settings.

The sample ehcache.xml, which is included in the ehcachetdison is shown below:

<ehcache>

<l--
Sets the path to the directory where cache files are created

If the path is a Java System Property it is replaced by its value in the
runni ng VM

60

Ehcache v1.2.3 User Guide

The followi ng properties are transl ated:

* user.hone - User’'s hone directory

* user.dir - User’s current working directory
* java.io.tnpdir - Default tenp file path

Subdirectories can be specified below the property e.g. java.io.tnpdir/one
-->
<di skStore path="java.io.tnpdir"/>

<l--
Speci fi es a CacheManager Event Li st ener Factory, be used to create a CacheManager Peer Provi der,
which is notified when Caches are added or renoved fromthe CacheManager

The attributes of CacheManager EventLi stenerFactory are:
* class - a fully qualified factory class nane
* properties - comma separated properties having nmeaning only to the factory.

Sets the fully qualified class nane to be regi stered as the CacheManager event |istener.

The events include:
* addi ng a Cache
* renmoving a Cache

Cal | backs to |istener nmethods are synchronous and unsynchronized. It is the responsibility
of the inplenmenter to safely handle the potential performance and thread safety issues
dependi ng on what their listener is doing

If no class is specified, no listener is created. There is no default.
-->

<cacheManager Event Li st ener Factory cl ass=

properties=""/>

<l--
(Enabl e for distributed operation)

Speci fi es a CacheManager Peer Provi der Factory which will be used to create a
CacheManager Peer Provi der, which di scovers ot her CacheManagers in the cluster.

The attributes of cacheManager Peer Provi der Factory are:
* class - a fully qualified factory cl ass nanme
* properties - comma separated properties having nmeaning only to the factory.

Ehcache conmes with a built-in RM-based distribution systemwith two neans of discovery of

CacheManager peers participating in the cluster:

* automatic, using a multicast group. This one automatically discovers peers and detects
changes such as peers entering and | eaving the group

* manual , using manual rm URL configuration. A hardcoded |ist of peers is provided at
configuration tine.

Configuring Automatic Di scovery:
Aut omatic di scovery is configured as per the foll owi ng exanpl e:
<cacheManager Peer Pr ovi der Fact ory
cl ass="net. sf.ehcache. di stri buti on. RM CacheManager Peer Pr ovi der Fact ory"
properti es="peer D scovery=automatic, multicastG oupAddress=230.0.0.1,
mul ti cast G oupPort =4446"/ >

Valid properties are:

Ehcache v1.2.3 User Guide 61

* peerDi scovery (mandatory) - specify "autonatic"

* multicast & oupAddress (nmandatory) - specify a valid multicast group address

* nulticastGroupPort (mandatory) - specify a dedicated port for the multicast heartbeat
traffic

Configuring Manual Discovery:

Manual discovery is configured as per the foll owi ng exanpl e:

<cacheManager Peer Provi der Factory cl ass=
"net. sf. ehcache. di stri buti on. RM CacheManager Peer Provi der Fact ory"
properti es="peer Di scovery=manual ,
rm Url s=//server1: 40000/ sanpl eCachel|//server2: 40000/ sanpl eCachel
| //serverl: 40000/ sanpl eCache2|//server2: 40000/ sanpl eCache2"/ >

Valid properties are:

* peerDi scovery (mandatory) - specify "manual "

* rm U ls (mandatory) - specify a pipe separated list of rmUls, in the form
/I host name: port

The hostnane is the hostnanme of the renpte CacheManager peer. The port is the listening
port of the RM CacheManager PeerLi stener of the renpote CacheManager peer.

An al ternat e CacheManager Peer Provi der Factory can be used for JNDI discovery of other
CacheManagers in the cluster. Only manual discovery is supported.

For cacheManager Peer Provi der Factory specify cl ass
net . sf.ehcache. di stribution. JNDI Manual RM CacheManager Peer Pr ovi der Fact oryer Fact ory.

Correspondi ngly for cacheManager Peer Li st ener Factory specify class
net . sf.ehcache. di stribution. JNDI RM CacheManager Peer Li st ener Fact oryory.

Configuring JNDI Manual Discovery:
Manual JNDI discovery is configured as per the foll owi ng exanpl e:
<cacheManager Peer Pr ovi der Factory cl ass=
"net.sf.ehcache. di stribution. JNDI Manual RM CacheManager Peer Pr ovi der Fact or yer Fact ory"
properti es="peer D scovery=manual , stashContexts=true, stashRenoteCachePeers=true,
jndi Ul s=t3//server1: 40000/ sanpl eCachel|t 3//server 2: 40000/ sanpl eCachel
| t3//server1: 40000/ sanpl eCache2| t 3// server 2: 40000/ sanpl eCache2"/ >

Valid properties are:
* peerDi scovery (mandatory) - specify "manual "

* stashContexts (optional) - specify "true" or "false". Defaults to true.
j ava. nam ng. Cont ext obj ects are stashed for performance.
* stashRenmot eCachePeers (optional) - specify "true" or "false". Defaults to true.

CachePeer objects are stashed for perfornmance.
* jndi Urls (mandatory) - specify a pipe separated list of jndiUls,
in the form protocol //hostnane: port
-->
<cacheManager Peer Provi der Fact ory
cl ass="net. sf. ehcache. di stri buti on. RM CacheManager Peer Pr ovi der Fact ory"
properti es="peer D scovery=autonatic,
mul ti cast G oupAddr ess=230.0.0. 1,
mul ti cast GroupPort =4446"/>

<l--
(Enabl e for distributed operation)

Speci fi es a CacheManager Peer Li stener Factory which will be used to create a

62

Ehcache v1.2.3 User Guide

CacheManager Peer Li st ener, whi ch
listens for nmessages fromcache replicators participating in the cluster.

The attributes of cacheManager PeerLi stenerFactory are:
class - a fully qualified factory class nane
properties - conma separated properties having meaning only to the factory.

Ehcache conmes with a built-in RM-based distribution system The |istener conponent is
RM CacheManager Peer Li st ener which is configured using
RM CacheManager Peer Li stener Factory. It is configured as per the follow ng exanpl e:

<cacheManager Peer Li st ener Fact ory
cl ass="net.sf.ehcache. di stri buti on. RM CacheManager Peer Li st ener Fact or y"
properti es="host Nane=fully_qualified_hostname_or _ip,
port=40001,
socket Ti meout M | | i s=120000"/ >

Al'l properties are optional. They are:
* host Name - the host Name of the host the |istener is running on. Specify
where the host is nultihonmed and you want to control the interface over which cluster
messages are received. Defaults to the host nane of the default interface if not
speci fi ed.
* port - the port the listener listens on. This defaults to a free port if not specified.
* socketTinmeoutMIlis - the nunmber of ns client sockets will stay open when sending
nmessages to the listener. This should be | ong enough for the slowest nessage.
If not specified it defaults 120000nmns.

An al ternate CacheManager PeerLi stenerFactory can be al so be used for JNDI bindi ng of
|listeners for nessages from cache replicators participating in the cluster. For
cacheManager Peer Li st ener Factory specify

class net.sf.ehcache. distribution.JND RM CacheManager Peer Li st ener Fact ory.
Correspondi ngly for cacheManager Peer Provi der Factory specify cl ass

net . sf.ehcache. di stri bution. JNDI Manual RM CacheManager Peer Provi der Fact oryer Fact ory.
Properties for JND RM CacheManager Peer Li st ener Factory are the sane as

RM CacheManager Peer Li st ener Fact ory.

-->
<cacheManager Peer Li st ener Fact ory

cl ass="net. sf.ehcache. di stributi on. RM CacheManager Peer Li st ener Factory"/ >
<!-- Cache configuration.

The following attributes are required.

name:
Sets the nanme of the cache. This is used to identify the cache. It nust be unique.

mexEl ement sl nMenory:

Sets the maxi mum nunber of objects that will be created in nmenory
eternal:
Sets whether elenents are eternal. If eternal, tineouts are ignored and the

el enent is never expired.

over f| owToDi sk:
Sets whet her el enments can overflow to di sk when the in-nenory cache
has reached the maxlnMenory limt.

Ehcache v1.2.3 User Guide 63

The following attributes are optional.

ti meTol dl eSeconds:

Sets the tinme to idle for an elenent before it expires.

i .e. The maxi mum anount of tine between accesses before an el enent expires
Is only used if the elenent is not eternal.

Optional attribute. A value of 0 neans that an Elenent can idle for infinity.
The default value is 0.

ti meTolLi veSeconds:

Sets the time to live for an elenent before it expires.

i.e. The maximumtime between creation tine and when an el enent expires.

Is only used if the element is not eternal.

Optional attribute. A value of O neans that and Elenent can live for infinity.
The default value is 0.

di skPersi stent:
Whet her the disk store persists between restarts of the Virtual Mchine.
The default value is fal se.

di skExpi ryThr eadl nt er val Seconds:
The nunber of seconds between runs of the disk expiry thread. The default val ue
is 120 seconds.

menor ySt or eEvi cti onPol i cy:

Pol i cy woul d be enforced upon reaching the naxEl ementsinMenory limt. Default
policy is Least Recently Used (specified as LRU). O her policies available -
First In First Qut (specified as FIFO and Less Frequently Used

(specified as LFU)

Cache el enments can al so contain sub el enments which take the sane format of a factory class
and properties. Defined sub-elements are:

* cacheEvent Li stenerFactory - Enables registration of |isteners for cache events, such as
put, renove, update, and expire.

* boot st rapCachelLoader Factory - Specifies a BootstrapCacheLoader, which is called by a
cache on initialisation to prepopul ate itself.

Each cache that will be distributed needs to set a cache event |istener which replicates
messages to the other CacheManager peers. For the built-in RM inplenentation this is done
by addi ng a cacheEvent Li stenerFactory el enent of type RM CacheReplicatorFactory to each
distributed cache’s configuration as per the follow ng exanpl e:

<cacheEvent Li stener Factory cl ass="net. sf. ehcache. di stri buti on. RM CacheRepl i cat or Fact ory"
properti es="replicateAsynchronousl y=true,
repli cat ePut s=true,
replicat eUpdat es=true,
repl i cat eUpdat esVi aCopy=t r ue,
replicat eRenoval s=true "/>

The RM CacheReplicatorFactory recogni ses the follow ng properties:

* replicatePuts=true|fal se - whether new el enents placed in a cache are
replicated to others. Defaults to true.

* replicateUpdates=true|fal se - whether new el enents which override an

64

Ehcache v1.2.3 User Guide

el enent already existing with the same key are replicated. Defaults to true.
* replicateRenoval s=true - whether elenent renovals are replicated. Defaults to true.

* replicateAsynchronously=true | false - whether replications are
asynchronous (true) or synchronous (false). Defaults to true.

* replicateUpdatesVi aCopy=true | false - whether the new el ements are
copied to other caches (true), or whether a renpve nessage is sent. Defaults to true.

The RM Boot st rapCachelLoader bootstraps caches in clusters where RM CacheReplicators are
used. It is configured as per the followi ng exanple:

<boot st rapCachelLoader Fact ory
cl ass="net.sf.ehcache. di stributi on. RM Boot st rapCachelLoader Fact ory"
properti es="boot strapAsynchronousl y=true, maxi nunChunkSi zeByt es=5000000"/ >

The RM Boot st rapCachelLoader Factory recogni ses the follow ng optional properties:

* boot strapAsynchronousl y=true|fal se - whether the bootstrap happens in the background
after the cache has started. If false, bootstrapping nust conplete before the cache is
made avail able. The default value is true.

* maxi mumChunkSi zeByt es=<i nt eger > - Caches can potentially be very |large, |arger than the
menory limts of the VM This property allows the bootstraper to fetched el enents in
chunks. The default chunk size is 5000000 (5MB).

-->

<l--
Mandat ory Default Cache configuration. These settings will be applied to caches
created programmtically usi ng CacheManager. add(Stri ng cacheNane)
-->
<def aul t Cache

mexEl enent sl nMenor y="10000"

eternal ="f al se"

ti meTol dl eSeconds="120"

ti meTolLi veSeconds="120"

over fl owToDi sk="true"

di skPer si st ent ="f al se"

di skExpi ryThr eadl nt er val Seconds="120"

menor ySt or eEvi cti onPol i cy="LRU"

/>

<l--

Sanpl e caches. Foll owi ng are sonme exanpl e caches. Renobve these before use.
-->

<l--
Sanpl e cache named sanpl eCachel
Thi s cache contains a maxi mumin menory of 10000 el enents, and will expire

an element if it is idle for nore than 5 mnutes and lives for nore than
10 mi nutes.

If there are nore than 10000 elenents it will overflowto the
di sk cache, which in this configuration will go to wherever java.io.tnp is

Ehcache v1.2.3 User Guide 65

defined on your system On a standard Linux systemthis will be /tnp
-->
<cache nane="sanpl eCachel"

maxEl enent sl nMenor y="10000"

eternal ="fal se"

overfl owToDi sk="tr ue"

ti meTol dl eSeconds="300"

ti meTolLi veSeconds="600"

nmenor ySt or eEvi cti onPol i cy="LFU"

/>

<l--
Sanpl e cache named sanpl eCache2
Thi s cache has a maxi mum of 1000 el enents in nmenory. There is no overflow to disk, so 1000
is al so the maxi mum cache size. Note that when a cache is eternal, tineToLive and
timeToldl e are not used and do not need to be specified.
-->
<cache name="sanpl eCache2"
mexEl ement s| nMeror y="1000"
eternal ="true"
overfl owToDi sk="fal se"
menor ySt or eEvi cti onPol i cy="FI FO'
/>

<l--
Sanpl e cache nanmed sanpl eCache3. This cache overflows to disk. The disk store is
persi stent between cache and VMrestarts. The disk expiry thread interval is set to 10
m nutes, overriding the default of 2 mnutes.
-->
<cache name="sanpl eCache3"

maxEl enent sl nMenor y="500"

eternal ="fal se"

overfl owToDi sk="true"

ti meTol dl eSeconds="300"

ti meTolLi veSeconds="600"

di skPer si stent ="true"

di skExpi ryThr eadl nt er val Seconds="1"

menor ySt or eEvi cti onPol i cy="LFU"

/>

<l--
Sanpl e distributed cache naned sanpl eDi stri but edCachel
This cache replicates using defaults.
It al so bootstraps fromthe cluster, using default properties.
-->
<cache name="sanpl ebi stri but edCachel"
mexEl enent sl nMenory="10"
eternal ="f al se"
ti meTol dl eSeconds="100"
ti meTolLi veSeconds="100"
overfl owToDi sk="f al se" >
<boot st rapCachelLoader Fact ory
cl ass="net . sf. ehcache. di stri buti on. RM Boot st rapCachelLoader Fact ory"/ >
<cacheEvent Li st ener Fact ory
class="net. sf.ehcache. di stri buti on. RM CacheRepli cat or Factory"/>

66 Ehcache v1.2.3 User Guide

</ cache>

<l--
Sanpl e distributed cache named sanpl eDi stri but edCache2.
Thi s cache replicates using specific properties.
It only replicates updates and does so synchronously via copy
-->
<cache nane="sanpl eDi stri but edCache2"
maxEl enent sl nMenor y="10"
eternal ="fal se"
ti meTol dl eSeconds="100"
ti meTolLi veSeconds="100"
overfl owToDi sk="f al se">
<cacheEvent Li st ener Fact ory
cl ass="net.sf.ehcache. di stri buti on. RM CacheRepl i cat or Fact ory"
properti es="replicateAsynchronousl y=fal se, replicatePuts=fal se,
repli cat eUpdat es=true, replicateUpdatesVi aCopy=true,
repli cat eRenoval s=f al se"/>
</ cache>

</ ehcache>

Chapter 13

Storage Options

Ehcache has two stores:

e a MemoryStore and

e a DiskStore

13.1 Memory Store

TheMenor ySt or e is always enabled. It is not directly manipulated, but is mponent of every cache.

e Suitable Element Types
All Elements are suitable for placement in the MemoryStore.
It has the following characteristics:

— Safety
Thread safe for use by multiple concurrent threads.
Tested for memory leaks. See MemoryCacheTest#testMereakylT his test passes for ehcache
but exploits a number of memory leaks in JCS. JCS will give and@Memory error with a
default 64M in 10 seconds.

— Backed By JDK
LinkedHashMap Th&enor y St or e for JDK1.4 and JDK 5 it is backed by an extended Linked-
HashMap. This provides a combined linked list and a hash raag,is ideally suited for
caching. Using this standard Java class simplifies the imgte¢ation of the memory cache. It
directly supports obtaining the least recently used elémen

For JDK1.2 and JDK1.3, the LRUMap from Apache Commons is udeg@rovides similar
features to LinkedHashMap.

The implementation is determined dynamically at runtimenkedHashMap is preferred if
found in the classpath.

— Fast
The memory store, being all in memory, is the fastest cacoign.

13.1.1 Memory Use, Spooling and Expiry Strategy

All caches specify their maximum in-memory size, in termsh&f number of elements, at configuration
time.

67

68 Ehcache v1.2.3 User Guide

When an element is added to a cache and it goes beyond its mraxinemory size, an existing element
is either deleted, if overflowToDisk is false, or evaluated $pooling to disk, if overflowToDisk is true.

In the latter case, a check for expiry is carried out. If it xpieed it is deleted; if not it is spooled. The
eviction of an item from the memory store is based on the Mg®tmreEvictionPolicy setting specified in
the configuration file.

memoryStoreEvictionPolicy is an optional attribute in &tive.xml introduced since 1.2. Legal values are
LRU (default), LFU and FIFO.

LRU, LFU and FIFO eviction policies are supported. LRU is dledault, consistent with all earlier releases
of ehcache.

e Least Recently Used (LRU) - Default
The eldest element, is the Least Recently Used (LRU). Theutal timestamp is updated when an
element is put into the cache or an element is retrieved frentache with a get call.

e Less Frequently Used (LFU)
For each get call on the element the number of hits is updM#ten a put call is made for a new
element (and assuming that the max limit is reached for theong store) the element with least
number of hits, the Less Frequently Used element, is evicted

e First In First Out (FIFO)

Elements are evicted in the same order as they come in. Whencalpis made for a new element
(and assuming that the max limit is reached for the memomng}tbe element that was placed first
(First-In) in the store is the candidate for eviction (FiGt).

For all the eviction policies there are algot Qui et andget Qui et methods which do not update
the last used timestamp.

When there is get or aget Qui et on an element, it is checked for expiry. If expired, it is remod
and null is returned.

Note that at any point in time there will usually be some exgielements in the cache. Memory
sizing of an application must always take into account thgimam size of each cache. There is a
convenience method which can provide an estimate of thersizgtes of thevenor ySt ore. See
calculatelnMemorySize(). It returns the serialized sitehe cache. Do not use this method in
production. Itis very slow. It is only meant to provide a rbuggstimate.

The alternative would have been to have an expiry thread i$ta trade-off between lower memory
use and short locking periods and cpu utilisation. The daesdn favour of the latter. For those
concerned with memory use, simply reducea@El enent sl nMenory.

13.2 DiskStore

TheDi skSt or e provides a disk spooling facility.

e Suitable Element Types

Only El enent s which areSeri al i zabl e can be placed in the DiskStore. Any non serializable
El ement s which attempt to overflow to tHa sk St or e will be removed instead, and a WARNING
level log message emitted.

It has the following characteristics:

e Storage Files
The disk store creates one file per cache called "cache nata&.d
If the Di skSt or e is configured to be persistent, edthe namendex" file is also created.

Ehcache v1.2.3 User Guide 69

Files are created in the directory specified by the diskStordiguration element. The default con-
figuration is "java.io.tmpdir”, which causes files to be tegidn the system’s temporary directory.

Following is a list of Java system properties which are suigglas values for diskStore:

— user.home - User’s home directory
— user.dir - User’s current working directory
— java.io.tmpdir - Default temp file path

Apart from these, any directory can be specified using syapgropriate to the operating system.
e.g. for Unix "/home/application/cache".
e Expiry Strategy

One thread per cache is used to remove expired elementsplibea attributedi skExpi r yThr eadl nt er val Seconds
sets the interval between runs of the expiry thread. Warrsegfing this to a low value is not rec-

ommended. It can cause excesdlvaekSt or e locking and high cpu utilisation. The default value

is 120 seconds.

e Serializable Objects
Only Serializable objects can be stored ibi &k St or e. A NotSerializableException will be thrown
if the object is not serializable.

e Safety
Di skSt or es are thread safe.

e Persistence

Di skSt or e persistence is controlled by the diskPersistent configpmalement. If false or omitted,
Di skSt or es will not persist betwee@acheManager restarts. The data file for each cache will be
deleted, if it exists, both on shutdown and startup. No data fa previous instandgacheManager

is available.

If diskPersistent is true, the data file, and an index file sareed. Cache Elements are available to a
newCacheManager . ThisCacheManager may be in the same VM instance, or a new one.

The data file is updated continuously during operation ofdtsk Store. New elements are spooled
to disk, and deleted when expired. The index file is only eritivhen dispose is called on the
Di skSt ore. This happens when the CacheManager is shut down, a Caclsp@sédd, or the VM

is being shut down. It is recommended that the CacheMandged®vn() method be used. See
Virtual Machine Shutdown Considerations for guidance ow km safely shut the Virtual Machine
down.

When abi skSt or e is persisted, the following steps take place:

— Any non-expired Elements of thenor y St or e are flushed to the DiskStore
— Elements awaiting spooling are spooled to the data file
— The free list and element list are serialized to the index file

On startup the following steps take place:

— An attempt is made to read the index file. If it does not existasmot be read successfully, due
to disk corruption, upgrade of ehcache, change in JDK versio, then the data file is deleted
and theDi skSt or e starts with no Elements in it.

— Ifthe index file is read successfully, the free list and eletfist are loaded into memory. Once
this is done, the index file contents are removed. This walgife is a dirty shutdown, when
restarted, ehcache will delete the dirt index and data files.

— TheDi skSt or e starts. All data is available.

70

Ehcache v1.2.3 User Guide

— The expiry thread starts. It will delete Elements which hexpired.

These actions favour safety over persistence. Ehcachedishee cnot a database. If a file gets dirty,
all data is deleted. Once started there is further checlangdrruption. When a get is done, if
the Element cannot be successfully derserialized, it istdd] and null is returned. These measures
prevent corrupt and inconsistent data being returned.

— Fragmentation

Expiring an element frees its space on the file. This spacaikaale for reuse by new elements.
The element is also removed from the in-memory index of eteme

— Speed
Spool requests are placed in-memory and then asynchrgnettiien to disk. There is one

thread per cache. An in-memory index of elements on disk isitaiaed to quickly resolve
whether a key exists on disk, and if so to seek it and read it.

— Serialization

Writes to and from the disk use ObjectinputStream and tha Sewialization mechanism. This
is not required for the MemoryStore. As a result the Disk&toan never be as fast as the
MemoryStore.

Serialization speed is affected by the size of the objedtggbeerialized and their type. It has
been found in the ElementTest test that:

x The serialization time for a Java object being a large Maptdh& arrays was 126ms,
where the a serialized size was 349,225 bytes.

x The serialization time for a byte[] was 7ms, where the sizgdlsize was 310,232 bytes

Byte arrays are 20 times faster to serialize. Make use of agi@ys to increase DiskStore
performance.

— RAMFS

One option to speed up disk stores is to use a RAM file systemsadre operating systems
there are a plethora of file systems to choose from. For exgnipt Disk Cache has been
successfully used with Linux’ RAMFS file system. This file ®m simply consists of memory.
Linux presents it as a file system. The Disk Cache treats dt éiknormal disk - it is just
way faster. With this type of file system, object serialiaatbecomes the limiting factor to
performance.

Chapter 14

Virtual Machine Shutdown
Considerations

14.1

The DiskStore can optionally be configured to persist betw@acheManager and Virtual Machine in-
stances. See documentation on the diskPersistent cadbatatfor information on how to do this.

When diskPersistent is turned on for a cache, a Virtual Meelshutdown hook is added to enable the
DiskStore to persist itself. When the Virtual Machine shdisvn, the the hook runs and, if the cache is
not already disposed, it calls dispose. Any elements in teebtyStore are spooled to the DiskStore. The
DiskStore then flushes the spool, and writes the index ta disk

The cache shutdown hooks will run when:

e aprogram exists normally. e.g. System.exit() is calledherast non-daemon thread exits

¢ the Virtual Machine is terminated. e.g. CTRL-C. This copmsds toki | | -SI GTERM pi d or
kill -15 pid on Unix systems.

The cache shutdown hooks will not run when:

e the Virtual Machine aborts

e A SIGKILL signal is sent to the Virtual Machine process on keystems. e.gki || -SI GKI LL
pidorkill -9 pid

e A Terni nat eProcess call is sent to the process on Windows systems.
If dispose was not called on the cache either by CacheMashgédown() or the shutdown hook, then the
DiskStore will be corrupt when the application is next stdrtlf this happens, it will be detected and the

DiskStore file will be automatically truncated and a log wagievel message is emitted. The cache will
work normally, except that it will have lost all data.

71

72

Ehcache v1.2.3 User Guide

Chapter 15

Hibernate Caching

Note these instructions are for Hibernate 3.1. Go to Guid&éosion 1.1 for older instructions on how to
use Hibernate 2.1.

Ehcache easily integrates with the Hibernate Object/Relal persistence and query service. Gavin King,
the maintainer of Hibernate, is also a committer to the ehegroject. This ensures ehcache will remain
a first class cache for Hibernate.

Since Hibernate 2.1, ehcache has been the default cachdipfnnate.

The net.sf.ehcache.hibernate package provides clagsgsdting ehcache with Hibernate. Hibernate is an
application of ehcache. Ehcache is also widely used a geperpose Java cache.

To use ehcache with Hibernate do the following:

e Ensure ehcache is enabled in the Hibernate configuration.

Add the cache element to the Hibernate mapping file, eithaualdy, or via hibernatedoclet for each
Domain Object you wish to cache.

Add the cache element to the Hibernate mapping file, eithaualdy, or via hibernatedoclet for each
Domain Object collection you wish to cache.

Add the cache element to the Hibernate mapping file, eithaualdy, or via hibernatedoclet for each
Hibernate query you wish to cache.

Create a cache element in ehcache.xml

Each of these steps is illustrated using a fictional CountrgnBin Object.

For more about cache configuration in Hibernate see the Riberdocumentation. Parts of this chapter
are drawn from Hibernate documentation and source code eorsm

They are reproduced here for convenience in using ehcache.

15.1 Setting ehcache as the cache provider

15.1.1 Using the ehcache provider from the ehcache project
To ensure ehcache is enabled, verify that the hibernateeqarovider_class property is set to net.sf.hibernatbe&hCacheProvi

in the Hibernate configuration file; either hibernate.cfigl.er hibernate.properties. The format given is for
hibernate.cfg.xml.

73

74 Ehcache v1.2.3 User Guide

If you are using hibernate-3 or hibernate-3.1 you will needise the ehcache provider to use multiple
SessionFactories/CacheManagers in a single VM. That geowhould be integrated into the Hibernate-
3.2 version.1

hi ber nat e. cache. provi der _cl ass=net. sf. hi bernat e. cache. EhCacheProvi der
net . sf. ehcache. confi gurati onResour ceNarme=/ nane_of _confi gurati on_resource

The meaning of the properties is as follows:
hibernate.cache.provider_class - The fully qualifiedslaame of the cache provider
net.sf.ehcache.configurationResourceName - The nameouifi@geration resource to use.

The resource is searched for in the root of the classpatb.niééded to support multiple CacheManagers
in the same VM. It tells Hibernate which configuration to uaa.example might be "ehcache-2.xml".

15.1.2 Using the ehcache provider from the Hibernate projec

To use the one from the Hibernate project:

hi ber nat e. cache. provi der _cl ass=or g. hi ber nat e. cache. EnCachePr ovi der
hi ber nat e. cache. provi der_configuration_fil e_resource_pat h=/ name_of _confi gurati on_resource

15.1.3 Programmatic setting of the Hibernate Cache Provide

The provider can also be set programmatically in HibernsiteguConfiguration.setProperty("hibernate.cache.geviclass",
"net.sf.hibernate.cache.EhCacheProvider").

15.2 Hibernate Mapping Files

In Hibernate, each domain object requires a mapping file.

For example to enable cache entries for the domain objecismonecompany.someproject.domain.Country
there would be a mapping file something like the following:

<hi ber nat e- mappi ng>

<cl ass
nane="com someconpany. somepr oj ect. domai n. Country"
tabl e="ut_Countries"
dynami c- updat e="f al se"
dynam c-i nsert="fal se"
>

</ hi ber nat e- mappi ng>

To enable caching, add the following element.

Ehcache v1.2.3 User Guide 75

<cache usage="read-wite|nonstrict-read-wite|read-only" />

e.g.

<cache usage="read-wite" />

15.2.1 read-write

Caches data that is sometimes updated while maintainingehgantics of "read committed" isolation
level. If the database is set to "repeatable read", thisurwency strategy almost maintains the semantics.
Repeatable read isolation is compromised in the case olicmnt writes.

This is an "asynchronous" concurrency strategy.

15.2.2 nonstrict-read-write

Caches data that is sometimes updated without ever lockingdche. If concurrent access to an item is
possible, this concurrency strategy makes no guaranteéhthétem returned from the cache is the latest
version available in the database. Configure your cacheotitreccordingly! This is an "asynchronous"
concurrency strategy.

This policy is the fastest. It does not use synchronized austhvhereas read-write and read-only both do.

15.2.3 read-only

Caches data that is never updated.

15.3 Hibernate Doclet

Hibernate Doclet, part of the XDoclet project, can be usegktrerate Hibernate mapping files from markup
in JavaDoc comments.

Following is an example of a Class level JavaDoc which condiga read-write cache for the Country
Domain Obiject:

[**

* A Country Dormai n Cbj ect

*

* @i bernate. cl ass tabl e=" COUNTRY"

* @i bernate.cache usage="read-wite"

*/

public class Country inplenents Serializable

{
}

The @hibernate.cache usage tag should be set to one of rdadrnenstrict-read-write and read-only.

76 Ehcache v1.2.3 User Guide

15.4 Configuration with ehcache.xml

Because ehcache.xml has a defaultCache, caches will ahgayreated when required by Hibernate. How-
ever more control can be exerted by specifying a configurgtér cache, based on its name.

In particular, because Hibernate caches are populated databases, there is potential for them to get
very large. This can be controlled by capping their maxEletsiaMemory and specifying whether to
overflowToDisk beyond that.

Hibernate uses a specific convention for the naming of caafigemain Objects, Collections, and Queries.

15.4.1 Domain Objects

Hibernate creates caches named after the fully qualifiecer@r®omain Objects.

So, for example to create a cache for com.somecompany.sojeepdomain.Country create a cache con-
figuration entry similar to the following in ehcache.xml.

<cache
nane="com someconpany. sonepr oj ect. domai n. Count ry"
mexEl enent sl nMenor y="10000"
eternal ="fal se"
ti meTol dl eSeconds="300"
ti meTolLi veSeconds="600"
over fl owToDi sk="true"
/>

15.4.2 Hibernate

CacheConcurrencyStrategy read-write, nonstrict-reatevand read-only policies apply to Domain Ob-
jects.

15.4.3 Collections

Hibernate creates collection caches named after the fuljified name of the Domain Object followed by
"." followed by the collection field name.

For example, a Country domain object has a set of advanced&eilities. The Hibernate doclet for the
accessor looks like:

| *x
* Returns the advanced search facilities that shoul d appear for this country.
* @i bernate.set cascade="all" inverse="true"

* @i bernate.collection-key col um="COUNTRY_I D"
* @i bernate.collection-one-to-many cl ass="com wotif.jaguar.domai n. AdvancedSear chFacility"
* (@i bernate.cache usage="read-wite"
*/
public Set getAdvancedSearchFacilities() {
return advancedSear chFacilities;

}
You need an additional cache configured for the set. The @lcanl configuration looks like:

<cache nanme="com someconpany. sonmepr oj ect . domai n. Country"
maxEl enent sl nMenor y="50"

Ehcache v1.2.3 User Guide 77

eternal ="fal se"
ti meTolLi veSeconds="600"
over fl owToDi sk="true"

/>

<cache
name="com sonmeconpany. sonepr oj ect . Count ry. advancedSear chFacilities"
maxEl emrent sl nMenor y="450"
eternal ="f al se"
ti meTolLi veSeconds="600"
over fl owToDi sk="true"

/>

15.4.4 Hibernate CacheConcurrencyStrategy

read-write, nonstrict-read-write and read-only poli@pgly to Domain Object collections.

15.4.5 Queries

Hibernate allows the caching of query results. Two cachescalled "net.sf.hibernate.cache.StandardQueryCache
in version 2.1.4 and higher and "net.sf.hibernate.caalneryache" in versions 2.1.0 - 2.1.3, and one
called "net.sf.hibernate.cache.UpdateTimestampsCacbalways used.

15.4.6 StandardQueryCache

This cache is used if you use a query cache without settingreend typical ehcache.xml configuration
is:

<cache
nanme="net . sf. hi ber nat e. cache. St andar dQuer yCache"
maxEl enent sl nMenor y="5"
eternal ="fal se"
ti meTolLi veSeconds="120"
overfl owToDi sk="true"/>

15.4.7 UpdateTimestampsCache

Tracks the timestamps of the most recent updates to patiables. It is important that the cache timeout
of the underlying cache implementation be set to a higharevéhan the timeouts of any of the query
caches. In fact, it is recommend that the the underlyingeaci be configured for expiry at all.

A typical ehcache.xml configuration is:

<cache
nanme="net . sf. hi bernat e. cache. Updat eTi nest anpsCache"
mexEl ement s| nMeror y="5000"
eternal ="true"
overfl owToDi sk="true"/>

15.4.8 Named Query Caches

In addition, a QueryCache can be given a specific name in Hé#beusing Query.setCacheRegion(String
name). The name of the cache in ehcache.xml is then the nase igi that method. The name can be
whatever you want, but by convention you should use "quéoiidwed by a descriptive name.

78 Ehcache v1.2.3 User Guide

E.g.

<cache name="query. Adm ni strativeAreasPer Country"

eternal ="fal se"
ti meTolLi veSeconds="86400"
over f | owToDi sk="true"/ >

15.4.9 Using Query Caches

For example, let’'s say we have a common query running ag&iestountry Domain.
Code to use a query cache follows:

public List getStreetTypes(final Country country) throws Hi bernateException {
final Session session = createSession();

try {
final Query query = session.createQuery(

"select st.id, st.nane"

+ " from Street Type st

+ " where st.country.id = :countryld "

+ " order by st.sortOrder desc, st.nane");

query. setLong("countryld", country.getld().longValue());
query. set Cacheabl e(true);

query. set CacheRegi on("query. Street Types");

return query.list();

} finally {
session. cl ose();
}

Thequery. set Cacheabl e(true) line caches the query.
Thequery. set CacheRegi on("query. Street Types") line sets the name of the Query Cache.

15.4.10 Hibernate CacheConcurrencyStrategy

None of read-write, nonstrict-read-write and read-onliigies apply to Domain Objects. Cache policies
are not configurable for query cache. They act like a nonHarkead only cache.

15.5 Hibernate Caching Performance Tips

To get the most out of ehcache with Hibernate, Hibernatessaist's in-process cache is important to
understand.
15.5.1 In-Process Cache

From Hibernate’s point of view, Ehcache is an in-procesieacCached objects are accessible across
different sessions. They are common to the Java process.

Ehcache v1.2.3 User Guide 79

15.5.2 ObjectId

Hibernate identifies cached objects via an object id. Thimisnally the primary key of a database row.

15.5.3 Session.load

Session.load will always try to use the cache.

15.5.4 Session.find and Query.find

Session.find does not use the cache for the primary objedierhfate will try to use the cache for any
associated objects. Session.find does however cause tiretodee populated.

Query.find works in exactly the same way.
Use these where the chance of getting a cache hit is low.

15.5.5 Session.iterate and Query.iterate

Session.iterate always uses the cache for the primarytabjecany associated objects.
Query.iterate works in exactly the same way.
Use these where the chance of getting a cache hit is high.

80

Ehcache v1.2.3 User Guide

Chapter 16

The Design of distributed ehcache

This is a discussion and explanation of the distributedgieshoices made in ehcache. One or more
default implementations are provided in each area. A plugéchanism has been provided which will
allow interested parties to implement alternative appneadiscussed here and hopefully contribute them
back to ehcache.

16.1 Acknowledgements

Much of the material here was drawn from Data Access PattbynGlifton Nock.
Thanks to Will Pugh and ehcache contributor Surya Suravei@suggesting we take ehcache distributed.
Finally, thanks to James Strachan for making helpful sugges

16.2 Problems with Instance Caches in a Clustered Environnme

Many production applications are deployed in clusters.atffeapplication maintains its own cache, then

updates made to one cache will not appear in the others. Aakoukd for web based applications is to use

sticky sessions, so that a user, having established a Bassione server, stays on that server for the rest
of the session. A workaround for transaction processintesys using Hibernate is to do a session.refresh
on each persistent object as part of the save. sessioshexelicitly reloads the object from the database,

ignoring any cache values.

16.3 Replicated Cache

Another solution is to replicate data between the cachesep khem consistent. This is sometimes called
cache coherency. Applicable operations include:

e put
e update (put which overwrites an existing entry)

e remove

81

82 Ehcache v1.2.3 User Guide

16.4 Distributed Cache Terms

Distributed Cache - a cache instance that notifies othergtheontents change
Notification - a mechanism to replicate changes
Topology - a layout for how replicated caches connect witth rmotify each other

16.5 Notification Strategies

The best way of notifying of put and update depends on the@altithe cache.

If the Element is not available anywhere else then the Eleiitssif should form the payload of the notifi-
cation. An example is a cached web page. This notificati@tedy is called copy. Where the cached data
is available in a database, there are two choices. Copy asshef invalidate the data. By invalidating the
data, the application tied to the other cache instance wifldbced to refresh its cache from the database,
preserving cache coherency. Only the Element key needspgadsed over the network.

Ehcache supports notification through copy and invalidakectable per cache.

16.6 Topology Choices

16.6.1 Peer Cache Replicator

Each replicated cache instance notifies every other caskamnice when its contents change. This requires
n-1 notifications per change, where n is the number of cadtanoes in the cluster. If multicast is used,
these notifications can be emitted as one notification frantiginating cache.

16.6.2 Centralised Cache Replicator

Each replicated cache instance notifies a master cachadestehen its contents change. The master
cache then notifies the other instances. This requires otifecation from the originating cache and n-2
notifications from the master cache to other slaves.

Ehcache uses a peer topology. The main advantages arecdiynphid greater redundancy as there is no
single point of failure.

16.7 Discovery Choices

In a peer based system, there needs to be a way for peers twatigach other so as to perform delivery
of changes.

16.7.1 Multicast Discovery

In multicast discovery, peers join a multicast group on acsjelP address in the multicast range of
224.0.0.1 to 239.255.255.255 (specified in RFC1112) andeaifsp port. Each peer notifies the other
group members of its membership.

This approach is simple and allows for dynamic entry andfecdh the cluster.

Ehcache v1.2.3 User Guide 83

16.7.2 Static List

Here alist of listeners in the cluster is configured. Thermigynamic entry or exit. Peer listener addresses
must be known in advance.

Ehcache provides both techniques.

16.8 Delivery Mechanism Choices

16.8.1 Custom Socket Protocol

This approach uses a protocol built directly on TCP or UDPpttmary advantage is high performance.

16.8.2 Multicast Delivery
The advantage with multicast is that the sender only tratssonice. It is however based on UDP datagrams
and is nonreliable. Practical experience on modern newsyaor&twork cards and operating systems has

shown this approach to be quite lossy. Whether it would befspecific combination is hard to predict.
This approach is thought unlikely to produce sufficientaiaility.

16.8.3 JMS Topics
JMS Topics are standard, well understood way to propagassages to multiple subscribers. JMS is not

used in the default ehcache implementation because mamghdcisers are outside the scope of J2EE.
However JMS based delivery, with its richer services, ctnglé could choice for J2EE bases systems.

16.8.4 RMI RMI is the default RPC mechanism in Java.

16.8.5 JIXTA

JXTA is a peer to peer technology that provides discoverydatidery, together with much else.

16.8.6 JGroups

JGroups provides many of the desired features for a peereodistributed system. The default mode
for JGroups on a LAN is UDP, which is not desired. However J@sodoes provide reliably transmission
using TCP, similar to the approach taken in ehcache.

16.8.7 The Default Implementation

Ehcache uses RMI, based on custom socket options for delivits default implementation.
Ehcache does not use JXTA or JGroups for the following resison

e enables fine control over distribution behaviour
¢ allows tuning specific to a distributed cache, rather thatriBution generally

e reduces the number of dependent libraries to run ehcache

RMI is used by default because:

84 Ehcache v1.2.3 User Guide

o ititself is the default remoting mechanism in Java
e itis mature
e it allows tuning of TCP socket options

e Element keys and values for disk storage must already balRable, therefore directly transmit-
table over RMI without the need for conversion to a third fatreuch as XML.

e it can be configured to pass through firewalls

¢ RMI had improvements added to it with each release of Javashadan then be taken advantage of.

However the pluggable nature of ehcache’s distributiontrarism allows for both of these approaches to
be plugged in. These approaches may become a standard phdawhe in a future release.

A JGroups implementation is planned for ehcache-1.2.1.

16.9 Replication Drawbacks and Solutions in ehcache’s impmen-
tation

Some potentially significant obstacles have to be overcbneplication is to provide a net benefit.

16.9.1 Chatty Protocol

n-1 notifications need to happen each time a a cache instéwraec®e occurs. A very large amount of
network traffic can be generated. This issue affect the spmctus replication mode of ehcache.

Ehcache provides an asynchronous replication mode whitibates this effect. All changes are buffered
for delivery. The queue is then checked each second and allages delivered in one RMI call, as a list
of messages, to each peer.

The characteristics of each RMI call will be those of RMI. Bblese does however use a custom socket
factory so that socked read timeout can be set.

16.9.2 Redundant Notifications

The cache instance that initiated the change should noiveeite own notifications. To do so would add
additional overhead. Also, notifications should not emsliego back and forth as each cache listener gets
changes caused by a remote replication.

Ehcache’s CachePeerProvider indentifies the local castenioe and excludes it from the notification list.
Each Cache has a GUID. That GUID can be compared with listafepeers and the local peer excluded.

Infinite notifications are prevented by passing a flag wherdlobe operation occurs. Events with that flag
are ignored by instanced of CacheReplicator.

16.9.3 Potential for Inconsisent Data

Timing scenarios, race conditions, delivery, reliabil@ggnstraints and concurrent updates to the same
cached data can cause inconsistency (and thus a lack ofecamyg¢racross the cache instances.

This potential exists within the ehcache implementatiohese issues are the same as what is seen when
two completely separate systems are sharing a databaseymaaoscenario.

Ehcache v1.2.3 User Guide 85

Whether data inconsistency is a problem depends on the ddthcav it is used. For those times when it
is important, ehcache provides for synchronous delivenypafates via invalidation. These are discussed
below:

16.9.4 Synchronous Delivery

Delivery can be specified to be synchronous or asynchrorsgichronous delivery gives faster returns
to operations on the local cache and is usually preferredicl@pnous delivery adds time to the local

operation, however requires successful delivery of an tgptiaall peers in the cluster before the cache
operation returns.

16.9.5 Update via Invalidation

The default is to update other caches by copying the new valtleem. If the replicateUpdatesViaCopy
property is set to false in the replication configurationdates are made by removing the element in any
other cache peers. This forces the applications using ttfeeqaeers to return to a canonical source for the
data.

A similar effect can be obtained by setting the element TTha tow value such as a second.

Note that these features impact cache performance anddshotuibe used where the main purpose of a
cache is performance boosting over coherency.

86

Ehcache v1.2.3 User Guide

Chapter 17

Distributed Caching

As of version 1.2, Ehcache can be used as a distributed cache.

The distribution feature is built using plugins. Ehcachmes with some default distribution plugins which
should be suitable for most applications. Other plugindamdeveloped. Developers should see the source
code in the distribution package for the fullly documentd®l £o see how to do that.

Though not necessary to use distributed caching an insightiie design decisions used in ehcache may
be helpful. See the Design of distributed ehcache chapter.

The rest of this section documents the distribution plugihgh are bundled with ehcache.
The following concepts are central to cache distribution:

How do you know about the other caches that are in your cleister

What form of communication will be used to distribute messy

What is replicated? Puts, Updates, Expiries?

When is it replicated? Synchronous or asynchronous?

To set up distributed caching you need to configure a Peeid&noa CacheManagerPeerListener, which
is done globally for a CacheManager. For each cache thabpdtate distributed, you then need to add a
cacheEventListener to propagate messages.

17.1 Suitable Element Types

Only Serializable Elements are suitable for replication.

Some operations, such as remove, work off Element keysrrtthe the full Element itself. In this case
the operation will be replicated provided the key is Sezxadie, even if the Element is not.

17.2 Peer Discovery

Ehcache has the notion of a group of caches acting as a disttilsache. Each of the caches is a peer to
the others. There is no master cache. How do you know abouttliee caches that are in your cluster?
This problem can be given the name Peer Discovery.

Ehcache provides two mechanisms for peer discovery, keselicar: manual and automatic.

87

88 Ehcache v1.2.3 User Guide

To use one of the built-in peer discovery mechanisms spuifglass attribute afacheManager Peer Pr ovi der Fact ory
asnet . sf. ehcache. di stri buti on. RM CacheManager Peer Pr ovi der Fact ory in the ehcache.xml
configuration file.

17.2.1 Automatic Peer Discovery

Automatic discovery uses TCP multicast to establish anahtaim a multicast group. It features minimal
configuration and automatic addition to and deletion of meralfrom the group. No a priori knowledge
of the servers in the cluster is required. This is recommeadehe default option.

Peers send heartbeats to the group once per second. If agseaophbeen heard of for 5 seconds it is
dropped from the group. If a new peer starts sending hedstiiég admitted to the group.

Any cache within the configuration set up as replicated vélhitade available for discovery by other peers.

To set automatic peer discovery, specify the propertiebate ofcacheManager Peer Pr ovi der Fact ory
as follows:

peerDiscovery=automatic multicastGroupAddress=mastiaddress |multicast host name multicastGroup-
Port=port

Example

Suppose you have two servers in a cluster. You wish to diggibampleCachell and sampleCachel2.
The configuration required for each server is identical:

Configuration for serverl and server2

<cacheManager Peer Pr ovi der Fact ory
cl ass="net.sf.ehcache. di stri buti on. RM CacheManager Peer Pr ovi der Fact ory"

properti es="peerDi scovery=automatic, mnulticastG oupAddress=230.0.0.1,
mul ti cast G oupPort =4446"/ >

17.2.2 Manual Peer Discovery

Manual peer configuration requires the IP address and peadt listener to be known. Peers cannot be
added or removed at runtime. Manual peer discovery is recamded where there are technical difficulties
using multicast, such as a router between servers in a chhstedoes not propagate multicast datagrams.
You can also use it to set up one way replications of data, bingaserver2 know about serverl but not
vice versa.

To set manual peer discovery, specify the properties at&ibfcacheManager Peer Pr ovi der Fact ory
as follows: peerDiscovery=manual rmiUrls=//server:fmatheName, ...

The rmiUrls is a list of the cache peers of the server beindigored. Do not include the server being
configured in the list.

Example

Suppose you have two servers in a cluster. You wish to diggisampleCachell and sampleCachel2.
Following is the configuration required for each server:

Configuration for serverl

<cacheManager Peer Pr ovi der Fact ory
cl ass="net.sf.ehcache. di stri buti on. RM CacheManager Peer Pr ovi der Fact ory"

Ehcache v1.2.3 User Guide 89

properti es="peer D scovery=nmanual ,
rm Url s=//server?2: 40001/ sanpl eCachell|//server?2: 40001/ sanpl eCachel2"/ >

Configuration for server2

<cacheManager Peer Pr ovi der Fact ory
cl ass="net.sf.ehcache. di stri buti on. RM CacheManager Peer Pr ovi der Fact ory"

properti es="peer D scovery=manual ,
rm Url s=//server1l: 40001/ sanpl eCachell|//server1l: 40001/ sanpl eCachel2"/ >

17.3 Configuring a CacheManagerPeerListener

A CacheManagerPeerListener listens for messages frors fretire current CacheManager.

You configure the CacheManagerPeerListener by specifiyidga@eManagerPeerListenerFactory which
is used to create the CacheManagerPeerListener usingutie phechanism.

The attributes of cacheManagerPeerListenerFactory are:

e class - a fully qualified factory class name * properties - omarseparated properties having meaning
only to the factory.

Ehcache comes with a built-in RMI-based distribution systeThe listener component is RMI-
CacheManagerPeerListener which is configured using RMi€danagerPeerListenerFactory. It is
configured as per the following example:

<cacheManager Peer Li st ener Fact ory
cl ass="net. sf.ehcache. di stri buti on. RM CacheManager Peer Li st ener Fact ory"

properti es="host Nanme=I ocal host, port=40001,
socket Ti neout M | | i s=2000"/ >

Valid properties are:

e hostName (optional) - the hostName of the host the listenrrrining on. Specify where the host is
multihomed and you want to control the interface over whicisier messages are received.
The hostname is checked for reachability during CacheMamadialisation.

If the hostName is unreachable, the CacheManager will egiustart and an CacheException will
be thrown indicating connection was refused.

If unspecified, the hostname will useet Addr ess. get Local Host () . get Host Addr ess() ,which
corresponds to the default host network interface.

Warning: Explicitly setting this to localhost refers to tleeal loopback of 127.0.0.1, which is not
network visible and will cause no replications to be recgifrem remote hosts. You should only use
this setting when multiple CacheManagers are on the samhingac

e port (mandatory) - the port the listener listens on.

e socketTimeoutMillis (optional) - the number of secondstisockets will wait when sending mes-
sages to this listener until they give up. By default thisO®@ms.

a0 Ehcache v1.2.3 User Guide

17.4 Configuring CacheReplicators

Each cache that will be distributed needs to set a cache kstemier which then replicates messages to the
other CacheManager peers. This is done by adding a cachiistenerFactory element to each cache’s
configuration.

<!-- Sanpl e cache named sanpl eCache2. -->
<cache nane="sanpl eCache2"
mexEl enent sl nMenory="10"
eternal ="f al se"
ti meTol dl eSeconds="100"
ti meTolLi veSeconds="100"
overfl owToDi sk="f al se" >
<cacheEvent Li st ener Factory cl ass="net . sf. ehcache. di stri buti on. RM CacheRepl i cat or Fact ory"
properti es="replicateAsynchronousl y=true, replicatePuts=true,

</ cache>

class - use net.sf.ehcache.distribution.RMICacheRafpliEactory
The factory recognises the following properties:

o replicatePuts=true |false - whether new elements placaatathe are replicated to others. Defaults
to true.

¢ replicateUpdates=true |false - whether new elements vadvielride an element already existing with
the same key are replicated. Defaults to true.

e replicateRemovals=true - whether element removals ateatpd. Defaults to true.

e replicateAsynchronously=true |false - whether replaraiare asyncrhonous (true) or synchronous
(false). Defaults to true.

¢ replicateUpdatesViaCopy=true |false - whether the nemeids are copied to other caches (true),
or whether a remove message is sent. Defaults to true.

To reduce typing if you want default behaviour, which is fegte everything in asynchronous mode, you
can leave off th&M CacheRepl i cat or Fact or y properties as per the following example:

<I-- Sanpl e cache named sanpl eCache4. All mi ssing RM CacheReplicatorFactory properties defaul
<cache name="sanpl eCache4"
mexEl enent sl nMenory="10"
eternal ="true"
overfl owToDi sk="f al se"
menor ySt or eEvi cti onPol i cy="LFU" >
<cacheEvent Li st ener Factory cl ass="net. sf.ehcache. di stri buti on. RM CacheRepl i cat or Fact ory"/

</ cache>

17.5 Common Problems

17.5.1 Tomcat on Windows

There is a bug in Tomcat and/or the JDK where any RMI listerirfail to start on Tomcat if the installa-
tion path has spaces in it. See http://archives.java.emriagi-bin/wa?A2=ind0205&L=rmi-users&P=797
and http://www.ontotext.com/kim/doc/sys-doc/fag-hoveugs/known-bugs.html.

As the default on Windows is to install Tomcat in "Progranesil this issue will occur by default.

Ehcache v1.2.3 User Guide 91

17.5.2 Multicast Blocking

The automatic peer discovery process relies on multicasttiddst can be blocked by routers. Virtualisa-
tion technologies like Xen and VMWare may be blocking mastc If so enable it. You may also need to
turn it on in the configuration for your network interfacedar

An easy way to tell if your mutlicast is getting through is teeuthe ehcache remote debugger and watch
for the heartbeat packets to arrive.

92

Ehcache v1.2.3 User Guide

Chapter 18

The Design of the ehcache constructs
package

This is a discussion and explanation of the reasons for andehign forces behind the constructs package
in ehcache.

18.1 Acknowledgements

Much of the material here was drawn from Concurrent Prograngin Java by Doug Lea. Thanks also to
Doug for answering several questions along the way.

18.2 The purpose of the Constructs package

Doug Lea in his book Concurrent Programming in Java talksiaboncurrency support constructs. One
meaning of a construct is "an abstract or general idea ixdleor derived from specific instances". Just
like patterns emerge from noting the similarities of profdeand gradually finding a solution to classes of
them, so to constructs are general solutions to commondeimzh

The ehcache constructs package, literally the net.sfobleceonstructs package, provides ready to use,
extensible implementations are offered to solve commomlpros in J2EE and light-weight container
applications.

Why not leave ehcache at the core and let everyone createtheiapplications? Well, everyone is doing
that. But getting it right can be devilishly hard.

18.3 Caching meets Concurrent Programming

So, why not just use Doug’s library or the one he contributethtJDK1.5? The ehcache constructs are
around the intersection of concurrency programming anthingc It uses a number of Doug’s classes
copied verbatim into the net.sf.ehcache.concurrent gpekas permiited under the license.

93

94 Ehcache v1.2.3 User Guide

18.4 What can possibly go wrong?

Thatis a favourite tongue in cheek saying of Adam Murdochgréginal contributor to the ehcache project.
The answer in concurrent programming is a lot.

(The following section is based heavily on Chapter 1.3 of Pbaa’s Concurrent Programming in Java).
There are two often conflicting design goals at play in corentrprogramming. They are:

e liveness, where something eventually happens within awiigct

o safety, where nothing bad ever happens to an object.

18.4.1 Safety Failures

Failures of safety include:

e Read/Write Conflicts, where one thread is reading from a &ialdflanother is writing to it. The value
read depends on who won the race.

e Write/Write Conflicts, where two threads write to the samdédfieThe value on the next read is
impossible to predict.

A cache is similar to a global variable. By its nature it is esgible to multiple threads. Cache
entries, and the locking around them, are often highly aued for.

18.4.2 Liveness Failures

Failures of liveness include:

e Deadlock. This is caused by a circular dependency amonglddke threads involved cannot make
progress.

e Missed Signals. A thread entered the wait state after a catiidin to wake it up was produced.

o Nested monitor lockouts. A waiting thread holds a lock nedalea thread wishing to wake it up
e Livelock. A continously retried action continously fails.

e Starvation. Some threads never get allocated CPU time.

e Resource Exhaustion. All resourcesof some kind are in ugbreads, none of which will give one
up.

e Distributed Failure. A remote machine connected by soc&ebimes inaccessible.

e Stampede. With notifyAll(), all threads wake up and in a gtede, attempt to make progress.

18.5 The constructs

18.5.1 Blocking Cache

Imagine you have a very busy web site with thousands of coentiusers. Rather than being evenly
distributed in what they do, they tend to gravitate to poppkges. These pages are not static, they have
dynamic data which goes stale in a few minutes. Or imagindwae collections of data which go stale in

a few minutes. In each case the data is extremely expensoaddolate.

Ehcache v1.2.3 User Guide 95

Let’s say each request thread asks for the same thing. Thdbtof work. Now, add a cache. Get each
thread to check the cache; if the data is not there, go and getiput it in the cache. Now, imagine that
there are so many users contending for the same data that timté it takes the first user to request the
data and put it in the cache, 10 other users have done the bargeThe upstream system, whether a JSP
or velocity page, or interactions with a service layer oatdase are doing 10 times more work than they
need to.

Enter the BlockingCache.

96

Ehcache v1.2.3 User Guide

Jjava.lang |

net.sf.ehcache I

net.sf.ehi

L..l

=

net.sf.ehcache |
Ehcache
org.apache.commons.logging
@)=
net.sf.ehcachi rent |

net.sf.ehcache. event |

java.lang

java.util

List<E>

net.sf.ehcache |

net.sf.ehcache store

java.io |

Serializable

net.sf.ehcache.bootstrap

BootstrapCacheLoader

Ehcache v1.2.3 User Guide 97

It is blocking because all threads requesting the same kéyfovahe first thread to complete. Once the
first thread has completed the other threads simply obtaicdlche entry and return.

The BlockingCache can scale up to very busy systems.

18.5.2 SelfPopulatingCache

You want to use the BlockingCache, but the requirement t@gdwelease the lock creates gnarly code.
You also want to think about what you are doing without thingkabout the caching.

Enter the SelfPopulatingCache. The name SelfPopulaticly€s synonymous with Pull-through cache,
which is a common caching term. SelfPopulatingCache thalgays is in addition to a BlockingCache.

SelfPopulatingCache use€acheEnt r yFact or y, that given a key, knows how to populate the entry.

18.5.3 CachingFilter

You want to use the BlockingCache with web pages, but theirement to always release the lock creates
gnarly code. You also want to think about what you are doirtgevit thinking about the caching.

Enter the CachingFilter, a Servlet 2.3 compliant filter. Wiloyjust do a JSP tag library, like OSCache? The
answer is that you want the caching of your responses to lepérdient of the rendering technology. The
filter chain is reexcuted every time a RequestDispatchewvidved. This is on every jsp:include and every
Servlet. And you can programmatically add your own. If yowehaontent generated by JSP, Velocity,
XSLT, Servlet output or anything else, it can all be cache€hbghingFilter. A separation of concerns.

How do you determine what the key of a page is? The filter hadbatmact calculateKey method, so it is
up to you.

You notice a problem and an opportunity. The problem is thatweb pages you are caching are huge.
That chews up either a lot of memory (MemoryStore) or a lotiskdpace (DiskStore). Also you notive
that these pages take their time going over the Internet.oppertunity is that you notice that all modern
browsers support gzip encoding. A survey of logs reveals86% of the time the browser accepts gzip-
ping. (The majority of the 15% that does not is |IE behind a gjo®k, so gzip the response before caching
it. Ungzipping is fast - so just ungzip for the 15% of the tirhe browser does not accept gzipping.

18.5.4 SimplePageCachingFilter

What if you just want to get started with the CachingFilted @on’t want to think too hard? Just use Sim-
plePageCachingFilter which has a calculateKey methoddjremplemented. It usés t pRequest . get Request URI ()) . appen:
for the key. This works most of the time. It tends to get le$sative when referrals and affiliates are added

to the query, which is the case for a lot of e-commerce sites.

SimplePageCachingFilter is 10 lines of code.

18.5.5 PageFragmentCachingFilter

You notice that an entire page cannot be cached becausettherdd vary in staleness. Say, an address
which changes very infrequently, and the price and avditgloif inventory, which changes quite a lot. Or
you have a portal, with lots of components and with diffetatenesses. Or you use the replicated cache
functionality in ehcache and you only want to rebuild thetpdthe page that got invalidated.

Enter the PageFragmentCachingFilter. It does everytiagSimplePageCachingFilter does, except it never
gzips, so the fragments can be combined.

98 Ehcache v1.2.3 User Guide

18.5.6 SimplePageFragmentCachingFilter

What if you just want to get started with the PageFragmertiDaé-ilter and don’t want to think too
hard? Just use SimplePageFragmentCachingFilter which talsulateKey method already implemented.
It usesht t pRequest . get Request URI ()) . append(ht t pRequest . get QueryString() for the key.
This works most of the time. It tends to get less effective nvheferrals and affiliates are added to the
query, which is the case for a lot of e-commerce sites.

SimplePageFragmentCachingFilter is 10 lines of code.

18.5.7 AsynchronousCommandExecutor

What happens if your JMS server is down? The usual answehé#ve two of them. Unfortunately, not all
JMS servers do a good job of clustering. Plus it takes twieentirdware.

Once a message makes it to a JMS server, they can usually figured to store the message in a database.
You are pretty safe after that if there is a crash.

Enter AsynchronousCommandExecutor. It lets you createratand for future execution. The command
is cached and is then immediately executed in another thr&hds the asynchronous bit. If it fails, it
retries on a set interval up to a set number of times. Thudatik-tolerant.

Use this where you really don’t want to lose messages or cardsidhat execute against another system.

18.6 Real-life problems in the constructs package and thesolutions

At the time of revising this document, ehcache is almostethyears old. That leaves plenty of time to
observe some concurrency failures. The problems that arasbow they were fixed are illustrative of the
subtleties of concurrent programming.

18.6.1 The Blocking Cache Stampede

The first BlockingCache implementation ran for almost a y@aa very busy application before the first
problems came to light. It was using notifyAll() togetherthivicoarse grained synchronization on the
BlockingCache instance.

Once the load on the cache got very high indeed, the thre&dmétlock would notifyAll. Then hundreds
of threads would "stampede” - they would each attempt tolgetdck. Gradually more and more CPU
time was spent resolving contention for the object lockradch notifyAll. Eventually the server threads
went to 1500 and server output dropped to almost nothing.

The solution was to create a Mutex representing each keywasitequested and to lock on that rather than
the BlockingCache itself. That gave a 10 times improvemestalability. See Scalability Test vs the old
ScalabilityTest.

18.6.2 The Blank Page problem

About a year into the use of the CachingFilter, the idea tp g&s born. Having implemented it, it worked

fine. A few weeks into production use strange reports camigaihgeople were occasionally getting blank
pages. Timing suggested the gzip change, but how? A testee eaross similar issues that had been
reported with Apache mod_gzip. It looked like there was a mde path that was somehow screwing up.

In the end, that was how the filters made their way into the @hearoject. The level of testing required
to focus on the issue was way beyond what you would normallind®d business app. In the end | sat
down with the Servlet specification and looked at everythirag could go wrong. | ended up creating

Ehcache v1.2.3 User Guide 99

FilterNonReentrantException, AlreadyGzippedExceptiad ResponseHeadersNotModifiableException.
These conditions are detected and an exception throwrr rihiidne a blank page. Then the developer fixes
the coding error that produced it.

The exception contain comments on how each issue happeit$, are reproduced below:

FilterNonReentrantException - Thrown when it is detectet & caching filter’s doFilter method is reen-
tered by the same thread. Reentrant calls will block indefiynibecause the first request has not yet
unblocked the cache. Nasty.

AlreadyGzippedException - The web package performs gagppperations. One cause of problems on
web browsers is getting content that is double or triple gegh They will either get gobblydeegook or a
blank page. This exception is thrown when a gzip is attempiealready gzipped content.

ResponseHeadersNotModifiableException - A gzip encodéglbr needs to be added for gzipped content.
The HttpServletResponse#setHeader() method is useddioptinpose. If the header had already been set,
the new value normally overwrites the previous one. In soases according to the servlet specification,
setHeader silently fails. Two scenarios where this happegis

e The response is committed.

e RequestDispatcher#include method caused the request.

This issue is extremely subtle and nasty.

There are tests that reproduce each of these issues. Thin@kitter and its subclasses have been in
production for nearly two years with no more reports of tieub

18.6.3 Blocking Cascade

Let's say you do use the BlockingCache but something goeagwipstream. Maybe it is something like
a database backup that slows the database down for 10 miutgseedy SQL. With the BlockingCache
the JDBC connection will eventually timeout. The first thddails. The next queued thread then attempts
the same thing. It fails. And so on. While this is going on, enand more threads queue up. The result
is a Blocking cascade. Eventually, if the slow upstreameseoy process does not pick up you exhaust the
thread limit on your server and it goes down with an OutOfMeyBworor.

Is this what you want? Or would you prefer to have the affegtad of the system degrade with errors
while the rest of the system keeps ticking? That is a judgecedh

BlockingCache has a parameter in its constructor calleddintMillis. If you set that then any queued
thread will immediately timeout when its turn comes in thewabscenario. Some requests get exceptions,
but you do not lose your VM.

100 Ehcache v1.2.3 User Guide

Chapter 19

CacheManager Event Listeners

e Configuration

e Implementing a CacheManagerEventListenerFactory antiéManagerEventListener
CacheManager event listeners allow implementers to ergisilback methods that will be executed when
aCacheManager event occurs. Cache listeners implement the CacheManegetiEstener interface.
The events include:

e adding aCache

e removing aCache

Callbacks to these methods are synchronous and unsynzadotiiis the responsibility of the implementer
to safely handle the potential performance and threadysiafetes depending on what their listener is doing.

19.1 Configuration

One CacheManagerEventListenerFactory and hence one K#anhgerEventListener can be specified per
CacheManager instance.

The factory is configured as below:

<cacheManager Event Li st ener Factory cl ass=
properties=""/>

The entry specifies a CacheManagerEventListenerFactachwiill be used to create a CacheManager-
PeerProvider, which is notified when Caches are added orvefoom the CacheManager.

The attributes of CacheManagerEventListenerFactory are:

e cl ass - a fully qualified factory class name

e properties - comma separated properties having meaning only to therfact

Callbacks to listener methods are synchronous and unsymizied. It is the responsibility of the
implementer to safely handle the potential performancetarehd safety issues depending on what
their listener is doing.

If no class is specified, or there is no cacheManagerEvestigsFactory element, no listener is
created. There is no default.

101

102 Ehcache v1.2.3 User Guide

19.2 Implementing a CacheManagerEventListenerFactory ath Cache-
ManagerEventListener

CacheManagerEventListenerFactory is an abstract faéborgreating cache manager listeners. Imple-
menters should provide their own concrete factory extamttiis abstract factory. It can then be configured
in ehcache.xml.

The factory class needs to be a concrete subclass of thaetfsittory CacheManagerEventListenerFac-
tory, which is reproduced below:

[**
An abstract factory for creating {@ink CacheManager Event Li stener}s. |nplenmenters should
provide their own concrete factory extending this factory. It can then be configured in

ehcache. xm

@ut hor G eg Luck

@ersion $l1d: cachemanager _event _|isteners.apt 135 2006- 06-26 06: 55: 03Z gregl uck $
* @ee "http://ehcache. sourceforge. net/docunment ati on/ cachenmanager _event _|l i steners. htnm "
*/

public abstract class CacheManager Event Li st ener Factory {

L

| **

* Create a <code>CacheEvent Li st ener </ code>
*

* @aram properties inplenmentation specific properties. These are configured as coma

* separ ated nanme val ue pairs in ehcache.xm . Properties may be null
* @eturn a constructed CacheManager Event Li st ener
*/

publ i c abstract CacheManager EventLi st ener
cr eat eCacheManager Event Li st ener (Properties properties);

The factory creates a concrete implementation of CachelyiaentListener, which is reproduced below:
[**

* Allows inplementers to register callback methods that will be executed when a
* <code>CacheManager </ code> event occurs.

* The events include:

*

* <|i>addi ng a <code>Cache</code>

* <|i>renpving a <code>Cache</code>

*

* <p/ >

* Cal | backs to these nmethods are synchronous and unsynchronized. It is the responsibility of
* the inplenenter to safely handle the potential performance and thread safety issues
* dependi ng on what their listener is doing.

* @uthor Greg Luck

* @ersion $ld: cachemanager _event _|isteners.apt 135 2006-06-26 06:55: 03Z gregluck $
* @ince 1.2

* @ee CacheEventLi stener

*/

public interface CacheManager Event Li st ener {

| *x

* Called imrediately after a cache has been added and acti vat ed.
* <p/>

Ehcache v1.2.3 User Guide 103

* Note that the CacheManager calls this nethod froma synchronized nethod. Any attenpt to
* call a synchronized met hod on CacheManager fromthis nethod will cause a deadl ock.

* <p/>

* Note that activation will also cause a CacheEventListener status change notification
* from{@ink net.sf.ehcache. Stat us#STATUS_UNI NI TI ALI SED} to

* {@ink net.sf.ehcache. St at us#STATUS_ALI VE} . Care shoul d be taken on processing that

* notification because:

*

* the cache will not yet be accessible fromthe CacheManager.

* <|i>the addCaches nethods whi h cause this notification are synchroni zed on the

* CacheManager. An attenpt to call {@ink net.sf.ehcache. CacheManager #get Cache(String)}
* will cause a deadl ock.

*

* The calling method will block until this nethod returns.

* <p/>

* @aram cacheNanme the name of the <code>Cache</code> the operation relates to

* @&ee CacheEventLi stener

*/

voi d notifyCacheAdded(Stri ng cacheNane);

| **

* Called imrediately after a cache has been di sposed and renmoved. The calling nmethod will
* block until this method returns.

* <p/>

* Note that the CacheManager calls this nethod froma synchronized nethod. Any attenpt to
* call a synchronized method on CacheManager fromthis nethod will cause a deadl ock.

* <p/>

* Note that a {@ink CacheEvent Li stener} status changed will also be triggered. Any

* attenpt fromthat notification to access CacheManager will also result in a deadl ock.

* @aram cacheNanme the name of the <code>Cache</code> the operation relates to

*/

voi d notifyCacheRenoved(String cacheNane);

The implementations need to be placed in the classpathsibleto ehcache. Ehcache uses the Class-
Loader returned byhr ead. cur r ent Thr ead() . get Cont ext C assLoader () to load classes.

104 Ehcache v1.2.3 User Guide

Chapter 20

Cache Event Listeners

Cache listeners allow implementers to register callbacthous that will be executed when a cache event
occurs. Cache listeners implement the CacheEventListeteface.

The events include:
e an Element has been put

e an Element has been updated. Updated means that an Elerstsirethe Cache with the same key
as the Element being put.

e an Element has been removed

e an Element expires, either because timeToLive or time&dtdve been reached.

Callbacks to these methods are synchronous and unsynzbdotiiis the responsibility of the implementer
to safely handle the potential performance and threadysiafetes depending on what their listener is doing.

Listeners are guaranteed to be notified of events in the andehich they occurred.

Elements can be put or removed from a Cache without notifiisigners by using the putQuiet and re-
moveQuiet methods.

20.1 Configuration

Cache event listeners are configured per cache. Each cachawamultiple listeners.
Each listener is configured by adding a cacheManagerEvastigrFactory element as follows:

<cache ...>
<cacheEvent Li stener Factory cl ass="" properties=""/>
</ cache>

The entry specifies a CacheManagerEventListenerFactoighvi$ used to create a CachePeerProvider,
which then receives notifications.

The attributes of CacheManagerEventListenerFactory are:

105

106 Ehcache v1.2.3 User Guide

e class - a fully qualified factory class name * properties - gtiamal comma separated properties
having meaning only to the factory.

Callbacks to listener methods are synchronous and unsynizled. It is the responsibility of the
implementer to safely handle the potential performancethrehd safety issues depending on what
their listener is doing.

20.2 Implementing a CacheEventListenerFactory and CachekentLis-
tener

CacheEventListenerFactory is an abstract factory forttrg@ache event listeners. Implementers should
provide their own concrete factory, extending this absfiextory. It can then be configured in ehcache.xml

The factory class needs to be a concrete subclass of thaetifsittory class CacheEventListenerFactory,
which is reproduced below:

[**

* An abstract factory for creating listeners. Inplenenters should provide their own
* concrete factory extending this factory. It can then be configured in ehcache. xm
*

* @uthor Greg Luck

* @ersion $1d: cache_event_listeners.apt 135 2006- 06-26 06: 55: 03Z gregl uck $

*/

publ i c abstract class CacheEventLi stenerFactory {

| **
* Create a <code>CacheEvent Li st ener </ code>

*

* @aram properties inplenmentation specific properties. These are configured as coma

* separ at ed nanme val ue pairs in ehcache. xm
*x @eturn a constructed CacheEventLi st ener
*/

public abstract CacheEventLi stener createCacheEventListener(Properties properties);

The factory creates a concrete implementation of the CadmgEistener interface, which is reproduced
below:

[**

* Allows inplementers to register callback methods that will be executed when a cache event
* OCCurs.

The events include:

<l i >put El enent

<l i >updat e El enent

renpve El enent

an El ement expires, either because tineToLive or tineToldl e has been reached.

</ ol >

<p/ >

Cal | backs to these nethods are synchronous and unsynchronized. It is the responsibility of
the inplenmenter to safely handle the potential performance and thread safety issues
dependi ng on what their |istener is doing.

<p/ >

Events are guaranteed to be notified in the order in which they occurred.

<p/ >

E I I D I I S . T

Ehcache v1.2.3 User Guide 107

Cache al so has put Quiet and renmoveQui et nmethods which do not notify |isteners.

@ut hor G eg Luck
@ersion $l1d: cache_event _|isteners.apt 135 2006- 06-26 06: 55: 03Z gregluck $
@ee CacheManager Event Li st ener
* @ince 1.2
*/
public interface CacheEventLi stener extends C oneable {

* % * X

[**

* Called imrediately after an el enent has been renoved. The renove nethod will block until
* this nmethod returns.

* <p/>

* Ehcache does not chech for

* <p/>

* As the {@ink net.sf.ehcache. El enent} has been renoved, only what was the key of the
* el enent is known.

* <p/>

*

* @aram cache the cache emtting the notification

* @aram el enent just del eted

*/

voi d notifyEl ement Renmoved(fi nal Ehcache cache, final Elenent el enent) throws CacheException;

| *x

* Called imrediately after an el enent has been put into the cache. The

* {@ink net.sf.ehcache. Cache#put (net. sf.ehcache. El ement)} met hod

* Wi ll block until this nethod returns.

* <p/ >

* | npl ementers may wish to have access to the Elenment’s fields, including value, so the
* element is provided. Inplenenters should be careful not to nodify the el enent. The
* effect of any nodifications is undefined.

*

* @aram cache the cache emtting the notification

* @aram el enment the el ement which was just put into the cache.

*/

voi d notifyEl ement Put (final Ehcache cache, final Elenent elenment) throws CacheExcepti on;

| **

* Called immediately after an el ement has been put into the cache and the el enent already
* existed in the cache. This is thus an update.

* <p/>

* The {@ink net.sf.ehcache. Cache#put (net. sf. ehcache. El ement)} met hod

* Wi ll block until this nethod returns.

* <p/>

* | nplementers may wi sh to have access to the Elenent’s fields, including value, so the
* element is provided. |Inplenenters should be careful not to nodify the el enent. The

+ effect of any nodifications is undefined.

*

* @aram cache the cache emtting the notification

* @aram el enent the el ement which was just put into the cache.

*/

voi d noti fyEl ement Updat ed(fi nal Ehcache cache, final Elenent el enent) throws CacheException;

[**
* Called imediately after an element is <i>found</i> to be expired. The
* {@ink net.sf.ehcache. Cache#renove(Cbject)} method will block until this nmethod returns.

108 Ehcache v1.2.3 User Guide

<p/ >

As the {@ink Elenent} has been expired, only what was the key of the element is known.
<p/ >

El enents are checked for expiry in ehcache at the follow ng tines:

When a get request is nade

When an elenent is spooled to the diskStore in accordance with a MenoryStore
eviction policy

In the DiskStore when the expiry thread runs, which by default is

{@ink net.sf.ehcache. Cache#DEFAULT_EXPI RY_THREAD_| NTERVAL_SECONDS}

</ ul >

If an elenent is found to be expired, it is deleted and this nethod is notified.

@ar am cache the cache emtting the notification

@ar am el enent the el enent that has just expired
<p/ >
Deadl ock Warning: expiry will often come fromthe <code>Di skSt ore</ code>
expiry thread. It holds a lock to the DiskStorea the tinme the
notification is sent. If the inplenmentation of this method calls into a
synchroni zed <code>Cache</ code> nethod and that subsequently calls into
Di skStore a deadlock will result. Accordingly inplenenters of this nethod
shoul d not call back into Cache.

E I I D S I . . N N S N S I I R .

*

*/
voi d notifyEl ement Expi red(fi nal Ehcache cache, final Elenent elenent);

[**

* Gve the replicator a chance to cleanup and free resources when no | onger needed
*/

voi d di spose();

[**
Creates a clone of this listener. This nethod will only be called by ehcache before a
cache is initialized.
<p/ >

This may not be possible for listeners after they have been initialized. |nplenentations
shoul d t hrow Cl oneNot Support edException if they do not support clone.

@eturn a clone

* @hrows C oneNot SupportedException if the listener could not be cloned.

* [

public Object clone() throws C oneNot SupportedExcepti on;

* 0% X X X X F

The implementations need to be placed in the classpathsiblzeto ehcache.
See the chapter on Classloading for details on how cladsigadithese classes will be done.

Chapter 21

Frequently Asked Questions

21.1 Does ehcache run on JDK1.3?

Yes. It runs on JDK1.3, 1.4 and 5. The restriction for JDKE.8hiat you must either use the precompiled
ehcache.jar or build it using JDK1.4 with a target of 1.3. sTisi because ehcache makes use of some
JDK1.4 features but substitutes alternatives at runtimelides not find those features.

21.2 Canyou use more than one instance of ehcache in a singls¥

As of ehcache-1.2, yes. Create your CacheManager using aehe®anager(...) and keep hold of the
reference. The singleton approach accessible with thegatice(...) method is still available too. Re-
member that ehcache can supports hundreds of caches wiliGacheManager. You would use separate
CacheManagers where you want quite different configuration

The Hibernate EhCacheProvider has also been updated torstipip behaviour.

21.3 Can you use ehcache with Hibernate and outside of Hibeate
at the same time?

Yes. You use 1 instance of ehcache and 1 ehcache.xml. Yowaooafyour caches with Hibernate names
for use by Hibernate. You can have other caches which yotsicttavith directly outside of Hibernate.

That is how | use ehcache in the original project it was dguedoin. For Hibernate we have about 80
Domain Object caches, 10 StandardQueryCaches, 15 Domgct@pllection caches.

We have around 5 general caches we interact with directlyguBlockingCacheManager. We have 15
general caches we interact with directly using SelfPojnd&acheManager. You can use one of those or
you can just use CacheManager directly.

| have updated the documentation extensively over the &@stdays. Check it out and let me know if
you have any questions. See the tests for example code aptheirtaches directly. Look at CacheMan-
agerTest, CacheTest and SelfPopulatingCacheTest.

109

110 Ehcache v1.2.3 User Guide

21.4 What happens when maxElementsinMemory is reached? Are
the oldest items are expired when new ones come in?

When the maximum number of elements in memory is reachedediserecently used ("LRU") element is
removed. Used in this case means inserted with a put or axtesth a get.

If the overflowToDisk cache attribute is false, the LRU Elernis discarded. If true, it is transferred
asynchronously to the DiskStore.

21.5 Isitthread safe to modify Element values after retrieal from a
Cache?

Remember that a value in a cache element is globally acée$sin multiple threads. It is inherently not
thread safe to modify the value. It is safer to retrieve a@alielete the cache element and then reinsert the
value.

The UpdatingCacheEntryFactory does work by modifying thrents of values in place in the cache. This
is outside of the core of ehcache and is targeted at highpeaface CacheEntryFactories for SelfPopulat-
ingCaches.

21.6 Can non-Serializable objects be stored in a cache?

As of ehcache-1.2, they can be stored in caches with Memorgst

Elements attempted to be replicated or overflowed to diskheilremoved and a warning logged if not
Serializable.

21.7 Why is there an expiry thread for the DiskStore but not fa the
MemoryStore?

Because the memory store has a fixed maximum number of elenitamill have a maximum memory use
equal to the number of elements * the average size. When areatds added beyond the maximum size,
the LRU element gets pushed into the DiskStore.

While we could have an expiry thread to expire elements paradly, it is far more efficient to only check
when we need to. The tradeoff is higher average memory use.

The DiskStore’s size is unbounded. The expiry thread ke®pslisk store clean. There is hopefully less
contention for the DiskStore’s locks because commonly wsdaks are in the MemoryStore. We mount
our DiskStore on Linux using RAMFS so it is using OS memory. ie/lwe have more of this than the

2GB 32 bit process size limit it is still an expensive reseuithe DiskStore thread keeps it under control.

If you are concerned about cpu utilisation and locking inDiekStore, you can set the diskExpiryThread-
IntervalSeconds to a high number - say 1 day. Or you can efédgturn it off by setting the diskExpiry-
ThreadintervalSeconds to a very large value.

21.8 What elements are mandatory in ehcache.xml?

The documentation has been updated with comprehensiveagw/ef the schema for ehcache and all
elements and attributes, including whether they are mangleee the Declarative Configuration chapter.

Ehcache v1.2.3 User Guide 111

21.9 Can | use ehcache as a memory cache only?

Yes. Just set the overflowToDisk attribute of cache to false.

21.10 Can | use ehcache as a disk cache only?

Yes. Set the maxElementsinMemory attribute of cache to 0.

This is strongly not recommended however. The minimum renended value is 1. Performance is as
much as 10 times higher when to one rather than 0. If not setéast 1 a warning will be issued at Cache
creation time.

21.11 Where is the source code? The source code is distribdten
the root directory of the download.

Itis called ehcache-x.x.zip. It is also available from Smorge online or through cvs.

21.12 How do you get statistics on an Element without affecig them?

Use the Cache.getQuiet() method. It returns an Elemenbwithpdating statistics.

21.13 How do you get WebSphere to work with ehcache?

It has been reported that IBM Websphere 5.1 running on IBM J3Kequires commons-collection.jar in
its classpath even though ehcache will not use it for IDKad\HDKS5.

21.14 Do you need to call CacheManager.getinstance().sllatvn()
when you finish with ehcache?

Yes, it is recommended. If the JVM keeps running after yop stsing ehcache, you should call Cache-
Manager.getinstance().shutdown() so that the threadst@pped and cache memory released back to the
JVM. Calling shutdown also insures that your persisterk disres get written to disk in a consistent state
and will be usable the next time they are used.

If the CacheManager does not get shutdown it should not belagm. There is a shutdown hook which
calls the shutdown on JVM exit. This is explained in the doeatation here.

21.15 Canyou use ehcache after a CacheManager.shutdown()?

Yes. When you call CacheManager.shutdown() is sets théesimgin CacheManager to null. If you try an
use a cache after this you will get a CacheException.

You need to call CacheManager.create(). It will create adbreew one good to go. Internally the Cache-
Manager singleton gets set to the new one. So you can credighatdown as many times as you like.

There is a test which expliciyly confirms this behaviour. SaeheManagerTest#testCreateShutdownCreate()

112 Ehcache v1.2.3 User Guide

21.16 |have created a new cache and its statusis STATUS UNINALISED.
How do Il initialise it?

You need to add a newly created cache to a CacheManager liefmts intialised. Use code like the
following:

CacheManager manager = CacheManager.create();
Cache nyCache = new Cache("testDi skOnly", 0, true, false, 5, 2);
nmanager . addCache(nmyCache) ;

21.17 Isthere a simple way to disable ehcache when testing?

Yes. There is a System Property based method of disabliraghbcIf disabled no elements will be added
to a cache. Set the property "net.sf.ehcache.disablegl%ttrdisable ehcache.

This can easily be done usin@net . sf . ehcache. di sabl ed=t r ue>in the command line.

21.18 Isthere a Maven bundle for ehcache?

Yes. http://www.ibiblio.org/maven/net.sf.ehcache/débcache-1.2 and higher.
http://www.ibiblio.org/maven/ehcache/ for earlier vierss.

21.19 How do | dynamically change Cache attributes at runtine?

You can’t but you can achieve the same result as follows:
Cache cache = new Cache("test2", 1, true, true, 0, O, tri®,.1P cacheManager.addCache(cache);
See the JavaDoc for the full parameters, also reproduced her

Having created the new cache, get a list of keys using caetieys, then get each one and put it in the
new cache. None of this will use much memory because the nelwecement have values that reference
the same data as the original cache. Then use cacheMapag®raCache("oldcachename") to remove the
original cache.

21.20 | get net.sf.ehcache.distribution.RemoteCacheEsption: Er-
ror doing put to remote peerremote peer. Message was: Error
unmarshaling return header; nested exception is: java.neSocketTimeoutEXxce
Read timed out. What does this mean.

It typically means you need to increase your socketTimedlgM This is the amount of time a sender
should wait for the call to the remote peer to complete. Havglit takes depends on the network and the
size of the Elements being replicated.

The configuration that controls this is the socketTimeollit/$etting in cacheManagerPeerListenerFac-
tory. 120000 seems to work well for most scenarios.

<cacheManager Peer Li st ener Fact ory
cl ass="net. sf.ehcache. di stri buti on. RM CacheManager Peer Li st ener Fact ory"

Ehcache v1.2.3 User Guide 113

properties="host Name=ful | y_qual i fi ed_host nane_or_ip,
port =40001,
socket Ti meout M | | i s=120000"/ >

21.21 Should | use this directive when doing distributed cdung?
cacheManager EventListenerFactory class="" properties=""/

No. Itis unrelated. It is for listening to changes in yourdb€acheManager.

21.22 What is the minimum config to get distributed caching gmg?

The minimum configuration you need to get distributed gosg i

<cacheManager Peer Pr ovi der Fact ory
cl ass="net. sf.ehcache. di stri buti on. RM CacheManager Peer Pr ovi der Fact ory"
properti es="peer D scovery=autonatic,
mul ti cast G oupAddr ess=230.0.0. 1,
mul ti cast G oupPort =4446"/ >

<cacheManager Peer Li st ener Fact ory
cl ass="net. sf.ehcache. di stri buti on. RM CacheManager Peer Li st ener Fact ory"/ >

and then at least one cache declaration with
<cacheEvent Li stener Factory cl ass="net. sf.ehcache. di stribution. RM CacheRepl i cat or Fact ory"/>>>>

in it. An example cache is:

<cache nane="sanpl eDi stri but edCachel"

maxEl enent sl nMenor y="10"

eternal ="fal se"

ti meTol dl eSeconds="100"

ti meTolLi veSeconds="100"

overfl owToDi sk="f al se">

<cacheEvent Li st ener Factory cl ass="net. sf.ehcache. di stri buti on. RM CacheRepl i cat or Fact ory"/

</ cache>

Each server in the cluster can have the same config.

21.23 How can | see if distributed caching is working?

You should see the listener port open on each server.
You can use the distributed debug tool to see what is goingSee).

114 Ehcache v1.2.3 User Guide

21.24 |getnet.sf.ehcache.CacheException: Problem starg listener
for RMICachePeer ... java.rmi.UnmarshalException: error
unmarshalling arguments; nested exceptionis: java.net.MlformedURLExcep
no protocol: Files/Apache. What is going on?

This issue occurs to any RMI listener started on Tomcat, wiitencat has spaces in its installation path.

Itis is a JDK bug which can be worked around in Tomcat but is Bee http://archives.java.sun.com/cgi-
bin/wa?A2=ind0205&L=rmi-users&P=797 and http://wwwtotext.com/kim/doc/sys-doc/faq-howto-bugs/known-
bugs.html.

The workaround is to remove the spaces in your tomcat iasitatl path.

21.25 Why can’t | run multiple applications using ehcache onone
machine?

Because of an RMI bug, in JDKs before JDK1.5 such as JDK1ef@che is limited to one CacheManager
operating in distributed mode per virtual machine. (The lonits the number of RMI registries to one
per virtual machine). Because this is the expected deplayemnfiguration, however, there should be
no practical effect. The tell tail error jsava. rmi . server. Export Exception: internal error:

oj I D al ready in use

On JDK1.5 and higher it is possible to have multiple Cachedd@ns per VM each participating in the
same or different clusters. Indeed the replication testthidowith 5 CacheManagers on the same VM all
run from JUnit.

21.26 How many threads does ehcache use, and how much memory
does that consume?

The amount of memory consumed per thread is determined Wytduk Size. This is set using -Xss. The
amount varies by OS. It is 512KB for Linux. | tend to overritte default and set it to 100kb.

The threads are created per cache as follows:

e DiskStore expiry thread - if DiskStore is used
e DiskStore spool thread - if DiskStore is used

e Replication thread - if asyncrhonous replication is corriggl
If you are not doing any of the above, no extra threads ar¢exntea

Chapter 22

About the encache name and logo

Adam Murdoch (an all round top Java coder) came up with theeriara moment of inspiration while we
were stuck on the SourceForge project create page. Ehcaehgdlindrome. We thought the name was
wicked cool.

B EH HE

The logo is similarly symmetrical, and is evocative of thagiam symbol for a doubly-linked list. The
JDK1.4 LinkedHashMap, and Apache’s LRUMap are a HashMalp avitoubly-linked list running through
all of its entries. These structures lie at the heart of efieac

115

Index

A DEBUG. ... e 47
About Eviction Algorithms 36Disk Persistenceondemand................... 42
About the ehcache name and logo........... 12, 1DBSKStOre . ..o 68
AdamMurdoch......................... 12, 11®istributed 25
Adding and Removing Caches Programmatically 40istributed Caching.......................... 26
Amdahl'sLaw..............cciiiiiiiin... 18istributed Failure 94
Apache 2.0license..............ccovvinnn. 29
AsynchronousCommandExecutor.............. d8
Automated Load, Limit and Performance System ﬁgf@.che 34
28 ehcacheconstructscooo.t. 93
Automatic Peer DISCOVErY gghcache’s Eviction Algorithms 36
ehcachexsd i 57
B ehcache-1.x-remote-debugger.jar.............. 48
BlockingCache...........c.ovvvviiinnnnns. offlement......... 35
B|ocking Cache to avoid dup"cate processing fdEFRROR 47
concurrent operations _______________ ZExplry Strategy 67
B|ockingCache ______________________________ 5.Extensib|e 26
Bootstrapping fromPeers..................... 27
Browsethe JUnitTests 4
Fast. ... 22
C Features....... 21
Cache Configuration 57IFO ... SRR 36
Cache Decoratorscoeveeuennnnn... gdushtodiskondemand...................... 25
Cache EventlListeners....................... 1dgll public information on the history of every bug
Cache eventlisteners.......................... 26 29
Cache Eviction Algorithms 3éully documented ... 29
Cache Usage Patterns......................... 7
e o S 1
CacheManager Event Listeners............... 14
CacheManager Ilsteners """"""""""" FRDEINALE ..o oo 73
CacheManagerEventListener................. 1@8bernate Cachingc.coveeeeeeenn... 73
CachgMapagerEventLlstenerFactory """"" 108hernate DOCIEt 75
CachingFilter............ ... o 9%ibernate Mapping Files.ooveeeeie i 74
Code Samples ..o HHigh Quality 28
Commons Logging.........ooovviiieiiin 40igh Test COVErageooveeeeeeeeinnn, 28
Configuration........................oiinnn. 105
Conservative Commitpolicy 29
Copy Or Invalidate Replication................ 24/0 bound Applications....................... 14
CPU bound Applications 14mplementing a CacheEventListenerFactory and CacheEigent
Creating a new cache fromdefaults 43 ONET. o o 106
Creating a new cache with custom parameters. . .#@tance Modeccovevneennn... 32
D J
Deadlock. 942EE and Applied Caching.................... 27

116

Ehcache v1.2.3 User Guide 117

J2EE Gzipping Servlet Filter 2Provides Memory and Disk stores for scalabilty into
Java Requirements, 45 gigabytes.................. ...l 24
JDKL. 3 .. 109
IJDKL.410gGING .. .o evoeee e 4R
Reliable Deliveryt 26
K Remote Network debugging and monitoring for Dis-
Key Ehcache Conceptscoovoev... 31 tributed Caches..................... 48
replaceCacheWithDecoratedCache............. 53
L Resource Exhaustion......................... 94
Least RecentlyUsed 36, BResponsiveness to serious bugs................ 29
Less FrequentlyUsed 36, 68
1= , ,
Listeners may be pluggedin................... ogafety Failures.....................oo L 94
Livelock ... ggScalable to hundreds of caches 24
Liveness Failuresccvvveeennnn.. gzelfPopulating Cache for pull through caching of
Loading of ehcache.xml resources 50 expensive operations 27
Locality of Reference..............ccccovvui... 1$elfPopulatingCache.............. SEEEEEREE 56, 97
0G4+ apetting ehcache as the cache provider ... 73
LRU .. 36, geohutdown the CacheManager.................. 41
Simple......... 23
M SimpleLog ..o 47
Manual Peer DiSCOVErYcovvn... ggimplePageCachingFilter..................... o7
Memory Storeovvviiii 6—§!mpIePageFragmentCachmgF|Iter ------------ 98
Minimal dependencies........................ ogingleton Mode ... 32
Missed Signals.cooueeuneeineannn.. g#ingleton versus Instance 39
Mixed Singleton and Instance Mode ggmall footprint...............coooven 23
Multiple CacheManagers per virtual machine . . . 2§peC|f|c Concurrency Testing.................. 28
SPoOoliNg ... vvv e 67
N Stampede ... 94
Nested monitor lockouts gtarvation....... R R ... 94
Support cache-wide or Element-based expiry poli-
o) ClBS . 24
Obtaining a referencetoa Cache Alipports Object or Serializable caching 24
Obtaining Cache Sizes........................ Aynchronous Or Asynchronous Replication.. ... 26
Obtaining Statistics of Cache Hits and Misses. . 215
Open Source LICenSingoovvvvven helongTailcooviiiiie .. 13
p Transparent Replication....................... 26
PageFragmentCachingFilter................... {fUSted by Eopular Frameworks ... L 29
PeerDiscoveryoiiiiiiiinn... 26,8 uned for high concurrent load on large multi-cpu
Peer Discovery, Replicators and Listeners may be SEIVEIS .o 24
pluggedin..............ooit. ZSU
Performgnce Con5|derat|pns """""""""" ?Jsing Caches. ... 41
Perfc_>rmmg CRUD operations.................. 4EJsing the CacheManager 39
Pers!stence_ P R RERRREEE sing the ehcache provider from the Hibernate project
Persistent disk store which stores data between VM 74
restartS. ... 25
Pluginclassloading.......................... 49
Productiontested 28irtual Machine Shutdown Considerations. 71
Programmatic setting of the Hibernate Cache Provider
74 W
Provides LRU, LFU and FIFO cache eviction poliWARNING.t 47
ClBS. 24Nays of loading Cache Configuration.......... 40

Provides Memory and Disk stores 2B/orks with Hibernate 28

